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Abstract: We have studied the spectral problem for plane Poiseuille-
type flow of viscoelastic polymer liquid. The flow was modeled
with the equations of rheological Vinogradov–Pokrovskii model.
The numerical spectral procedure was used to calculate eigenval-
ues of the problem and to determine the critical values of param-
eters where the instability of the flow occurs. It was shown that
the critical Reynolds number goes to well-known value of approx-
imately 5772 (that is the critical value for the viscous fluid) while
the relaxation time goes to zero. The slight increase of elastic prop-
erties of the fluid (or Weissenberg number) leads to rapid increase
of critical Reynolds number, while further increase of Weissenberg
number destabilizes the flow by pushing the critical Reynolds num-
ber to zero. Similar to a number of other rheological models, the
Vinogradov–Porkovskii model demonstrates the elastic instability
effect, that is the spectral problem has unstable modes that are not
a continuation of unstable modes of the viscous newtonean flow.
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1 Introduction

Polymer solutions and melts are viscoelastic fluids, and the viscoelastic-
ity causes the number of features not typical for viscous newtonean fluids.
Among these features are shear-thinning effects, growth of extensional vis-
cosity, stress relaxation in non-stationary flows and many others [1, 2]. One
field of the particular interest within the theory of viscoelastic fluids is the
stability properties of the flows of certain geometries. The recent experi-
mental studies of polymer solutions [3, 4] showed that the addition of small
amounts of polymer in the solution causes complex influence on the stability
of the flows which include both transition delay to turbulence (the transi-
tion happens with higher Reynolds numbers compared to pure viscous flows),
but also the early turbulence effect which on the contrary reduces the critical
Reynolds number.

Among the rheological models of polymer dynamics probably the most
well-researched one is the famous Oldroyd-B model [5]. Over the years the
extensive research was performed for it and its simplified forms like upper-
convected Maxwell model (UCM) [6, 7, 8, 9]. But Oldroyd-B model by itself
is not without flaws due to relatively simple linear constitutive equations,
which leads to shear-rate independent viscosity, unbounded growth of ex-
tensional viscosity and several other properties which does not fit well with
known experimental data [10]. There are large number of more advanced
models which addresses these flaws but the knowledge of their properties is
much more limited.

One way to improve the adequacy of the modeling of viscoelastic flows
is mesoscopic approach which takes into account both general experimen-
tal observations and dynamics of separate long macromolecules of polymer
[11, 12]. The relatively recent modified Vinogradov–Pokrovskii model (mVP)
already demonstrated good agreement with experiment in several visometric
flows [13, 14, 15, 16], but the understanding of the stability properties for
this model is quite limited so far, partially due to mathematical complexity
of the governing equations of the model. Saying that, some existing results
indicate that even basic flows within this model could be notoriously unsta-
ble. There are evidences that the stationary flows in the plane channels and
tubes and even the state of the rests could be linearly unstable, which put
a question regarding the adequacy of the model [17, 18, 19]. On the other
hand, numerical simulations performed in [20] for plane Poiseuille-type flow
in mVP model showed good stabilization of non-stationary solutions on equi-
librium states over time at least for relatively low Reynolds and Weissenberg
numbers. Granted, that simulations were taken for simplified problem formu-
lation with fixed pressure gradient and transverse velocity, but nonetheless
this evidence promote more thorough study of linear stability of the problem.

One way to check the adequacy of stability research is to study how the
equations behave for low Weissenberg numbers. Since the zero relaxation
time (and thus zero Weissenberg number) should transform the spectral
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Fig. 1. Flow in plane channel

problem to the one for pure viscous flow, the results should also correlate
with known information regarding the stability of Poiseuille flow for Navier–
Stokes equations, including the critical Reynolds number of approximately
Re ≈5772. In the present research we show the numerical results of the
stability problem, including the limit case of low Weissenberg number. We
discuss the nature of discovered instabilities and compare the results with
the ones for viscous Poiseuille flow.

