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PERIODIC SOLUTIONS OF THE SPATIAL
EXTENSION OF A CONDITIONALLY PERIODIC

SYSTEM

YU. D. KOZLOV

Communicated by O.S. Rozanova

Abstract:We consider a linear system of di�erential equations
x′ = a(t)x − µx with a conditionally periodic matrix a and a
parameter µ ∈ C. We prove that there exists a nonempty set
M ⊂ C such that for each µ ∈ M the spatial periodic extension
of this system, which is a system of �rst order partial di�erential
equations, has a generalized (in the framework of Schwartz's theory
of distributions) periodic solution.

Keywords: conditionally periodic system, quasi-periodic solution,
periodic Schwartz's distribution, linear homogenous system.

0. Introduction

0.1 . Consider the system of di�erential equations

x′ = a(t)x− µx (0.1µ)

with a real conditionally periodic matrix a(t) = A(et), where A = A(φ)
is a continuous ωj-periodic in φj (j=1,. . . ,m) n × n-matrix function, φ =
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1124 YU.D. KOZLOV

(φ1, . . . , φm) ∈ Rm, ω = (ω1, . . . , ωm), e = (1, . . . , 1) ∈ Rm (not to be
confused with the Euler number e), t ∈ R, µ ∈ C, and the frequencies
βi = 2π/ωi are rationally incommensurable.

Consider also the spatial periodic extension of this system

m∑
j=1

ψ′
j = A(φ)ψ − µψ, (0.2µ)

where ψ : Rm → Cn is an unknown vector function. Remark that if ψ
is continuous and ωj-periodic in φj (j = 1, . . . ,m), then the conditionally
periodic vector x(t) = ψ(et) solves system (0.1µ).

The idea of the periodic extension of a conditionally periodic function
goes back to P. Bohl [2], who was the founder of the theory of conditionally
periodic functions and who proved that each continuous conditionally perio-
dic function has a unique periodic extension.

If m = 1, then there exists a non-empty set M ⊂ C such that for each
µ ∈M system (0.1µ) has a periodic solution.

We assume that m > 1. The problem is whether system (0.1µ) has a
conditionally periodic solution for some µ ∈ C (or system (0.2µ) has a
periodic one). This is well-known to be falls in general, even for n = 1.

In this case, x(t) = c exp
t∫
0

(a(t)− µ)dt is a solution of system (0.1µ) with

x(0) = c, and
t∫
0

(a(t) − µ)dt may not be conditionally periodic even though

µ is the mean value of a.
The aforementioned problem is related to that of the existence of almost

periodic solutions of a homogeneous system [1, 3, 12, 11]. In these papers,
some conditions have been given which ensure that a bounded solution of the
homogeneous almost periodic system itself is Bohr almost periodic [1, 3, 12]
or Besicovitch almost periodic [11].

Our approach is completely di�erent.
Firstly, we assume nothing, but that the matrix A is su�ciently smooth.

We prove that there exists a non-empty set M ⊂ C such that, for any
µ ∈ M , there exists a periodic distribution ψ satisfying (0.2µ). In a sequel
to the present paper, we will apply this fact to prove that, for any µ ∈ M ,
there exists a conditionally periodic distribution satisfying (0.1µ).

Secondly, we consider a conditionally periodic system. This allows us to
reduce the problem to the study of di�erence equation (0.6). This method is
unlike any attempts to solve this problem that we are aware of.

Note that we used an inhomogeneous equation associated with (0.6) to
prove an analogue of the Massera theorem in [10]. Namely, it was proved that
if an inhomogeneous conditionally periodic system has a bounded solution,
then almost every system in its H-class has a Besicovich conditionally periodic
bounded solution. The proof was based on the Schauder-Tikhonov �xed point
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theorem. Unfortunately, we were unable to apply this theorem in the case of
a homogeneous system.

Thirdly, since in the general case system (0.2µ) does not have a continuous
periodic solution, we are looking for a solution in the space of periodic
distributions, where apparently no one has looked for it yet.

0.2 . We now present some results in [8] (see also [9]), which we are going
to use. Since this paper is hardly available, we prove these results (Lemma
0.1) and Lemma 0.2 at the end of the paper.

Consider the system of integral equations

x(φ) =

φ1−φ10∫
0

A(φ− eξ)x(φ− eξ) dξ + x0(φ̂− ê(φ1 − φ10)), (0.3)

where we use the "hat"operator to remove the �rst coordinate of the vector.
Thereby, φ̂ = (φ2, ..., φm) and ê = (1, . . . , 1) ∈ Rm−1. For each continuous
function x0 : Rm−1 → Rn, this system has a unique continuous solution x =
x(φ;φ10, x

0). This solution is ωk -periodic in φk if so is x
0 (k = 2, . . . ,m). The

vector x = x(et;φ10, x
0) is a solution of system (0.10) with x(eφ10;φ10, x

0) =
x0(êφ10).

Consider the matrix equation associated with (0.3)

X(φ) =

φ1−φ10∫
0

A(φ− eξ)X(φ− eξ) dξ + E, (0.4)

where E is the identity matrix. By X(φ;φ10) we denote the solution of this
equation and X0(φ) = X(φ; 0).
Lemma 0.1 . Let A be a continuous ωj-periodic in φj (j=1,. . . ,m) matrix

function. Then matrix equation (0.4) has a unique continuous solution X,
and the following properties are true.

