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PERIODIC SOLUTIONS OF THE SPATIAL
EXTENSION OF A CONDITIONALLY PERIODIC
SYSTEM

YU. D. KOZLOV

Communicated by O.S. ROZANOVA

Abstract:We consider a linear system of differential equations
2’ = a(t)r — px with a conditionally periodic matrix a and a
parameter p € C. We prove that there exists a nonempty set
M C C such that for each u € M the spatial periodic extension
of this system, which is a system of first order partial differential
equations, has a generalized (in the framework of Schwartz’s theory
of distributions) periodic solution.

Keywords: conditionally periodic system, quasi-periodic solution,
periodic Schwartz’s distribution, linear homogenous system.

0. Introduction

0.1 . Consider the system of differential equations

' =a(t)r — px (0.1,)
with a real conditionally periodic matrix a(t) = A(et), where A = A(yp)
is a continuous wj-periodic in ¢; (j=1,...,m) n X n-matrix function, ¢ =
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1124 YU.D. KOZLOV

(01, om) € R™ w = (wy,... wm) = (1,...,1) € R™ (not to be
confused with the Euler number €), t € R, u € C, and the frequencies
Bi = 27 /w; are rationally incommensurable.

Consider also the spatial periodic extension of this system

Zw )Y — (0.2,,)

where 1 : R™ — C™ is an unknown vector function. Remark that if 1
is continuous and wj-periodic in ¢; (j = 1,...,m), then the conditionally
periodic vector z(t) = 1(et) solves system (0.1,,).

The idea of the periodic extension of a conditionally periodic function
goes back to P. Bohl [2]|, who was the founder of the theory of conditionally
periodic functions and who proved that each continuous conditionally perio-
dic function has a unique periodic extension.

If m = 1, then there exists a non-empty set M C C such that for each
p € M system (0.1,) has a periodic solution.

We assume that m > 1. The problem is whether system (0.1,) has a
conditionally periodic solution for some p € C (or system (0.2,) has a
periodic one). This is well-known to be falls in general, even for n = 1.

¢
In this case, 2(t) = cexp [(a(t) — p)dt is a solution of system (0.1,) with
0

¢
z(0) = ¢, and [(a(t) — u)dt may not be conditionally periodic even though

1 is the mean ?/alue of a.

The aforementioned problem is related to that of the existence of almost
periodic solutions of a homogeneous system [1, 3, 12, 11]. In these papers,
some conditions have been given which ensure that a bounded solution of the
homogeneous almost periodic system itself is Bohr almost periodic [1, 3, 12]
or Besicovitch almost periodic [11].

Our approach is completely different.

Firstly, we assume nothing, but that the matrix A is sufficiently smooth.
We prove that there exists a non-empty set M C C such that, for any
p € M, there exists a periodic distribution v satisfying (0.2,). In a sequel
to the present paper, we will apply this fact to prove that, for any u € M,
there exists a conditionally periodic distribution satisfying (0.1,,).

Secondly, we consider a conditionally periodic system. This allows us to
reduce the problem to the study of difference equation (0.6). This method is
unlike any attempts to solve this problem that we are aware of.

Note that we used an inhomogeneous equation associated with (0.6) to
prove an analogue of the Massera theorem in [10]. Namely, it was proved that
if an inhomogeneous conditionally periodic system has a bounded solution,
then almost every system in its H-class has a Besicovich conditionally periodic
bounded solution. The proof was based on the Schauder-Tikhonov fixed point
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theorem. Unfortunately, we were unable to apply this theorem in the case of
a homogeneous system.

Thirdly, since in the general case system (0.2,,) does not have a continuous
periodic solution, we are looking for a solution in the space of periodic
distributions, where apparently no one has looked for it yet.

0.2 . We now present some results in [8] (see also [9]), which we are going
to use. Since this paper is hardly available, we prove these results (Lemma
0.1) and Lemma 0.2 at the end of the paper.