2 Problem statement

Let us introduce the problem for linear stability of the steady plane flow
between two parallel plates. Assuming vector u = (u, v)⊤ to be the velocity
of the flow in two-dimensional space (x, y)⊤ and 2l to be a width of the flat
channel, consider the flow shown on Fig. 1, driven by the pressure gradient
along the x-axis. The plates x = ±l are fixed and no-slip conditions for
the flow are imposed at them. The continuity equation and momentum
equations for incompressible fluid are naturally

divu = ux + vy = 0,

ρ
du

dt
= divσ,

here ρ is the constant density and σ is the viscoelastic stress tensor. Also

d

dt
=

∂

∂t
+ (u,∇).

The modified Vinogradov–Pokrovskii model (mVP) utilizes the mesoscopic
approach for the formulation of governing equations. The stress tensor is
split into the isotropic and anisotropic parts

σ = −pI +Π,

where p is the pressure, I is the unity tensor and Π = {ajk}, j, k = 1, 2 is
the tensor of anisotropy (tensor of additional stresses) [11]. The tensor Π
represents the effects of viscous and elastic forces of the flow.
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We will use non-dimensional form of the governing equations with the
scales l for length, uH for velocity and l/uH for time, where uH is the velocity
of the steady flow at the center line of the channel. The pressure is scaled
with ρu2H , and the anisotropic stresses are scaled with η0uH/l, where η0 is
the initial viscosity [11]. The equations of mVP then have the form

divu = ux + vy = 0, (1)
du

dt
+∇p = divΠ, (2)

da11
dt

− 2(a11 + 1/(ReW))ux − 2a12uy + L11 = 0, (3)

da22
dt

− 2(a22 + 1/(ReW))vy − 2a12vx + L22 = 0, (4)

da12
dt

− (a11 + 1/(ReW))vx − (a22 + 1/(ReW))uy + L12 = 0. (5)

Here the equations (3)-(5) are differential constitution equations, which con-
nect the stress tensor with tensor of velocity gradient. Re = ρuH l/η0 is
the Reynolds number, W = τ0uH/l is the Weissenberg number, τ0 is the
relaxation time. The non-linear terms of (3)-(5) are

Ljj = (1/(W) + (k − β)Re(a11 + a22)/3)ajj + βRe(a2jj + a212), j = 1, 2,

L12 = (1/(W) + (k + β)Re(a11 + a22)/3)a12.

The values k and β are phenomenological parameters of the mVP. Thy repre-
sents the impact of the size and the orientation of polymeric macromolecules
on the anisotropy of the flow respectively [11, 12]. According to [21], the
sensible ratio is k = 1.2β which fits well with experimental measurements.
The equations (1)-(5) are supplemented with boundary conditions

u(±1) = 0. (6)

The stability analysis first require the steady-state solution for lineariza-
tion of the problem. Assume that

u = u0(y), v = 0, ajk = ajk0(y), j, k = 1, 2, (7)

then from (2) we have

p = p0(x, y) = P (y)−Ax,

where P (y) is an unknown function, A is the constant pressure gradient.
Following [20, 22], we have

a120(y) = −Ay,
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2k

3
+ β

)
a3220 +

(
1 + β +

2k

3

)
a2220/(ReW)+

+

(
(1/(ReW)2 +

2k

3
a2120 + (β/(ReW)a2120

)
a220+

+ (β/(ReW))a2120 = 0. (8)

The (8) provides the values of a220(y) as the roots of cubic equation with
variable coefficients. It was shown in [20] that only one root of this equation
could lead to potentially stable solution, and that root satisfies the condition
a220(0) = 0. Sticking with this solution, the a110(y) is found from

a110 = a220 +
2a2120

1/(ReW) + a220
.