(a) The matrix X(φ;φ10) is non-singular for all φ ∈ Rm and φ10 ∈ R,
and it is ωj-periodic in φj (j=2,. . . ,m).

(b) The solution of system (0.3) can be represented in the form
x(φ;φ10, x

0) = X(φ;φ10)x
0(φ̂− ê(φ1 − φ10)).

(c) X(φ1 + ω1, φ̂;φ10) = X(φ;φ10)X(φ10 + ω1, φ̂ − ê(φ1 − φ10);φ10); in
particular, X0(φ1 + ω1, φ̂) = X0(φ)X0(ω1, φ̂ − êφ1) [here the vector φ has
the form (φ1, φ̂)].

(d) The matrix X0(et) is the normalized fundamental matrix of system
(0.10).
Lemma 0.2. Let the matrix A be r-times continuously di�erentiable on

Rm; then so is the matrix X0.
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The matrix X0 is a solution of a di�erential equation, which we are going
to get now. Put φ1 − ξ = ζ in (0.4). Then

X0(φ) =

φ1∫
φ10

A(ζ, φ̂+ ê(ζ − φ1))X0(ζ, φ̂+ ê(ζ − φ1)) dζ + E.

Let the matrix A be continuously di�erentiable; then so is X0. Di�erenti-
ating both sides of the above equation w.r.t. φj and summing w.r.t. j from
1 to m, we obtain

m∑
j=1

(X0)
′
j = A(φ)X0. (0.5)

The key role in our research is played by the system

X0(ω1, φ̂)L(φ̂− êω1) = λL(φ̂). (0.6)

Suppose that L : Rm−1 → Cn is a continuous ωj-periodic in φj (j =
2, . . . ,m) vector function which satis�es (0.6) for some λ ∈ C, λ ̸= 0, and let
µ = 1

ω1
lnλ. We claim that

ψ = X0(φ)L(φ̂− êφ1) exp (−µφ1)

is periodic, ψ(et) is the conditionally periodic solution of (0.1µ), and if
L is di�erentiable, then ψ satis�es (0.2µ). Indeed, ψ is ωj-periodic in φj

(j=2,. . . ,m) since X and L are so. Let us prove that it is periodic in φ1. By
item (c) of Lemma 0.1, we have

ψ(φ1 + ω1, φ̂) = X0(φ1 + ω1, φ̂)L(φ̂− ê(φ1 + ω1))e
−µω1e−µφ1

= X0(φ)X0(ω1, φ̂− êφ1)L(φ̂− ê(φ1 + ω1))λ
−1e−µφ1

(0.6)
= X0(φ)L(φ̂− êφ1)λλ

−1e−µφ1 = ψ(φ).

(0.7)

In view of item (d) of Lemma 0.1, it is clear that ψ(et) = X0(et)L(0̂)e
−µt is

the solution of (0.1µ). That ψ solves (0.2µ) one can check by direct calculation

using (0.5) and the relation
m∑
j=1

(L(φ̂− êφ1))
′
j = 0.

In the �rst section of this paper, we present the basic facts about periodic
distributions. After that we show that if there exists a periodic distribution
L that solves (0.6) for some λ ̸= 0, then ψ = X0(φ)L(φ̂ − êφ1) exp (−µφ1)
solves system (0.2µ).

In the second section, we prove that there exists a non-empty set Λ ⊂ C
such that, for each λ ∈ Λ, the distribution L exists. And in the third section
we prove Lemmas 0.1, 0.2.

1. Periodic distributions

The de�nition and properties of periodic distributions, which we use, can
be found in the monographs [14, 15, 6]. We introduce the vector periodic
distributions following [6] (see also [4, Ch.1]).
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Let P q
n(ω) be the Banach space of ωj-periodic in φj (j = 1, . . . ,m) q-times

continuously di�erentiable functions y : Rm → Cn with the norm ∥y∥P q
n(ω)

=

max
|r|≤q

max
φ∈Rm

∥Dry(φ)∥, where ∥ · ∥ is a norm on a �nite-dimensional space,

r = (r1, . . . , rm), rj are non-negative integers, Dry(φ) = ∂|r|y(φ)

∂φ
r1
1 ...∂φrm

m
, and

|r| = r1 + · · ·+ rm.
Let P q

n2(ω) be the Banach space of periodic q- times continuously di�er-
entiable n × n matrices with the norm ∥A∥P q

n2 (ω)
= max

|s|≤n
∥as∥P r

n(ω)
, where

as ∈ P q
n(ω) (s = 1, . . . , n) are columns of A.

Denote by P ′
n
q(ω) the space of linear continuous maps x : P q

n(ω) → Cn,
where x = (x1, . . . , xn)

T , xT is the transpose of x, and xk are linear conti-
nuous functionals on P q

1 (ω).
Every x ∈ P ′

n
q(ω) determines the linear continuous functional on P q

n(ω)

by the rule ⟨x, y⟩ω =
n∑

k=1

⟨xk, yk⟩ω, where y = (y1, . . . , yn)
T ∈ P q

n(ω) and

⟨xk, yk⟩ω is the value of xk at the point yk ∈ P q
1 (ω).

The space P ′
n
q(ω), endowed with the norm ∥x∥P ′

n
q(ω) = sup

∥y∥
P
q
n(ω)

=1
|⟨x, y⟩ω|,

is the Banach space, and it is isomorphic to the dual space of P q
n(ω) [6, p.267].

