Periodic Solutions of the Spatial Extension of a Conditionally Periodic System
Periodic Solutions of the Spatial Extension of a Conditionally Periodic System
Сибирские электронные математические известия, 22, 2, стр. 1123-1137 (2025)
Аннотация:
We consider a linear system of differential equations $x'=a(t)x-\mu x$ with a conditionally periodic matrix $a$ and a parameter $\mu\in\mathbb C$. We prove that there exists a nonempty set $M\subset\mathbb C$ such that for each $\mu\in M $ the spatial periodic extension of this system, which is a system of first order partial differential equations, has a generalized (in the framework of Schwartz's theory of distributions) periodic solution.
Ключевые слова: conditionally periodic system, quasi-periodic solution, periodic Schwartz's distribution, linear homogenous system.