Finally, u0(y) is calculated from

u′0 =
K̂Ia120

a220 + 1/(ReW)
(9)

with boundary condition u0(−1) = 0. The condition u(1) = 0 would be
satisfied automatically due to the symmetry of u(y) [20]. Here and further
on the derivatives by y are marked as strokes,

u′0 =
du0
dy

.

It has to be noted that (7) in general could not be found analytically,
unlike the case of simpler models like Oldroyd-B [7, 23, 24]. That means the
value of uH is not known a-priori for a given set of parameters and has to
be calculated numerically. Technically that means we have to determine the
value of pressure gradient A such that u0(0) = 1.

Having the steady solution, now we can formulate the spectral problem
for linear stability. Let

U0 =


u0(y)
v0(y)

p0(x, y)
a110(y)
a120(y)
a220(y)

 .

We are looking for solution of (1)-(6) of the form

Û(t, x, y) =


û
v̂
p̂
â11
â12
â22

 = U0+U(y)eλt+iωx = U0+


u(y)
v(y)
p(y)
a11(y)
a12(y)
a22(y)

 eλt+iωx. (10)
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The presence of the solutions with real(λ) > 0 would indicate the temporal
instability of the flow.

Abandoning nonlinear terms, we can obtain the following system for v and
ajk, k = 1, 2.

λ(v′′ − ω2v) = −iωu0v
′′ + (iω3u0 + iωu′′0)v+

+ ω2a′11 − iωa′′12 − iω3a12 − ω2a′22, (11)

λωWa11 + 2ω

(
1

Re
+Wa110

)
v′ − 2iWa120v

′′ +Wωa′110v+

+ω

(
2ReW

k − β

3
a110 +ReW

k − β

3
a220 + 1 + 2βReWa110 + iu0Wω

)
a11+

+
(
2βReWωa120 − 2u′0Wω

)
a12 +ReWω

k − β

3
a110a22 = 0, (12)

λωWa12 − i

(
1

Re
+Wa220

)
v′′ +

(
Wωa′120 −

(
1

Re
+Wa110

)
iω2

)
v+

+ReWω
k + 2β

3
a120a11+ω

(
1 + ReW

k + 2β

3
(a110 + a220) + iωWu0

)
a12+

+ ωW

(
Re

k + 2β

3
a120 − u′0

)
a22 = 0. (13)

λWa22 +W
(
a′220 − 2iωa120

)
v − 2

(
1

Re
+Wa220

)
v′+

ReW
k − β

3
a220a11 + 2βReWa120a12+

+

(
iωWu0 +ReW

k − β

3
(a110 + 2a220) + 1 + 2βReWa220

)
a22 = 0. (14)

Since the continuity equation should be satisfied at the boundaries of the
channel, the system (11)-(14) is supplemented with boundary conditions

v(±1) = 0, v′(±1) = 0. (15)

Remark 1. We should point out that the validity of no-slip conditions
(15) for polymer solutions could be disputed since the slipping phenomenon
for them is observed under the certain conditions [25, 26]. But we believe
the conditions (15) are acceptable for the analysis of the stability properties
of the model, even more so that the same conditions are usually assumed for
similar research of other rheological models, such as UCM [23, 27], Oldroyd-
B [24, 28], FENE-P [29], Giesecus [30] and others, and identical conditions
here are essential if the one is going to compare the results of these studies
with the present one.

Remark 2. Note that we never specified the pressure gradient A while
presented the steady solution U0. Since we chose the velocity scale uH to
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be a maximum value of the velocity, i.e. u0(0), the constant A should be
taken such as u0(0) = 1. For Navier–Stokes equations, and even for some
viscoelastic models, this condition simply lead to A = 2/Re. But here the
solution U0 is not known precisely, which does not allow us to get the exact
formula for A. Thus we determine A by simple bisection numerical method
while numerically integrating the equation (9) from y = −1 to y = 0.