Consider the system of integral equations

Y1—¢10
() = / Al — e€)e(p — e€) dt + zo(p — épr — p10))s  (0.3)

where we use the "hat"operator to remove the first coordinate of the vector.
Thereby, ¢ = (¢2,...,om) and é = (1,...,1) € R™"L For each continuous
function 2°: R™~! — R”, this system has a unique continuous solution = =

x(; 10, 2°). This solution is wy, -periodic in ¢y if sois 2 (k = 2,...,m). The
vector z = z(et; p19,2") is a solution of system (0.1¢) with z(e@10; @10, 2°) =
l’o(é(plo).

Consider the matrix equation associated with (0.3)

Y1—10
X(p) = / Alp — e€)X(p — e€) dé + E, (0.4)

where E is the identity matrix. By X (¢; p19) we denote the solution of this
equation and Xo(¢) = X (¢;0).

Lemma 0.1 . Let A be a continuous wj-periodic in p; (j=1,...,m) matric
function. Then matriz equation (0.4) has a unique continuous solution X,
and the following properties are true.

(a) The matriz X (p;p10) s non-singular for all ¢ € R™ and p19 € R,
and it is wj-periodic in @; (j=2,...,m).

(b) The solution of system (0.3) can be represented in the form

(5010, 2°) = X (3 910)2°(@ — (1 — ¥10))-

(¢) X (1 + w1, @5 010) = X(959010) X (P10 + w1, @ — (1 — ¢10);10); In
particular, Xo(e1 + wi,9) = Xo(@)Xo(wi,$ — ép1) [here the vector ¢ has
the form. (g1, 9)].

(d) The matriz Xo(et) is the normalized fundamental matriz of system
(0.1p).

Lemma 0.2. Let the matriz A be r-times continuously differentiable on
R™; then so is the matriz Xj.
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The matrix Xg is a solution of a differential equation, which we are going
to get now. Put o1 — & = ( in (0.4). Then

1
Xo(p) = / A(G @+ 2(C — p1))Xo(C, b+ 6(C — 1)) dC + E.

®10

Let the matrix A be continuously differentiable; then so is X. Differenti-
ating both sides of the above equation w.r.t. ¢; and summing w.r.t. j from
1 to m, we obtain

Z(Xo)} = A(p)Xo. (0.5)
j=1
The key role in our research is played by the system
Xo(w1, @) L(¢ — éwr) = AL($). (0.6)

Suppose that L : R™~! — C" is a continuous wj-periodic in ¢; (j =
2,...,m) vector function which satisfies (0.6) for some A € C, XA # 0, and let
U= w% In A. We claim that

Y = Xo(p)L(¢ — ép1) exp (—pp1)

is periodic, t(et) is the conditionally periodic solution of (0.1,), and if
L is differentiable, then ¢ satisfies (0.2,). Indeed, ¢ is wj-periodic in ¢;
(j=2,...,m) since X and L are so. Let us prove that it is periodic in ¢1. By
item (c) of Lemma 0.1, we have

V(1 + w1, ) = Xo(p1 +wi, @) L(P — é(p1 +wr))e Hre #e1
= Xo(p) Xo(w1, @ — €p1)L( — é(p1 +wi)) A~ te e (0.7)

(0.6) . 1
= Xo(p)L($ — ép1) " le #91 = ¢ (p).

In view of item (d) of Lemma 0.1, it is clear that ¢ (et) = Xo(et)L(0)e #* is
the solution of (0.1,,). That 1 solves (0.2,) one can check by direct calculation
using (0.5) and the relation >~ (L(4 — ép1)); = 0.

i=1

In the first section of this ;:)aper, we present the basic facts about periodic
distributions. After that we show that if there exists a periodic distribution
L that solves (0.6) for some X # 0, then ¢ = Xo(¢)L(p — ép1) exp (—pp1)
solves system (0.2,,).

In the second section, we prove that there exists a non-empty set A C C
such that, for each A € A, the distribution L exists. And in the third section
we prove Lemmas 0.1, 0.2.

1. Periodic distributions

The definition and properties of periodic distributions, which we use, can
be found in the monographs [14, 15, 6]. We introduce the vector periodic
distributions following [6] (see also [4, Ch.1]).
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Let PY(w) be the Banach space of w;-periodic in ¢; (j = 1,...,m) g-times
continuously differentiable functions y: R™ — C" with the norm [|y[| pe(,,) =

max max ||[D"y(y)||, where || - || is @ norm on a finite-dimensional space,
Ir|<g peR™

. . |
r = (r1,...,rm), 7; are non-negative integers, D"y(p) = 97w@) _ and

AT
r|=r14 -+ T

Let PSQ (w) be the Banach space of periodic g- times continuously differ-
entiable n x n matrices with the norm HAHPEQ(M) = ‘Sé); las|| pr(w), where
as € Pl(w) (s=1,...,n) are columns of A.