Consider the countably normed space Pn(ω) =
⋂∞

q=0 P
q
n(ω) and its dual

P ′
n(ω) =

⋃∞
q=0 P

′
n
q(ω). By de�nition, a sequence {yk} in Pn(ω) converges to

y ∈ Pn(ω) if ∥yk − y∥P q
n(ω)

→ 0 for every non-negative integer q, and {xk} in
P ′
n(ω) converges weakly to x ∈ P ′

n(ω) if ⟨xk−x, y⟩ω → 0 for every y ∈ Pn(ω)
as k → ∞. The latter is equivalent to the fact that xk → x weakly in some
P ′
n
q(ω) [4, Ch.1].
The space P ′

1(ω) is isomorphic to the space of the Schwartz periodic
distributions [6, 14]. That is why x ∈ P ′

1(ω) is called an ω-periodic distribu-
tion, and therefore x ∈ P ′

n(ω) we call an ω-periodic vector distribution [15, 6].
Note that the term ω-periodic is used for brevity. In fact, x ∈ P ′

n(ω) is ωj-
periodic in φj (j = 1, . . . ,m), i.e.,

x(φ1, . . . , φj−1, φj + ωj , φj+1, . . . , φm) = x(φ).

Indeed, by the de�nitions of equality and translation (see below on this
page), we have

⟨x(φ1, . . . , φj−1, φj + ωj , φj+1, . . . , φm), y(φ)⟩ω
= ⟨x(φ), y(φ1, . . . , φj−1, φj − ωj , φj+1, . . . , φm)⟩ω = ⟨x(φ), y(φ)⟩ω

for any y ∈ Pn(ω) .
We are going to mainly deal with the spaces of vector distributions P ′

n
q(ω)

and spaces of test functions P q
n(ω). Suppose x, z ∈ P ′

n
q(ω). Let us remember
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the de�nitions of

equality : x = z ⇔ ⟨x, y⟩ω = ⟨z, y⟩ω, ∀y ∈ P q
n(ω);

derivative : ⟨x′j , y⟩ω = −⟨x, y′j⟩ω, ∀y ∈ P q+1
n (ω);

multiplication by matrix A ∈ P q
n2(ω) : ⟨Ax, y⟩ω = ⟨x,AT y⟩ω, ∀y ∈ P q

n(ω);
translation by τ : ⟨x(φ− τ), y(φ)⟩ω = ⟨x(φ), y(φ+ τ)⟩ω, ∀y ∈ P q

n(ω),
τ ∈ Rm.

It was proved in the monographs [14, p.225], [15, p.130] that every x ∈
P ′
n(ω) has a unique Fourier series expansion

x(φ) =
∑
k∈Zm

ck exp(i(kβφ)), (1.1)

where
ck = (⟨x1(φ), exp(−i(kβφ))⟩ω, . . . , ⟨xn(φ), exp(−i(kβφ))⟩ω)T /(ω1 . . . ωm),

k = (k1, . . . , km) ∈ Zm, β = (β1, . . . , βm), βr = 2π/ωr, (kβφ) =
m∑
j=1

kjβjφj .

Besides, there exist K > 0 and p ∈ N such that

∥ck∥ ≤ K∥k∥p, k ∈ Zm. (1.2)

Inversely, if there existK > 0 and p ∈ N such that, for any k ∈ Zm, inequality
(1.2) holds, then series (1.1) converges weakly and x ∈ P ′

n(ω) [6, pp.265,266],
[14, p.225], [15, p.130].

It was shown in the previous section that if (0.6) has a continuous periodic
solution L, then ψ(φ) = X0(φ)L(φ̂ − êφ1) exp(−µφ1) is continuous and
periodic. Now suppose that L ∈ P ′r

n(ω̂) and X0 ∈ P r
n2(ω) (for some non-

negative integer r); then ψ ∈ P ′r
n(ω̂) for any φ1 ∈ R. Likewise (see (0.7)),

it can be proved that ψ is ω1-periodic in φ1. That is why we are going to

regard ψ as the distribution given by ⟨ψ, y⟩ω =
ω1∫
0

⟨ψ, y⟩ω̂ dφ1, y ∈ P r
n(ω).

Let us prove that ψ ∈ P ′
n
r(ω).

In this proof we use a standard fact in calculus : Let y : [α, β]×K → Cn be
uniformly continuous for given α, β ∈ R and K ⊂ Rm−1, let {φ1k} ⊂ [α, β];
then φ1k → φ10 implies y(φ1k, φ̂) → y(φ10, φ̂) uniformly for φ̂ ∈ K as
k → ∞.
Lemma 1.1. Let A ∈ P r

n2(ω), L ∈ P ′r
n(ω̂), and r ≥ 0; then ψ(φ) =

X0(φ)L(φ̂ − êφ1) exp(−µφ1) ∈ P ′r
n(ω̂) for any φ1 ∈ R and the function

g(φ1) = ⟨ψ, y⟩ω̂ is continuous w.r.t. φ1 ∈ [0, ω1] for every y ∈ P r
n(ω̂).