The problem (11)-(15) has three major parameters: Re, W and β (re-
member, that the ratio k = 1.2β is postulated here according to [21]). It
is important to notice that the number W represent the ratio of elastic and
viscous forces. If the relaxation time of the media τ0 = 0 then W = 0 also
and the elastic forces are absent. The problem thus would be reduced to
the well-known stability problem for the Navier–Stokes equations. Indeed,
if W = 0 then from (12)-(14) we have

a11 = − 2

Re
v′,

a12 =
i

ωRe
v′′ +

iω

Re
v,

a22 =
2

Re
v′.

From (11) we then have

λ(v′′ − ω2v) + iωu0v
′′ − iω

(
u′′0 + ω2u0

)
=

1

Re

(
v(4) − 2ωv′′ + ω4v

)
,

v(±1) = 0, v′(±1) = 0.
(16)

which is the known boundary-value problem for Orr-Sommerfeld equation
[33]. The steady solution U0 for the case W = 0 would also be classical
Poiseuille parabolic flow. That fact would allow us to compare the calcula-
tions for mVP model for small W with the known results for Navier-Stokes
equations.

3 Numerical results

3.1. Calculation of the spectrum. The eigenvalue problem (11)-(15) is
solved with the help of spectral method by decomposition of the solution
into polynomials on Chebyshev grid. The Chebyshev points on the interval
−1 ≤ y ≤ 1 are

yj = cos(πj/N), j = 0, . . . , N.

The unknown functions v(y) and ajk, (y) k = 1, 2 are discretized on that
grid, thus transforming into column vectors v⃗ and a⃗jk respectively, and their
derivatives are approximated with Chebyshev differential matrix D [31, 32]:

v(n) ≈ Dnv⃗.
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Let then U⃗ be a discretized vector of the length 4(N + 1),

U⃗ =


v⃗
a⃗11
a⃗12
a⃗22

 .

The system of differential equations (11)-(14) then would be transformed
into the generalized algebraic eigenvalue problem

M1U⃗ = λM2U⃗ , (17)

where M1 and M2 are some matrices which depend on ω and U0. The
eigenvalues and eigenvectors of (17) are our approximation of the solution of
(11)-(15). The problem (17) is solved by the procedure “eig” of MATLAB.

Remark 3. Here we have omitted the details of the way the boundary
conditions are approximated. Please refer to the Appendix for that, along
with the discussion of the adequacy of the method and possible ways of it’s
verification.

3.2. Analysis of the unstable modes. We will start the presentation
of the results with Re = 5000, which is slightly below the critical value for
viscous newtonean fluid. It would allow us to demonstrate both stabilizing
and destabilizing effects of elastic forces on the plane flow. We would also
assume ω = 1 unless stated otherwise.

First let us test the numerical algorithm for W = 0 to compare the results
with the one for Navier-Stokes equations. Even if mathematically problems
(11)-(15) and (16) are identical for W = 0, numerically they are not, since
the former is the system of second-order equations, while the latter is one
equation of forth order. The Fig. 2 shows the calculated spectrum of these
two problems, and it can be seen that the spectrum is identical, which is the
evidence for the algorithm to perform correctly.

The Fig. 3 shows the spectrum evolution with gradual increase of the
Weissenberg number. It can be seen that the flow could become unstable
for sufficiently large W even for the values of Re which are below the critical
value for Navier–Stokes equations. Two eigenvalues there are marked as A
and B and it can be seen that if W is sufficiently large, these two eigenvalues
obtain positive real parts, thus indicating the instability of the flow. Note
that the spectrum for viscous fluids contain only one unstable mode [33],
while here we have at least two. The Fig. 4 shows two unstable modes for
these eigenvalues, marked as mode A and mode B respectively. One of that
modes (mode A) is symmetrical, and other (mode B) is asymmetrical.