Denote by P/%(w) the space of linear continuous maps z: Pf(w) — C,
where = (21,...,2,)7, 2T is the transpose of z, and z} are linear conti-
nuous functionals on P (w).

Every x € P/%(w) determines the linear continuous functional on P (w)
n

by the rule (z,9)0 = Y. (Tk, Y&)w, Where y = (y1,...,yn)? € Pi(w) and
k=1
(Tk, Yk)w is the value of z at the point yx € Pl(w).
The space P, %(w), endowed with the norm [|z| pra(yy =  sup  [(z,y)ul,
HyHRg(w)Zl
is the Banach space, and it is isomorphic to the dual space of P(w) |6, p.267|.
Consider the countably normed space P,(w) = (1,2 Pri(w) and its dual

Py (w) = U2 (w). By definition, a sequence {y*} in P,(w) converges to
y € Py(w) if ||y* — Yl pa(y — 0 for every non-negative integer ¢, and {z*} in
P! (w) converges weakly to z € P! (w) if (z* —z,y)w — 0 for every y € P, (w)
as k — oo. The latter is equivalent to the fact that z¥ — x weakly in some
P/%(w) [4, Ch1].

The space Pj(w) is isomorphic to the space of the Schwartz periodic
distributions [6, 14]. That is why = € Pj(w) is called an w-periodic distribu-
tion, and therefore z € P (w) we call an w-periodic vector distribution [15, 6].
Note that the term w-periodic is used for brevity. In fact, z € P} (w) is wj-
periodic in ¢; (j =1,...,m), i.e.,

z(p1, .. P15 T Wi, P, - 5 Pm) = x(p).

Indeed, by the definitions of equality and translation (see below on this
page), we have

(@(P1, -, i1, 95 + Wi @ity - Pm)s Y(P))w
= (2(©), Y(P1, - - -, Pj=1, 9 — W), Pjt1s- - Pm))w = (2(0), Y(¥))w

for any y € P,(w) .
We are going to mainly deal with the spaces of vector distributions P} %(w)
and spaces of test functions P} (w). Suppose z,z € P/9(w). Let us remember
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the definitions of
equality : © =2 < {(2,9)0 = (2,Y)w, Yy € Pl(w);
derivative : (2%, y)w = —(2,Y})w, Yy € P (w);
multiplication by matriz A € P§2 (W) : (Az,y)y = (x, ATy),,, Vy € P(w);

translation by 7 (x(p —7),y(¢))w = (2(9), y(¢ + T))w, Yy € Pi(w),
T e R™.

It was proved in the monographs [14, p.225|, [15, p.130] that every z €
P/ (w) has a unique Fourier series expansion

2(p) = Y crexp(i(kByp)), (1.1)

kezm

where

cr = ((w1(), exp(=i(kBp)))ws - - -, (Tn(p), exp(=i(kBe)))w) /(w1 . . . i),
b= (koo bin) €7, 5 = (B ). B = 2o, (556) = 3 kil
Besides, there exist K > 0 and p € N such that
lexll < KK, k€ Zm. (1.2)

Inversely, if there exist K > 0 and p € N such that, for any k € Z™, inequality
(1.2) holds, then series (1.1) converges weakly and x € P! (w) [6, pp.265,266],
14, p.225], [15, p.130].

It was shown in the previous section that if (0.6) has a continuous periodic
solution L, then 9(p) = Xo(p)L($ — ép1)exp(—pup1) is continuous and
periodic. Now suppose that L € P’ (©) and Xo € P’,(w) (for some non-
negative integer r); then ¢ € P'T (@) for any o1 € R. Likewise (see (0.7)),

it can be proved that 1 is wi-periodic in ;. That is why we are going to
w

1

regard ¢ as the distribution given by (¥, y)y, = [(¥,y)ade1, y € Pl (w).
0
Let us prove that ¢ € P"(w).

