Обобщенная мутация с тяжелыми хвостами для эволюционных алгоритмов
Обобщенная мутация с тяжелыми хвостами для эволюционных алгоритмов
Аннотация:
The heavy-tailed mutation operator, proposed by Doerr, Le, Makhmara, and Nguyen (2017) for evolutionary algorithms, is based on the power-law assumption of mutation rate distribution. Here we generalize the power-law assumption using a regularly varying constraint on the distribution function of mutation rate. In this setting, we generalize the upper bounds on the expected optimization time of the $(1 + (\lambda, \lambda))$ genetic algorithm obtained by Antipov, Buzdalov and Doerr (2022) for the OneMax function class parametrized by the problem dimension n. In particular, it is shown that, on this function class, the sucient conditions of Antipov, Buzdalov and Doerr (2022) on the heavy-tailed mutation, ensuring the $O(n)$ optimization time in expectation, may be generalized as well. This optimization time is known to be asymptotically faster than what can be achieved by the $(1 + (\lambda, \lambda))$ genetic algorithm with any static mutation rate. A new version of the heavy-tailed mutation operator is proposed, satisfying the generalized conditions, and promising results of computational experiments are presented.
Ключевые слова: Evolutionary algorithms, regularly varying functions, heavy-tailed mutation, optimization time