It appears that mode A is the continuation of Tollmien–Schlichting mode
[33, 34]. The Fig. 5 shown the trajectory of that mode with change of W.
The mode B on the other hand is the continuation of the mode which never
become unstable for Navier–Stokes equations, but could become unstable
in viscoelastic flow. The same behavior of viscoelastic flow was reported
for other rheological models [23, 24], and the fact that this mode become
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Fig. 2. Spectra of Orr-Sommerfeld equation (red circles) and
mVP model at W = 0 (blue dots)
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Fig. 3. Spectra of mVP with various W. Red circles are the
position of eigenvalues at W = 0

unstable only for that type of fluids allows the one to connect these modes
with the instability caused by elastic forces.

Let us now calculate the critical values of parameters for the stability
of plane steady flow. Due to the practical purposes we would study the
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Fig. 4. Unstable modes v(y)
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Fig. 5. Trajectories of eigenvalues A and B from W = 0 to
W = 3

stability of the flow not in the Re − W plane but rather in the Re − E
plane, where E = W/Re is the elastic number. Unlike W, the value of E is
determined only by rheological properties of the fluid and the geometry of
the channel and does not depend on the velocity of the flow, which make it
fixed for experimental setup in the slit channel. We will limit the numerical
experiments with the maximum value of Re = 2 · 104. The higher number of
Re decrease the accuracy of the calculations, and in our opinion the chosen
maximum value is enough to describe the general nature of the problem in
sufficient details.

The stability curve (Fig. 6) shows that the critical Reynolds number for
E ≈ 0 is indeed close to the one for the newtonean fluid (approximately 5772)
but the increase of E causes the rapid grow of critical Re, while even larger
E lead to its eventual decrease. Our calculations did not reveal a minimum
value of Re which guarantees the stable flow regardless of the E. Apparently,
the sufficiently large E can destabilize the flow of any predetermined velocity,
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Fig. 6. Zones of stability and instability, Re− E plane
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Fig. 7. Neutral stability curves of mode A

which matches with the findings for number of other rheological models
[7, 23, 24, 29].

The sharp raise of Re− E curve at low E happens due to the disappear-
ance of the fragment of neutral stability curve of the eigenmode A (Fig. 7).
On this figure it is evident that the neutral stability curve closes and shrinks
to nothing with increasing E. The critical value of E ≈ 26 · 10−6 is when
the curve disappears which causes the critical value of Re to jump instan-
taneously to the next fragment of the stability curve situated somewhere
higher than the upper limit of Re at which the calculations were performed.
Further increase of E lead to downward movement of neutral stability curves
for modes A and B, Fig. 8.
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Fig. 8. Neutral stability curves of modes A (blue) and B (orange)

3.3. Continuous spectrum. The area of the complex plane shown on
the Fig. 9 contains the unstructured cloud of eigenvalues. Numerical exper-
iments with various grid size N reveal that the position of this eigenvalues
depend on N and thus the accuracy of calculations for that part of the spec-
trum is questionable. For better understanding of that part of the spectrum
let us rewrite the equations (12)-(14) as

(ωWλ+A1)a11 +B1a12 + C1a22 = V10v + V11v
′ + V12v

′′,

A2a11 + (ωWλ+B2)a12 + C2a22 = V20v + V22v
′′,

A3a11 +B3a12 + (Wλ+ C3)a22 = V30v + V31v
′.

(18)

Here, as it follows from (12)-(14), the coefficients Aj , Bj , Cj , Vj0, Vj1, Vj2,
j = 1, 2, 3 are functions of y according to their dependence on the steady
solution U0. Let

M =

 ωWλ+A1 B1 C1

A2 ωWλ+B2 C2

A3 B3 Wλ+ C3

 .