Proof. By Lemma 0.2, it follows that X0 ∈ P r
n2(ω). Hence, ψ ∈ P ′r

n (ω̂) for
each φ1 ∈ R. Put X0µ(φ) = X0(φ) exp(−µφ1). Then ψ(φ) = X0µ(φ)L(φ̂ −
êφ1), and g can be written as g(φ1) = ⟨L(φ̂), XT

0µ(φ1, φ̂+ êφ1)y(φ̂+ êφ1)⟩ω̂.
The vector v(φ) = XT

0µ(φ1, φ̂ + êφ1)y(φ̂ + êφ1) and its partial derivatives

of |j|th order (|j| = 1, . . . , r) are uniformly continuous on [0, ω1] × Rm−1.
Therefore, if [0, ω1] ∋ φ1k → φ10 ∈ [0, ω1] as k → ∞, then v(φ1k, φ̂) and
Djv(φ1k, φ̂) tend uniformly w.r.t. φ̂ ∈ Rm−1 to v(φ10, φ̂) and Djv(φ10, φ̂)
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respectively. From this, remembering that L is a continuous mapping, we
conclude that g(φ1k) → g(φ10). Hence, g is continuous. □

Lemma 1.2.Let A ∈ P r
n2(ω), L ∈ P ′r

n(ω̂), and r ≥ 0; then ψ ∈ P ′
n
r(ω).

Proof. First, by using the fact that the mapping ⟨·, ·⟩ω̂ : P ′r
n(ω̂)×P r

n(ω̂) → C
is bilinear and separately continuous, we prove that ⟨ψ, y⟩ω̂ is continuous in
φ1 ∈ [0, ω1] if y ∈ P r

n(ω).
It follows from Lemma 1.1 that the function ψ : [0, ω1] → P ′r

n(ω̂) is
continuous, i.e., [0, ω1] ∋ φ1k → φ10 implies

⟨ψ(φ1k, ·), z⟩ω̂ → ⟨ψ(φ10, ·), z⟩ω̂ (1.3)

for every z ∈ P r
n(ω̂).

Besides, if y ∈ P r
n(ω), then ∥y(φ1k, φ̂) − y(φ10, φ̂)∥P r

n(ω̂)
→ 0 since the

derivatives Djy(φ), 0 ≤ |j| ≤ r are uniformly continuous on Rm, and hence

⟨x, y(φ1k, ·)⟩ω̂ → ⟨x, y(φ10, ·)⟩ω̂ (1.4)

for each x ∈ P ′r
n(ω̂).

Therefore, by the bilinear mapping continuity theorem [13, Th. 2.17], in
view of relations (1.3) and (1.4), we get

⟨ψ(φ1k, ·), y(φ1k, ·)⟩ω̂ → ⟨ψ(φ10, ·), y(φ10, ·)⟩ω̂, y ∈ P r
n(ω).

This proves that ⟨ψ, y⟩ω̂ is continuous and hence integrable w.r.t. φ1 ∈ [0, ω1].
To conclude the proof, we note that

|
ω1∫
0

⟨ψ, y⟩ω̂ dφ1| ≤ ω1 sup
φ1∈[0,ω1]

|⟨ψ, y⟩ω̂| ≤ ω1K sup
φ1∈[0,ω1]

∥y∥P r
n(ω̂) ≤ ω1K∥y∥P r

n(ω).

The existence ofK = sup
φ1∈[0,ω1]

∥ψ∥P ′
n
r(ω̂) follows from the Principle of Uniform

Boundedness. Indeed, due to Lemma 1.1, ⟨ψ, y⟩ω̂ is bounded in φ1 ∈ [0, ω1]
at each point y ∈ P r

n(ω̂). Hence, the collection {⟨ψ, ·⟩ω̂ : φ1 ∈ [0, ω1]} of the
continuous linear mappings from P r

n(ω̂) into C is bounded. The inequality
just obtained proofs the lemma. □

We say that ψ ∈ P ′
n
r(ω) is a solution of system (0.2µ) if

⟨
m∑
i=1

ψ′
i, y⟩ω = ⟨Aψ − µψ, y⟩ω (1.5)

for any y ∈ P r+1
n (ω).

Lemma 1.3. Let A ∈ P r
n2(ω), L ∈ P ′r

n(ω̂) be a solution of (0.6) for some

λ ̸= 0, r ≥ 1, and µ = ω−1
1 lnλ; then the distribution ψ(φ) = X0µ(φ)L(φ̂ −

êφ1) ∈ P ′r
n(ω) satis�es system (0.2µ).

Proof. It follows from Lemma 1.2 that ψ ∈ P ′
n
r(ω), and hence ψ′

j ∈ P ′
n
r+1(ω),

j = 1, . . . ,m.
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Let y ∈ P r+1
n (ω). We are going to use the relations

ω1∫
0

⟨L(φ̂− êφ1), (X
T
0µ(φ)A

T (φ)− µXT
0µ(φ))y(φ)⟩ω̂dφ1

=
ω1∫
0

⟨(A(φ)X0µ(φ)− µX0µ(φ))L(φ̂− êφ1), y(φ)⟩ω̂dφ1

= ⟨Aψ − µψ, y⟩ω

(1.6)

and

∂XT
0µ(φ1, φ̂+ êφ1)/∂φ1 =

m∑
i=1

(XT
0µ)

′
i(φ1, φ̂+ êφ1)

= XT
0µ(φ1, φ̂+ êφ1)A

T (φ1, φ̂+ êφ1)− µXT
0µ(φ1, φ̂+ êφ1).

