О проблеме P=NP в некоторых кольцах

О проблеме P=NP в некоторых кольцах

Рыбалов А. Н.

УДК 510.652 
DOI: 10.33048/semi.2025.22.045  
MSC 11U99


Аннотация:

We consider a computational complexity theory over arbitrary algebraic structures based on an approach to generalized computability developed by Ashaev, Belyaev and Myasnikov. Let $\mathcal{R}$ be a ring with a nilpotent element $\eta$ of nilpotency index $k>1$ such that $\eta$ is an algebraic element over $\mathbb{Z}$ of degree $k$. We prove that analogs of the classical computational complexity classes ${\bf P} $ and ${\bf NP} $ over $\mathcal{R}$ are different.

Ключевые слова: computational complexity, P vs NP, ring, nilpotent element.