By Cramer’s rule,

ajm =
det(Mjm)

det(M)
, j,m = 1, 2, (19)
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Fig. 9. Fragment of the spectrum at Re = 5000,W = 0.2

where Mjm is the matrix formed by replacing corresponding column of the
matrix M with the vector of right-hand sides of (18). It is clear that detM
is the polynomial of power three of λ with functions of y as coefficients. By
substituting (19) to (11), we can see that the resulting equation for v will be
linear of the fourth-order since (11) contains a′′12 and from (19) it follows that
a12 in turn linearly depends on v′′. The coefficient at v(4) of the resulting
equation would be proportional to

d4 =
(ωWλ+A1)(Wλ+ C3)V22

det(M)
−

− A2(Wλ+ C3)A2V12 − V12C2A3 + V22A3C1

detM
. (20)

Note that the coefficient at v(3) of that equation would contain the term
proportional to d′4. By multiplying the equation by (detM)2, we get that
the coefficient at v(4) would be zero if either numerator of d4 is zero or
detM = 0, while the coefficient of v(3) would be non-zero in both cases.
That makes the roots of 5th-order equation

((ωWλ+A1)(Wλ+ C3)V22 −A2(Wλ+ C3)A2V12+

+ V12C2A3 − V22A3C1) detM = 0 (21)

the eigenvalues of (11)-(15). Since the coefficients of (21) are functions of y,
we have the continuous spectrum of (11)-(15) with five eigenvalues for any
y, −1 ≤ y ≤ 1. By mapping these roots on the Fig. 10 and comparing them
with the spectrum calculated in previous subsection, we can see that the
correlation between the two is present. The ends of branches of continuous
spectrum are captured with numerical algorithm, while the rest of numerical
eigenvalues create the unstable numerical cloud around continuous spectrum.
This behavior of spectral methods used on the problems with continuous
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Fig. 10. Numerical spectrum (blue) and solution of (21) (red)

spectra is known and appear even in the trivial problems. The important
thing here is that even numerical algorithm does not capture the continuous
spectrum with good accuracy, this spectrum is located in the left complex
half-plane and does not provide instability of the steady state.

The continuous spectrum of rheological models has been observed before,
see [35, 36, 37] for example. The exact shape of the spectrum strongly
depend on the nonlinearity of constitutive equation and thus is unique for
the particular model.

Appendix

The numerical scheme and the approximation of the boundary
conditions. The idea of spectral method is to approximate the function
on the grid of N + 1 nodes by interpolating polynomial of power N . The
derivatives of the function thus are calculated as derivatives of said polyno-
mial. That is, if the values of function v(y) are known in the nodes of the
grid yj , j = 0, . . . , N andv⃗ is the vector of v(yj), then the vector

v⃗(n) = Dnv⃗

is the approximation of derivative v(n) in the same nodes, where D is the
constant differentiation matrix, independent on v. Naturally, the matrix D
is singular, since polynomial does not uniquely defined by its derivative. So
the uniqueness of the solution of boundary-value problem is established by
implementing boundary conditions. In the present research it was done by
decomposing the unknown functions into the polynomials which satisfies the
boundary conditions of the problem. Namely, by taking conditions (15) into
account, we approximate v(y) by polynomial (1− y2)q(y), where q(y) is the
polynomial of power N and

q(yj) = v(yj)/(1− yj)
2, j = 1, . . . , N − 1,
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q(±1) = 0.

It is clear that the (15) would be satisfied with this approximation [31] The
derivatives of v(y) in the grid nodes yj , j = 1, . . . , N are approximates as

v
′
(yj) ≈

d

dy

(
(1− y2)q(y)

)
|y=yj = −2yjq(yj) + (1− y2j )q

′(yj),

v
′′
(yj) ≈

∂2

∂y2
(
(1− y2)q(y)

)
|y=yj = −2q(yj)− 4yjq

′(yj) + (1− y2j )q
′′(yj),

v
′′′
(yj) ≈

d3

dy3
(
(1− y2)q(y)

)
|y=yj = −6q′(yj)− 6yjq

′′(yj) + (1− y2j )q
′′′(yj),

v
(4)
(yj) ≈

d4

dy4
(
(1− y2)q(y)

)
|y=yj = −12q′′(yj)− 8yjq

′′′(yj) + (1− y2j )q
(4)(yj).