(1.7)

The latter follows from (0.5).
So, remembering that y ∈ P r+1

n (ω), we have

⟨
m∑
i=1

ψ′
i, y⟩ω = −⟨X0µ(φ)L(φ̂− êφ1),

m∑
i=1

y′i(φ)⟩ω

= −
∫ ω1

0 ⟨L(φ̂− êφ1), X
T
0µ(φ)

m∑
i=1

y′i(φ)⟩ω̂ dφ1

= −
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)y

′
1(φ1, φ̂+ êφ1)⟩ω̂ dφ1

−
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)

m∑
i=2

y′i(φ1, φ̂+ êφ1)⟩ω̂ dφ1.

Denote the �rst summand at the right in the above relation by I1, the
second by I2, and transform I1.

I1 = −
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)∂y(φ1, φ̂+ êφ1)/∂φ1⟩ω̂ dφ1

+
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)

m∑
i=2

y′i(φ1, φ̂+ êφ1)⟩ω̂ dφ1

=
∫ ω1

0 ⟨L(φ̂), ∂XT
0µ(φ1, φ̂+ êφ1)/∂φ1y(φ1, φ̂+ êφ1)⟩ω̂ dφ1

−
∫ ω1

0 ⟨L(φ̂), ∂(XT
0µ(φ1, φ̂+ êφ1)y(φ1, φ̂+ êφ1))/∂φ1⟩ω̂ dφ1

+
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)

m∑
i=2

y′i(φ1, φ̂+ êφ1)⟩ω̂ dφ1,

I2 = −
∫ ω1

0 ⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)

m∑
i=2

y′i(φ1, φ̂+ êφ1)⟩ω̂dφ1.

Hence,

I1 + I2 =
∫ ω1

0 ⟨L(φ̂), ∂XT
0µ(φ1, φ̂+ êφ1)/∂φ1y(φ1, φ̂+ êφ1)⟩ω̂ dφ1

−
∫ ω1

0 ⟨L(φ̂), ∂(XT
0µ(φ1, φ̂+ êφ1)y(φ1, φ̂+ êφ1))/∂φ1⟩ω̂ dφ1.

We denote the �rst integral in the previous relation by J1 [and the second
by J2] and transform it using (1.7):

J1 =
∫ ω1

0 ⟨L(φ̂), (XT
0µ(φ1, φ̂+ êφ1)A

T (φ1, φ̂+ êφ1)

−µXT
0µ(φ1, φ̂+ êφ1))y(φ1, φ̂+ êφ1)⟩ω̂ dφ1

=
∫ ω1

0 ⟨L(φ̂− êφ1), (X
T
0µ(φ)A

T (φ)

−µXT
0µ(φ))y(φ)⟩ω̂ dφ1

(1.6)
= ⟨Aψ − µψ, y⟩ω.
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To transform J2, we use di�erentiation of ⟨·, ·⟩ω̂ w.r.t. parameter φ1 [14,
p.105]:
⟨L(φ̂), ∂(XT

0µ(φ1, φ̂+ êφ1)y(φ1, φ̂+ êφ1))/∂φ1⟩ω̂
= ∂⟨L(φ̂), XT

0µ(φ1, φ̂+ êφ1)y(φ1, φ̂+ êφ1))⟩ω̂/∂φ1.
As a result, we get

J2 =
∫ ω1

0 ∂⟨L(φ̂), XT
0µ(φ1, φ̂+ êφ1)y(φ1, φ̂+ êφ1)⟩ω̂/∂φ1 dφ1

= ⟨L(φ̂), (XT
0µ(ω1, φ̂+ êω1)y(ω1, φ̂+ êω1)−XT

0µ(0, φ̂)y(0, φ̂))⟩ω̂
= ⟨X0µ(ω1, φ̂)L(φ̂− êω1)−X0µ(0, φ̂)L(φ̂), y(0, φ̂)⟩ω̂.

Remembering that L satis�es (0.6), X0µ(ω1, φ̂) = X0(ω1, φ̂)λ
−1,

and X0µ(0, φ̂) = X0(0, φ̂) = E, we get J2 = 0.
Summarizing all the above, we get (1.5). □

2. Generalized solutions of systems (0.6) and (0.2µ)

Consider the system

X0(ω1, φ̂)L(φ̂− αs) = λL(φ̂), (2.1)

where αs = (p2sω2/q2s, . . . , pmsωm/qms), pjs ∈ Z, qjs ∈ N. Due to the
incommensurability of the frequencies βi = 2π/ωi, we can choose pjs, qjs
such that αs → êω1 as s→ ∞.

First, we want to prove that, for each s ∈ N, there exists a distribution Ls

which solves this system for some λs ∈ C. Then we prove that the sequence
{Ls} has a week partial limit L which satis�es (0.6) for some λ ∈ C.
Lemma 2.1. Let A ∈ P 0

n2(ω); then, for any s ∈ N, there exist a distribu-

tion Ls ∈ P ′
n
0(ω̂) and a complex number λs ̸= 0 which satisfy (2.1).

