О сложности решетки квазимногообразий 3-ступенно нильпотентных групп
О сложности решетки квазимногообразий 3-ступенно нильпотентных групп
Аннотация:
Denote by $\mathcal{N}_3$ the variety of nilpotent groups of class at most $3$, by $\mathcal{M}$ the quasivariety generated by the non-abelian $\mathcal{N}_3$-free group $F$. Let $\mathcal{R}$ be an arbitrary quasivariety such that $F\in\mathcal{R}$. Suppose that there exits a torsion free nilpotent group $G$ of class 3, $G\in \mathcal{R}\setminus \mathcal{M}$, having the representation relative to $\mathcal{N}_3$ in which each defining relation is a product of basic commutators of weight 3 on three different variables or a commutator of the form $[x_i,x_j]$ (the last defining relations may be missing). It is proved that in this case the interval $[\mathcal{M},\mathcal{R}]$ in the lattice of quasivarieties of groups is continual.
Ключевые слова: lattice, quasivariety, nilpotent group.