In this proof we use a standard fact in calculus : Let y : [a, B] x K — C" be
uniformly continuous for given o, 3 € R and K C R™™Y, let {1} C [, B];
then o1 — @10 implies y(e1x,¢) — y(p10,$) uniformly for ¢ € K as
k — oo.

Lemma 1.1. Let A € Pl,(w), L € P} (@), and r > 0; then (p) =
Xo(p)L(p — ép1) exp(—up1) € P'T(0) for any ¢1 € R and the function
g(p1) = (Y, y)e is continuous w.r.l. o1 € [0,w1] for every y € Pl ().

Proof. By Lemma 0.2, it follows that Xo € P, (w). Hence, ¢ € P;(w) for
cach 1 € R. Put Xou(p) = Xo(p) exp(—pep1). Then 1(p) = Xou(p)L(P —
ép1), and g can be written as g(yp1) = (L(([J),XOTM(%, O+ ep)y(@+épr))e-
The vector v(yp) = X[)Tu(gol,g?) + ép1)y(p + ép1) and its partial derivatives
of |j|th order (|j| = 1,...,r) are uniformly continuous on [0,w;] x R™~L,
Therefore, if [0,wi] 3 p1x — w10 € [0,wi] as &k — oo, then v(pik, ¢) and

Div(p1k, ¢) tend uniformly w.r.t. ¢ € R™! to v(p10,¢) and DIv(p10,P)
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respectively. From this, remembering that L is a continuous mapping, we
conclude that g(¢1x) — g(¢10)- Hence, g is continuous. O

Lemma 1.2.Let A € P',(w), L € P'},(©), and r > 0; then 1 € P, (w).

Proof. First, by using the fact that the mapping (-, -)5: Pl (0) x Pr (&) — C
is bilinear and separately continuous, we prove that (1, y)s is continuous in
01 € [0,w;] if y € P (w).

It follows from Lemma 1.1 that the function ¢ : [0,wi] — P'7(®) is
continuous, i.e., [0,w1] 3 @15 — 10 implies

(Y(e1k,)s 2)a = (Y(p10,°): 2)a (1.3)

for every z € P} ().
Besides, if y € Pr(w), then [y(pue &) — (210, D)l ey — 0 since the
derivatives D’y(y), 0 < |j| < 7 are uniformly continuous on R™, and hence
<1’, y(gplka )>Q2 — <.’L’, y(@lOa )>(Z‘ (14)

for each z € P’ (©).
Therefore, by the bilinear mapping continuity theorem [13, Th. 2.17|, in
view of relations (1.3) and (1.4), we get

(W(P1ks ) Y(P185 ) = (W(p10,°),y(®10, )@ Y € Pr(w).

This proves that (1, y) is continuous and hence integrable w.r.t. ¢ € [0,w1].
To conclude the proof, we note that

w1
|/<¢»y>@ dpi| <wi sup [P, 9)e] SwiK sup  yllpre) < wi1K ||yl pr(w)-
0

©1€[0,w1] ©1€[0,w1]
The existence of K = sup |9 p:r () follows from the Principle of Uniform
@16[0"“1]

Boundedness. Indeed, due to Lemma 1.1, (¢, y); is bounded in ¢; € [0, w;]
at each point y € P} (). Hence, the collection {(¢,-)s : ¢1 € [0,w1]} of the
continuous linear mappings from P} (%) into C is bounded. The inequality
just obtained proofs the lemma. O

We say that ¢ € P),"(w) is a solution of system (0.2,) if
m

O vy = (AP — b, ) (1.5)
=1

for any y € Pr(w).

Lemma 1.3. Let A € P!, (w), L € P'},(@) be a solution of (0.6) for some
A£0,r>1, and p = wl_l In \; then the distribution () = Xou(@)L(p —
ép1) € P’ (w) satisfies system (0.2,,).