Proof. Let us endeavour to satisfy (2.1) by the distribution

Ls(φ̂) =

νs−1∑
j=0

fsjδ(φ̂− jαs), (2.2)

where νs is the least common multiple of qjs (j = 2, . . . ,m), fsj are constant
column vectors, and δ ∈ P ′

1
0(ω̂) is the Dirac distribution: ⟨fsjδ(φ̂−φ̂0), y⟩ω̂ =

fTsjy(φ̂
0), y ∈ P 0

n(ω̂).
Note that, in our case, δ is a periodic functional since it is de�ned on the

space of periodic functions.
Recall that Ls satis�es (2.1) if, for any y ∈ P 0

n(ω̂), the following relation
holds

⟨X0(ω1, φ̂)Ls(φ̂− αs), y⟩ω̂ = ⟨λsLs(φ̂), y⟩ω̂.
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Upon substituting Ls into the left and right sides of this equation, we �nd

⟨X0(ω1, φ̂)Ls(φ̂− αs), y(φ̂)⟩ω̂ = ⟨Ls(φ̂− αs), (X0(ω1, φ̂))
T y(φ̂)⟩ω̂

= ⟨Ls(φ̂), (X0(ω1, φ̂+ αs))
T y(φ̂+ αs)⟩ω̂

=
νs−1∑
j=0

⟨fsjδ(φ̂− jαs), (X0(ω1, φ̂+ αs))
T y(φ̂+ αs)⟩ω̂

=
νs−1∑
j=0

fTsj(X0(ω1, (j + 1)αs))
T y((j + 1)αs)

=
νs−1∑
j=0

(X0(ω1, (j + 1)αs)fsj)
T y((j + 1)αs)

and

⟨λsLs(φ̂), y(φ̂)⟩ω̂ = λs

νs−1∑
j=0

⟨fsjδ(φ̂− jαs), y(φ̂)⟩ω̂ = λs

νs−1∑
j=0

fTsjy(jαs).

Thus,

νs−1∑
j=0

(X0(ω1, (j + 1)αs)fsj)
T y((j + 1)αs) = λs

νs−1∑
j=0

fTsjy(jαs).

This relation holds if the vectors fsj satisfy the system
X0(ω1, αs)fs0 = λsfs1
X0(ω1, 2αs)fs1 = λsfs2
. . . . . . . . .
X0(ω1, (νs − 1)αs)fsνs−2 = λsfsνs−1

X0(ω1, νsαs)fsνs−1 = λsfs0.

(2.3)

Indeed, let y ∈ P 0
n(ω̂). Then it follows from (2.3) that

(X0(ω1, αs)fs0)
T y(αs) = λs(fs1)

T y(αs)
(X0(ω1, 2αs)fs1)

T y(2αs) = λs(fs2)
T y(2αs)

. . . . . . . . .
(X0(ω1, (νs − 1)αs)fsνs−2)

T y((νs − 1)αs) = λs(fsνs−1)
T y((νs − 1)αs)

(X0(ω1, νsαs)fsνs−1)
T y(νsαs) = λs(fs0)

T y(νsαs).

Putting y(νsαs) = y(0̂) in the right-hand side of the last equation and
summing these equations, we obtain the desired relation.

It follows from (2.3) that

X0(ω1, νsαs)X0(ω1, (νs − 1)αs) . . . X0(ω1, αs)fs0 = λνss fs0. (2.4)

Consider some root Gs = (X0(ω1, νsαs)X0(ω1, (νs − 1)αs) . . . X0(ω1, αs))
1
νs ,

some eigenvalue λs of Gs, and the corresponding eigenvector fs0; then λs
and fs0 satisfy (2.4). Substituting λs and fs0 into (2.3), we successively �nd
the vectors fsk, k = 1, . . . , νs − 1. Hence, we get the distribution Ls which
is a solution of (2.1). It can be seen from (2.2) that Ls ∈ P ′

n
0(ω̂) since

fsjδ(φ̂− jαs) ∈ P ′
n
0(ω̂). □
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Lemma 2.2. Let A ∈ P 0
n2(ω) and let λs be an eigenvalue of Gs, s ∈ N;

then there exists a convergent subsequence {λsk} of the sequence {λs} with
nonzero limit.

Proof. The matrix function X0(ω1, ·) is non-singular, continuous, and ω̂-
periodic in φ̂ ∈ Rm−1. Hence, there exist α, β > 0 such that for any x ∈
Rn and φ̂ ∈ Rm−1 we have α∥x∥ ≤ ∥X0(ω1, φ̂)x∥ ≤ β∥x∥. From these
inequalities we get ∥Gνs

s ∥ ≤ βνs and ∥G−νs
s ∥ ≤ α−νs ( the matrix norm

induced by the vector norm ∥·∥ is also denoted by ∥·∥). Since λνss and λ−νs
s

are eigenvalues of the matrices Gνs
s and G−νs

s respectively, it follows that
|λνss | ≤ βνs and |λ−νs

s | ≤ α−νs , and hence α ≤ |λs| ≤ β, s ∈ N. On the
strength of that there exists a partial limit λ of {λs} such that α ≤ |λ| ≤ β.
Hence, the desired subsequence exists. □

Now we want to show that there exist sequences {λs} and {Ls} such that
{Ls} has a weak limit L which is a solution of (0.6) with λ = limλs.

Consider the Fourier-series of Ls:

Ls(φ̂) =
∑

k̂∈Zm−1

tsk̂ exp(i(k̂β̂φ̂)),

where tsk̂ = (ω2 . . . ωm)−1
νs−1∑
j=0

fsj exp(−ij(k̂β̂αs)) and

(k̂β̂αs) =
m∑
r=2

krβrpsrωr/qsr.

Lemma 2.3. For each s ∈ N, the mapping k̂ → tsk̂ is νs-periodic w.r.t.
kr (r = 2, . . . ,m).