The formulas for approximation of the derivatives of fourth order are needed
to solve the equations of type (16). Otherwise, the derivatives of the order
up to second are sufficient since the problem written in the form (11)-(15)
contains only those.

The boundary conditions q(±1) = 0 are implemented by removing first
and last row and column from differentiation matrices Dn, n ≤ 4, thus
obtaining the regular matrices D̃n of the size N − 1×N − 1 [31, 32]. As the
result, the vectors of derivatives for v in the inner nodes yj , j = 1, . . . , N −1
are

v⃗′ =
(
−2diag(y⃗v⃗) + diag(1− (y⃗)2)D̃v⃗

)
diag

(
1

1− (y⃗)2

)
,

v⃗′′ =
(
−2diag(v⃗)− 4diag(y⃗)D̃v⃗ + diag(1− (y⃗)2)D̃2v⃗

)
diag

(
1

1− (y⃗)2

)
,

etc.

Using that approximation, the problem (11)-(15) would be transformed into
(17), where

U⃗ = (v(y1), . . . , v(yN−1), a11(y0), . . . , a11(yN ), a12(y0), . . . a22(yN ))⊤,

and the length of U⃗ is 4N +2. Note that the components v(y0) = v(yN ) = 0

are not included in U⃗ since they are already taken cared of by its interpo-
lation. The matrix M1 of the size 4N + 2 × 4N + 2 consist of the blocks
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M1 = {mln}, l, n = 1, . . . , 4,

m11 = −iωdiag(u⃗0)D̃2 + iω3diag(u⃗0 + iωdiag
(
D̃2u⃗0

)
,

m12 =
(
ω2D

)
v
,

m13 =
(
−iωD2 − iω3I

)
v
,

m14 =
(
ω2I

)
v
,

m21 =
(
2iWdiag(⃗a120)D

2 − 2ω (I/Re +Wdiag (⃗a110))D −Wωdiag (Da⃗110)
)
h
,

m22 = ω

(
ReW

k − β

3
(2diag (⃗a110) + diag (⃗a220)) + I +

+ 2βReWdiag (⃗a110) + iWωdiag (u⃗0))h ,

m23 = (2βReWωdiag (⃗a120)− 2Wωdiag (Du⃗0))h ,

m24 = ReWω
k − β

3
(diag (⃗a110))h ,

etc.

Here I is the unity matrix of N+1×N+1, subscripts ”h” and ”v” denotes the
removal of first and last rows and columns of matrix respectively. Similarly,
the M2 is

M2 =


D̃2 − ω2Ĩ 0 0 0

0 ωWIh 0 0
0 0 ωWIh 0
0 0 0 WIh

 ,

where Ĩ is the unity matrix of N − 1 ×N − 1. The eigenvalues of (17) are
found with “eig” procedure of MATLAB, which utilizes the QZ-method. The
method does not rely on inverse matrices and work reliably even if M1 or
M2 are singular [38].

Validation of the eigenvalues by shooting method. The spectral
methods are known for the high accuracy since they use the information
in all nodes of the grid to calculate the derivatives of the function. Still,
the numerical spectrum could be significantly different from the real one.
The method is prone to create phantom eigenvalues which does not present
in the actual problem, and the position of the rest of the eigenvalues could
also be off. In certain situations up to the half of found spectrum could be
discarded as imprecise [34]. One way to filter the ill-calculated eigenvalues
is to check the results on the grids of different sizes. In this research we used
the grids of the size N = 200, N = 400 and N = 800. Only the eigenvalues
independent of the grid size were used for stability analysis. But even the
independence of numerical eigenvalues on the N does not guaranteed that
these eigenvalues are not numerical artifacts of the algorithm. Another way
to check their validity is to calculate them by alternative numerical method
of different nature. The shooting method could be used since it does not rely
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on the calculation of the eigenvalues of large matrices. Let us briefly describe
the idea and the methods used for calculations in the present research.