Proof. It follows from Lemma 1.2 that ¢ € P,,"(w), and hence ¢ € P;"!(w),
j=1,....,m.
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Let y € Prt!(w). We are going to use the relations

w1

{ (L(@ — ép1), (Xg,(0) AT () — n X3, (0))y(e))adpr

- :1<<A<¢>X0u<so>  uXou (@) L@ — o) y(@ader (1O
= (A — b, y)w
and
0X, (01,0 + ép1)/0p1 = ; (X3,)i(p1, @ + 1) (1.7)

= X3, (01,0 + ep1) AT (01, ¢ + 1) — pX3, (01, + ép1).

The latter follows from (0.5).
So, remembering that y € P71 (w), we have

<§wg,y>w:—<xw<w>f:< ~ép). 3 i)

= — [ L(p — ép1), X, (¢ )Eyz( ))o der

w1

= — Jo H(L(2), Xg, (1, <p+es01)y1(901,<p+e<p1)>wdcp1

— Jo L), Xg,, (1, 90+6901)223/1(901a¢+€901)>ad901-

Denote the first summand at the right in the above relation by I, the
second by I5, and transform 1.

o (L(9), Xg,, (1, s0+6<p1)3y(s01,w+6s01)/3<p1> dipr
f (L( ), Xg, (901,<p+es01)2y2(<p1,<p+6<p1)> dp
= Jo (L(9),0X; (901,<p+6901)/0s01y(<p1,s0+e<p1)> dip1
— Jo (L(¢ )ﬁ(XoH(le @+ een)y(er, @+ ep1)/0p1)a den
+ Jo (L(#), X, (901,90+es01)Zyz(<p1,s0+e<p1)>wds01,
Iy = — [ (L(&), X, (01, & + é¢1) S 401, @ + é1)adipr.

i=2
Hence,
L+ I = [ (L($),0X4, (01,8 + é1)/0p1y(p1,§ + é91))e dipy
— JoH(L(2), O(X T, (01, @ + ep1)y(1, @ + €01)) [Dp1)i dipr.
We denote the first integral in the previous relation by J; [and the second
by Jo| and transform it using (1.7):
J1= [ L(B), (XT (01,8 + 01) AT (01,8 + ép1)
—u{g&(% @+ ep1))y(p1, @ + ép1))e dipr
= JoHUL(@ — ép1), (X3, () AT ()
(1.6)
—u X3, (2)y(@))e dpr =" (A — ), y)u-
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To transform Ja, we use differentiation of (-,-); w.r.t. parameter ¢; [14,
p.105]:
(L(2), (X3, (1,8 + ep1)y(p1, @ + e91)) /01) e

= O(L(), X, (01,0 + ep1)y(01, § + €01)))a/ D1
As a result, we get

o = [y O(L(9), Xgu (01, ¢ + Ep1)y (1, + ep1))o/ Do dipn
= (L(¢ ) (Xou(w @+ éwr)y(wr, P + éwr) — Xou(O ) ( ?)))a
= (Xop(w1, @) L(¢ — éwr) — Xou(0, @) L(£),y(0,9))e

Remembering that L satisfies (0.6), Xo, (w1, @) = Xo(wi, @)A™L,
and Xo,(0,¢) = Xo(0,9) = E, we get Jo = 0.
Summanzmg all the above, we get (1.5). O

2. Generalized solutions of systems (0.6) and (0.2 )

Consider the system

Xo(wr, @)L(Sb - as) - )\L(@), (2'1)

where o = (pPasw2/q2s, - - - s PmswWm/Gms), Pjs € Z, qjs € N. Due to the
incommensurability of the frequencies 3; = 2m/w;, we can choose pjs, gjs
such that ag — éwq as s — oo.

First, we want to prove that, for each s € N, there exists a distribution L,
which solves this system for some A\; € C. Then we prove that the sequence
{Ls} has a week partial limit L which satisfies (0.6) for some A € C.

Lemma 2.1. Let A € PSQ (w); then, for any s € N, there exist a distribu-
tion Ls € P.O(&) and a complex number \s # 0 which satisfy (2.1).