Proof. Recall that k̂ = (k2, . . . , km), βr = 2π/ωr, νs is the least common
multiple of qrs, and αs = (p2sω2/q2s, . . . , pmsωm/qms). Since νs/qrs ∈ Z
(r = 2, . . . ,m), we have

ts (k2...,kr+νs,...,km) =
νk−1∑
j=0

fsj exp(−ij(k̂β̂αs + νs(2π/ωr)prsωr/qrs))

=
νk−1∑
j=0

fsj exp(−ij(k̂β̂αs)) = tsk̂.

□

Lemma 2.4. For any ĵ ∈ Zm−1, in addition to Ls and λs, the pair

Lĵ
s(φ̂) =

∑
k̂∈Zm−1

tsk̂−ĵ exp(i(k̂β̂φ̂)) and λĵs = λs exp(−i(ĵβ̂αs)) also satis�es

the system (2.1).

Proof. Making a change k̂− ĵ = r̂ in the Fourier series of Lĵ
s, we obtain L

ĵ
s =

Ls exp i(β̂ĵφ̂). Then putting Ls = Lĵ
s exp(−i(β̂ĵφ̂)) into (2.1), we conclude

that the lemma is true. □



1134 YU.D. KOZLOV

Lemma 2.5. Let, for any k̂ ∈ Zm−1, there exists tk̂ = lim
s→∞

tsk̂, and let

there exists C > 0 such that for all s ∈ N and k̂ ∈ Zm−1 the inequality

∥tsk̂∥ ≤ C holds. Then Ls → L =
∑

k̂∈Zm−1

tk̂ exp(i(k̂β̂φ̂)) and Ls(φ̂ − αs) →

L(φ̂ − eω1) weakly in P ′r
n (ω̂) for r ≥ [m−1

2 ] + 1 ([t] stands for the integral
part of t).

Proof. Let y ∈ P r
n(ω̂), yk be the Fourier constants of y, and r ≥ [m−1

2 ] + 1;

then
∑

k̂∈Zm−1

∥yk̂∥ converges [5]. We say that ⟨Ls, y⟩ω̂ =
∑

k̂∈Zm−1

tT
sk̂
y−k̂ and

⟨L, y⟩ω̂ =
∑

k̂∈Zm−1

tT
k̂
y−k̂. The proofs of these relations are similar since the

boundedness of {tsk̂} implies ∥tk̂∥ ≤ C for k̂ ∈ Zm−1 , so we prove the �rst

one. It holds if y = yh =
∑

∥k̂∥≤h

yk̂ exp(i(k̂β̂φ̂)) is a trigonometrical polynomial

[15, p.132]. Besides, the series
∑

k̂∈Zm−1

tT
sk̂
y−k̂ converges because |tT

sk̂
y−k̂| ≤

C∥y−k∥. Therefore, we can take the limit in ⟨Ls, y
h⟩ω̂ =

∑
∥k̂∥≤h

tT
sk̂
y−k̂ as

h→ ∞ and get the desired relation.
To prove the weak convergence of {Ls} to L =

∑
k̂∈Zm−1

tk̂ exp(i(k̂β̂φ̂)), we

consider ⟨Ls − L, y⟩ω̂ =
∑

k̂∈Zm−1

(tsk̂ − tk̂)
T y−k̂. For given ε > 0 we �nd M1,

M2 such that
∑

∥k̂∥>M1

∥yk̂∥ < ε/(4C) and
∑

∥k̂∥≤M1

∥tk − tks∥ < ε/(2C1) for

s > M2, where C1 = max{∥yk̂∥ : ∥k̂∥ < M1}. Then

|
∑

k̂∈Zm−1

(tsk̂ − tk̂)
T y−k̂| < C1

∑
∥k̂∥≤M1

∥tk − tks∥+ 2C
∑

∥k̂∥>M1

∥yk̂∥ < ε

for s > M2. Hence, Ls → L weakly as s → ∞. By the same argument, we
have

⟨Ls(φ̂− αs)− L(φ̂− eω1), y⟩ω̂ =∑
k̂∈Zm−1

(tsk̂ exp(−i(k̂β̂αs))− tk̂ exp(−i(k̂β̂ω1)))
T y−k̂ → 0

as s→ ∞.
Owing to the weak* sequential completeness of P ′r

n (ω̂), we obtain L ∈
P ′r
n (ω̂) since Ls ∈ P ′0

n (ω̂) ⊂ P ′r
n (ω̂). □

Theorem 2.1. Let A ∈ P r0
n2(ω) and r0 = [m−1

2 ] + 1; then there exist a
distribution L ∈ P ′r0

n (ω̂) and λ ̸= 0 satisfying (0.6).

Proof. There exists a sequence {Ls} such that

∥ts0̂∥ = 1 ≥ ∥tsk̂∥ (2.5)
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for k̂ ̸= 0̂ and s ∈ N. Indeed, due to Lemma 2.3, for each s ∈ N, there
exists tsk̂s such that ∥tsk̂s∥ ≥ ∥tsk̂∥, k̂s ̸= k̂. Owing to Lemma 2.4, the

distribution L−k̂s
s /∥tsk̂s∥ =

∑
k̂∈Zm−1

t̃sk̂ exp(i(k̂β̂φ̂)) satis�es (2.1) for λ =

λs exp(i(k̂sβ̂αs)); then t̃sk̂ = tsk̂+k̂s
/∥tsk̂s∥ satisfy (2.5).