As it was mentioned, the system (11)-(14) could be reduced to one linear
fourth-order equation for v with coefficients as functions of y and λ. By
denoting the linear operator as L4(y, λ), we got the eigenvalue problem

L4(y, λ)v = 0,

v(±1) = v′(±1) = 0.
(22)

The idea of shooting method is straightforward: we are trying to find the
non-zero solution of (22) as linear combination of two linearly independent
solutions of the equation L4v = 0 with two left boundary conditions. That
is, we numerically solve two initial-value problems

L4(y, λ)v1 = 0,

v1(−1) = v′1(−1) = 0,

v′′1(−1) = 1, v′′′1 (−1) = 0

and

L4(y, λ)v2 = 0,

v2(−1) = v′2(−1) = 0,

v′′2(−1) = 0, v′′′2 (−1) = 1.

Any solution of (22) could be expressed as v(y) = c1v1(y) + c2v2(y). The
right boundary conditions of (22) means

c1v1(1) + c2v2(1) = 0,

c1v
′
1(1) + c2v

′
2(1) = 0.

Solution v(y) is not trivial only if

g(λ) =

∣∣∣∣ v1(1) v2(1)
v′1(1) v′2(1)

∣∣∣∣ = 0. (23)

The solution of (22) is thus reduced to numerical solve of (23) where the
evaluation of the function g(λ) for any λ requires the calculation of two linear
initial-value problems. Since the solutions of the equation L4(y, λ)v = 0
could be stiff, we used the procedure “ode15s” of MATLAB (variable-step,
variable-order solver, see [39]) for that purpose. Still, even this procedure
returns high numerical errors of g(λ) due to large magnitudes of solutions v1,2
(up to 1020 at y = 1) and their non-orthogonality. To combat this problem
we used the known method of intermediate orthogonalization of solutions
introduced by Godunov [40]. At each step of the numerical integration of
v1,2 we checked the scalar product (v1, v

′
1)

⊤ · (v2, v′2)⊤ and performed the
Gram-Schmidt orthogonalization if this product exceeded 102.

We used the Newton–Raphson method to calculate the solutions of (23).
This method requires good initial guess of the solution for reliable conver-
gence, so we have used the eigenvalues obtained by spectral method as such.
We assumed the eigenvalues are genuine if the shooting method stabilizes
in the short vicinity of the initial position. This validation was used for all
eigenvalues of unstable modes and the results showed that eigenvalues cal-
culated by shooting method are not further away than 10−6 from the ones
obtained by the spectral method. We consider this match as sufficient to
believe that our calculations are accurate.
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Conclusions

The main result of present research we see in calculating the critical values
of Reynolds number for Poiseuille-type plane flow modeled by mVP equa-
tions. It was discovered that the critical value is finite and greater than zero
for all values of Weissenberg number we have checked. The latter indicates
that plane Poiseuille-like flow for mVP is not unconditionally unstable. Even
more so, the results of our calculations for limit E → 0 provide us with crit-
ical value of Re which is identical to the one for Navier–Stokes equations,
which both support the accuracy of performed calculations and adequacy of
the rheological model itself, since it is expected that the stability of poly-
mer solution with almost absent elastic forces should closely resemble the
one for non-elastic viscous fluid. The two unstable modes (symmetric and
asymmetric) were discovered, which correlates with the results for UCM and
Oldroyd-B. But, unlike the latter, we showed that for mVP the slight in-
crease of Weissenberg number from zero provides stabilizing effect on the
plane flow, even if the further increase of W (or E) leads to eventual drop
of critical value of Re, apparently to arbitrarily low values. This effect could
reflect the known experimental fact that the addition of small amount of
polymer into the viscous solvent delays the appear of turbulence [3], but we
assume that further research is required to verify the correlation between
these phenomena.
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