Proof. Let us endeavour to satisfy (2.1) by the distribution

vs—1
= Z [si0(p — ja), (2.2)
where v is the least common multiple of gj5 (j = 2,...,m), fs; are constant

column vectors, and § € P{%() is the Dirac distribution: (fs;6(¢—¢%), y)s =
Ly(@"), y € PY@).
Note that, in our case, § is a periodic functional since it is defined on the
space of periodic functions.
Recall that Lg satisfies (2.1) if, for any y € PY(&), the following relation
holds

(Xo(w1, @) Ls(p — as),y)o = (AsLs(9), Y)a-
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Upon substituting Lg into the left and right sides of this equation, we find

(Xo(wi, @) Ls(p — ), y(@))o = (Ls(@ — as), (Xo(wr,9) y(@))e
= (Ls(), (Xo(w1,$ + OCS))Ty(Sb + as))e

vs—1

=5 (80— o), (a0 00 + 02
_ 21 I (Xo(wr, G+ D)) y((G + Lass)
)

= ZO (Xo(wr, (7 + Das) f5;)Ty((5 + Davs)
i=

and
vs—1 vs—1
ALo(9),9(@)o = As D (foi0(@ — o), y(@)o = As ¥ fly(jos).
=0 =0
Thus,
vs—1 vs—1
S (Ko, (G + Das) fo) Ty(( + Das) = A 3 Ey(a).
=0 =0
This relation holds if the vectors f,; satisfy the system
Xo(w1, as) fso = Asfs1
Xo(w1,2as) fa1 = Asfs2
el (2.3)
XO( ( )as)fsusf2 = )\sfsusfl
XO(W Vsas)fsus—l = )\SfSO'
Indeed, let y € PY(@). Then it follows from (2.3) that
(Xo(wi, as) fs0) Ty (as) = A(fo1)y(as)
(Xo(wr, 2a5)f31)Ty(2a5) = /\s(fs2)Ty(2a8)
(Xo(w1, (vs — 1)055)]051/5*2)71?/((7/8 —las) = )‘S(fsusfl)Ty((Vs —1as)
(XO(wly Vsas)fsus—l)Ty(Vsas) = )\s(st)Ty(Vsas)-

Putting y(vsas) = y(0) in the right-hand side of the last equation and
summing these equations, we obtain the desired relation.
It follows from (2.3) that

Xo(wl, I/sOéS)Xo(wl, (I/s — 1)045) - Xo(wl, Oés)fs(] = )\Z‘sto. (24)

Consider some root G5 = (Xo(w1, vsas) Xo(wi, (vs — 1)as) ... Xo(wi, as))vls ,
some eigenvalue A\s of G, and the corresponding eigenvector fqo; then Ag
and fso satisfy (2.4). Substituting \s and fs into (2.3), we successively find
the vectors fe,k = 1,...,v5 — 1. Hence, we get the distribution Lg which
is a solution of (2.1). It can be seen from (2.2) that L, € P/°(&) since

f5i0(& — jas) € PO (@). O
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Lemma 2.2. Let A € PSQ (w) and let \s be an eigenvalue of Gs, s € N;
then there exists a convergent subsequence {\s, } of the sequence {\s} with
nonzero limit.

Proof. The matrix function Xo(wi,-) is non-singular, continuous, and @-
periodic in ¢» € R™~!. Hence, there exist a, 3 > 0 such that for any = €
R™ and ¢ € R™ ! we have afz| < || Xo(wi,@)z| < B|z|. From these
inequalities we get [|G%*]] < % and [|G5"*]] < a™"* ( the matrix norm
induced by the vector norm ||-|| is also denoted by |[|-]|). Since AZ* and A"
are eigenvalues of the matrices G%* and G;"* respectively, it follows that
[AVs| < 8% and |A\;7*| < a7, and hence a < |X\s] < B, s € N. On the
strength of that there exists a partial limit A of {\s} such that a < |A] < .
Hence, the desired subsequence exists. O

Now we want to show that there exist sequences {\s} and {Ls} such that
{Ls} has a weak limit L which is a solution of (0.6) with A = lim A;.
Consider the Fourier-series of L:

L= 3 tpesplilkie),
kezm—1

vs—1

where t ;= (w2 ...wm)™t X fy exp(—ij(kBay)) and
j=0

(EBO‘S) = in:Q krﬁrpsrwr/QSr-

Lemma 2.3. For each s € N, the mapping k — top 18 vs-periodic w.r.t.
kr (r=2,...,m).