Let the Fourier constants of Ls satisfy (2.5). Taking a subsequence if ne-
cessary, we may assume, in view of Lemma 2.2, that λs → λ ̸= 0. It follows
from (2.5) that for each k̂ ∈ Zm−1 the sequence {tsk̂} is bounded. Hence,
there exists a sequence {sp} of positive integers such that lim

p→∞
tspk̂ = tk̂

exists and
∥∥tk̂∥∥ ≤ 1 for each k̂ ∈ Zm−1. By Lemma 2.5, we get Lsp → L

weakly in P ′r0
n (ω̂). Besides, by Lemma 0.2, X0(ω1, ·) ∈ P r0

n2(ω̂). Therefore,
X0(ω1, ·)Lsp → X0(ω1, ·)L weakly in P ′r0

n (ω̂). Then taking limit in (2.1), we
get X0(ω1, φ̂)L(φ̂− êφ1) = λL(φ̂). Moreover, L ̸= 0 since t0̂ ̸= 0. □

Consider the set of sequences {λs}, where λs is an eigenvalue of Gs and
denote by Λ the set of partial limits of these sequences.
Theorem 2.2. Let λ ∈ Λ, µ = ω−1

1 lnλ, and A ∈ P r0
n2(ω); then there

exists a periodic distribution ψ ∈ P r0
n (ω) that satis�es (0.2µ).

Proof. If A ∈ P r0
n2(ω), then, by Theorem 2.1, there exists L ∈ P ′r0

n (ω̂)
satisfying (0.6). Therefore, Theorem 2.2 follows from Lemma 1.3. □

3. Proof of Lemmas 0.1 and 0.2

Lemma 0.1.

Proof. System (0.5) has the unique continuous solution

X(φ;φ10) = E +
φ1−φ10∫

0

A(φ− eξ) dξ

+
∞∑
k=2

φ1−φ10∫
0

φ1−φ10−ξk∫
0

. . .
φ1−φ10−ξ2−...−ξk∫

0

A(φ− eξk)A(φ− e(ξk + ξk−1))...

A

(
φ− e

k∑
i=1

ξi

)
dξ1 . . . dξk,

(3.1)
which one can get by the method of successive approximations. Let α, β ∈ R
be arbitrary. Then this series converges uniformly w.r.t. φ1 ∈ [α, β], φ̂ ∈
Rm−1 because it has the majorant

∞∑
s=0

∥A∥sP 0
n2 (ω)

|φ1 − φ10|s/s!.

This solution is ωj-periodic in φj (j = 2, . . . ,m) since so is the right part of
(3.1). Besides,

X(φ+ et;φ10) =
φ1+t−φ10∫

0

A(φ+ e(t− ξ))X(φ+ e(t− ξ));φ10) dξ + E
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= [t− ξ = ζ] =
t∫

φ10−φ1

A(φ+ eζ)X(φ+ eζ;φ10) dζ + E.

Therefore,

dX(φ+ et;φ10)/dt = A(φ+ et)X(φ+ et;φ10) (3.2)

and X(φ10, φ̂;φ10) = E. Consequently, the matrix X(φ + et, φ10), being a
fundamental matrix of the system

x′ = A(φ+ et)x,

is non-singular for φ ∈ Rm and φ10 ∈ R. In particular, X0(et) is the
normalized fundamental matrix of system (0.10).

The fact that the function x(φ;φ10, x
0) = X(φ;φ10)x

0(φ̂− ê(φ1−φ10)) is
a solution of system (0.3) we prove by substituting it into this system. Taking
into account that x(φ− eξ;φ10, x

0) = X(φ− eξ;φ10)x
0(φ̂− ê(φ1−φ10)), we

get

X(φ;φ10)x
0(φ̂− ê(φ1 − φ10))

=
φ1−φ10∫

0

A(φ− eξ)X(φ− eξ;φ10)x
0(φ̂− ê(φ1 − φ10)) dξ + x0(φ̂− ê(φ1 − φ10))

= (
φ1−φ10∫

0

A(φ− eξ)X(φ− eξ;φ10) dξ + E)x0(φ̂− ê(φ1 − φ10)).

This is true since X(φ;φ10) satis�es (0.4).
To prove (c), note that X(t+ω1, φ̂+ êt;φ10) solves matrix equation (3.2).

Hence,

X(t+ ω1, φ̂+ êt;φ10) = X(t, φ̂+ êt;φ10)Q. (3.3)

Putting t = φ10 in this relation, we get Q = X(φ10+ω1, φ̂+ êφ10;φ10). Then

substituting φ1 for t and ψ̂ for φ̂+ êφ1 in (3.3), we get X(φ1+ω1, ψ̂;φ10) =

X(φ1, ψ̂;φ10)X(φ10 + ω1, ψ̂ + ê(φ10 − φ1);φ10). □

Lemma 0.2.

Proof. Let the matrix A be r-times continuously di�erentiable on Rm. Then
the matrix X, being a solution of system (3.2), is r-times continuously di�eren-
tiable by the theorem on di�erentiability of the solution w.r.t. parameter φ
[7, p.126].

□

It is noteworthy that if λ0 ∈ Λ and µ0 = ω−1
1 lnλ0, then some system in

the hull of (0.1µ0) has a bounded solution. It follows from this that µ0 belongs
to the Sacker-Sell spectrum of this system and λ0 belongs to the spectrum
of the monodromy operator of this system. Besides, system (0.1µ0) has a
generalized conditionally periodic solution. But these will be the objects of
another paper.
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