Proof. Recall that k= (k2,...,km), Br = 27/wy, Vs is the least common
mlﬂtiple of Qrs, and Qg = (p25w2/q257--~7pmswm/Qms>- Since Vs/‘]rs € Z
(r=2,...,m), we have

I/k—l

tg (k2eoskr+Vs,eoskm) — Z fsj eXp(_ij(]%Bas + Vs<2ﬂ/wr)prswr/%"s))
=0

l/k—l ~~ A

= Z:O fsjexp(—ij(kBas)) =t ;.
i=
[l

Lemma 2.4. For any j € Zm, i addition to Ls and As, the pair

L@ = % b exp(i(kB@)) and N = Asexp(—i(jBas)) also satisfies
]%eszl
the system (2.1).

Proof. Making a change k —j=#in the Fourier series of Lé, we obtain Lz =
Lsexpi(3j¢). Then putting Ly = Ll exp(—i(8j¢)) into (2.1), we conclude
that the lemma is true. (]
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Lemma 2.5. Let, for any ke 7™ there exists t;, = lim toir and let
S o0

there exists C' > 0 such that for all s € N and Z%AE Z™=1 the inequality

[till < C holds. Then Ls — L = 3 t;exp(i(kB¢)) and Ls( — as) —
];)EZ"”71

L(¢ — ewr) weakly in P (&) for r > [252] + 1 ([t] stands for the integral

part of t).

Proof. Let y € PI(®), yx be the Fourier constants of y, and r > [mTfl] + 1;

then -|| converges |5|. We say that (Ls,y)s = tTy - and
Yi 8 y y Ly g
'I;‘emel ];emel
L,y = tTy .. The proofs of these relations are similar since the
(L,y LYk
kezm—1

boundedness of {t_;} implies ||| < C for ke Z™1 | so we prove the first
one. Itholdsify =y" = > y; exp(i(kB@)) is a trigonometrical polynomial

||| <h
[15, p.132]. Besides, the series ) > tsTl%y_,% converges because |tST]%y_,%] <
keZ'mfl
C|ly_k|. Therefore, we can take the limit in (Lg,y")e = tfl;y_,; as
||kl <h

h — oo and get the desired relation. o
To prove the weak convergence of {Ls} to L =3 t;exp(i(k3¢)), we

EeZ'rnfl
consider (Ly — L,y)o = > (t,; — t3)y_j. For given € > 0 we find My,
kezm—1
My such that > [yll < €/(4C) and > |[tx — trsl < €/(2C1) for
(|| M ||kl <M

5 > M, where C1 = max{||y;|| : k|| < Mi}. Then
Y g —t) vl <Cr DD =t 20 D gl <e
kezm—1 &l <My |kl > M

for s > Ms. Hence, Ly — L weakly as s — oco. By the same argument, we
have
<LS(<,5—OZS)—L(@A—A€(¢)1),y>&, = o
> (t . exp(—i(kBas)) — t; exp(—i(kzﬁwl)))TgLiC -0

kezm—1
as s — 00.
Owing to the weak* sequential completeness of P/ (&), we obtain L €
PI"' (&) since Ls € PP(®) C P (). O

Theorem 2.1. Let A € Pl3(w) and ro = [5] + 1; then there ewist a
distribution L € P"°(O) and A # 0 satisfying (0.6).

Proof. There exists a sequence {L;} such that
Itgoll =1 = it gl (2.5)



PERIODIC SOLUTIONS OF THE SPATIAL EXTENSION 1135

for k # 0 and s € N. Indeed, due to Lemma 2.3, for each s € N, there
exists t.; such that [[t; | > [t/ ks # k. Owing to Lemma 2.4, the
distribution L;kS/HtSkSH = > i exp(i(kB@)) satisfies (2.1) for A =
kezm—1

As exp(i(ksBa)); then ;= toieh /1T, || satisty (2.5).

Let the Fourier constants of L satisfy (2.5). Taking a subsequence if ne-
cessary, we may assume, in view of Lemma 2.2, that Ay — A # 0. It follows
from (2.5) that for each k € Z™! the sequence {¢_} is bounded. Hence,

there exists a sequence {s,} of positive integers such that lim ¢t ; = ¢;
p—oo Sp

exists and HtkH < 1 for cach k € Z™ 1. By Lemma 2.5, we get Ls, — L
weakly in P;°(w). Besides, by Lemma 0.2, Xo(wi,-) € P'3(w). Therefore,
Xo(wr,-)Ls, = Xo(wr, )L weakly in P;/°(w). Then taking limit in (2.1), we
get Xo(w1, P)L(p — ép1) = AL(¢p). Moreover, L # 0 since t3 # 0. O

Consider the set of sequences {\s}, where A, is an eigenvalue of G5 and
denote by A the set of partial limits of these sequences.

Theorem 2.2. Let A € A, p = wflln A, and A € P'5(w); then there
exists a periodic distribution ¢ € P}°(w) that satisfies (0.2,).

Proof. If A € P’3(w), then, by Theorem 2.1, there exists L € P;°(®)
satisfying (0.6). Therefore, Theorem 2.2 follows from Lemma 1.3. O

3. Proof of Lemmas 0.1 and 0.2
Lemma 0.1.

Proof. System (0.5) has the unique continuous solution

P1—¥10
X(p;010) = E + Of A(p — e€) d¢
0o P1—¥10 P1—P10—Ek p1—p10—&2—...— &k
+> | f A(p — e&r) Alp — e(&k + &x—1))---
k=2 0 0 0

k
A(@—ezlfz) déi ... d&,

(3.1)
which one can get by the method of successive approximations. Let o, 8 € R
be arbitrary. Then this series converges uniformly w.r.t. ¢; € [, (], ¢ €
R™~! because it has the majorant

[e.e]

S 14l o1 = w10/
s=0
This solution is wj-periodic in ¢; (j = 2,...,m) since so is the right part of
(3.1). Besides,
p1t+t—p10
X(ptetp)= [  Alp+elt—€)X(p+e(t—E§);p)d+E

0
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t
=t-¢=(= [ A(p +eQ) X (¢ + e p10) d¢ + E.
Therefore, e

dX (¢ + et; p10)/dt = A(p + et) X (o + et; p10) (3.2)

and X (10, @; p10) = E. Consequently, the matrix X (¢ + et, ¢19), being a
fundamental matrix of the system

¥ = A(p +et)x,

is non-singular for ¢ € R™ and @19 € R. In particular, Xg(et) is the
normalized fundamental matrix of system (0.1p).

The fact that the function z(p; 10, 2°) = X (¢; 10)7° (4 — &(p1 — p10)) is
a solution of system (0.3) we prove by substituting it into this system. Taking

into account that z(p — e&; 10, 2%) = X (p — e&; p10)2° (¢ — €(p1 — ¢10)), we
get

X (3 910)2°(& — é(p1 — #10))
$1—¥10

= Of Alp — e€) X (p — €€ 010)2°(@ — e(01 — ¢10)) d€ 4+ 2°(4 — (01 — ¢10))

=( | Alp—e§)X(p—e&p10)dé+ E)x’(¢ — é(p1 — ¢10))-
0
This is true since X (¢; p10) satisfies (0.4).
To prove (c), note that X (t+w1, ¢+ ét; p19) solves matrix equation (3.2).
Hence,

X(t+w1,gb—|—ét; 9010) = X(t,g5+ét; ngo)Q. (3.3)

Putting t = 19 in this relation, we get Q = X (¢10+w1, P+ E¢10; ¢10). Then
substituting ¢, for t and ¥ for ¢+ ép; in (3.3), we get X (o1 +wi,v¥; p10) =
X (1,95 010) X (010 + w1, ¥ + (@10 — ¢1); ¥10). O

Lemma 0.2.

Proof. Let the matrix A be r-times continuously differentiable on R™. Then
the matrix X, being a solution of system (3.2), is r-times continuously differen-
tiable by the theorem on differentiability of the solution w.r.t. parameter ¢
[7, p.126].

O

It is noteworthy that if A\g € A and po = wl_l In A\g, then some system in
the hull of (0.1,,) has a bounded solution. It follows from this that 19 belongs
to the Sacker-Sell spectrum of this system and Ag belongs to the spectrum
of the monodromy operator of this system. Besides, system (0.1,,) has a
generalized conditionally periodic solution. But these will be the objects of
another paper.
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