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Abstract: Coxeter groups, better known as reflection-generated
groups, have numerous applications in various fields of mathemat-
ics and beyond. Groups with Fischer 3-transpositions are also as-
sociated with many structures: finite simple groups, triple graphs,
geometries of various spaces, Lie algebras, etc. In previous works,
the authors established a simple genetic relationship between Cox-
eter groups and groups with symplectic 3-transpositions Fisher’s
—symplectic and orthogonal groups over a field of two elements.
As it turned out, Fisher groups are obtained from Coxeter groups
using a single relation - the square of the product of two conju-
gate involutions, one of which belongs to the generating set of the
Coxeter group, and the second is specially selected. Elements of
computer calculations using the GAP system were used. In this
paper, the genetic codes of the commutators of these groups are
found. The series of Coxeter graphs used in the work are provided
with markup indicating how
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Введение

Множество D = aG инволюций группы G называется классом
3-транспозиций, если |ab| ≤ 3 для любых a, b ∈ D [8, 2]; подгруппы
H = ⟨D ∩ H⟩ из G называются D-подгруппами [8]. Когда в G нет D-
подгрупп порядков 18 и 54, G называется группой с симплектическими
3-транспозициями [9] ( в работе [7] G называлась группой типа Σ4). В
известной теореме Б. Фишера [8], [2, теорема 2.58] это симметрические
группы Sn, симплектические группы Sp2l(2) и ортогональные группы
O±

2l(2). Б. Фишер в [8] использует описание этих групп из [10].
Группы с 3-транспозициями связаны со многими математическими

структурами; это конечные простые группы [2; 6], тройные графы [2,
с.125], геометрии пространств Фишера, геометрии ортогональных, сим-
плектических, унитарных и др. пространств [3;5;7;8], алгебры Ли [9; 10],
алгебры вершинных операторов и др. (см., например, [11; 12]).

В [4, 5, 6] установлена простая связь групп Sp2l(2) × Z2 и O±
2l(2) с

некоторыми группами Кокстера [1, c. 286-293], [3, гл. 9]. В настоящей
работе найдены генетические коды групп Sp2l(2) и Ω±

2l(2) определяемые
графами Γn (2l = n− 1 для Sp2l(2) и 2l = n для Ω±

2l(2)).
Используемые в работе серии графов Γn описаны в [4]; там же гра-

фы были снабжены разметкой, указывающей, каким группам Wn =
⟨w1, ..., wn⟩ из SLn(2) соответствует рассматриваемый граф Γn. Приве-
дем три серии графов Γn из [4] с разметкой:

Wn = W (En), n ≥ 9 :
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Wn = W (In), n ≥ 7 :
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Wn = W (Jn), n ≥ 9 :

e e e e ee eq e e e eq e e e eq e e e eq eO+ Sp O− 210 O− SpO+ 214 O+ Sp O− 218 O−

8 7 6 5

4

3 2 1 9 10 11 12 13 14 15 16 17 18 19 20

Согласно [4, предложение 1] если метка вершины n равна O±, то Wn ≃
O±

n (2) и n — четное число; если над вершиной n стоит метка Sp, то Wn ≃
Spn−1(2)× Z2 и n — нечетное число; если метка вершины n равна 2n−1,
то n — нечетное число и группа Wn обладает нормальной элементарной
абелевой 2-подгруппой порядка 2n−1.
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В общем случае E-серией называется множество {Γn} (n ≥ m) вло-
женных друг в друга графов, если они являются деревьями, содержат
подграф E6 и их подграфы с вершинами m,m+1, ..., n являются цепями
вида

Γm ⊂ Γm+1 ⊂ ... ⊂ Γn ⊂ ...,
(1)

gg g
m+ 1m n

и удовлетворяют специальному условию: для некоторого n в ассоцииро-
ванном с Γn векторном пространстве Vn нет ненулевых Wn-инвариантных
векторов [4]. Начальным графом серий {En} и {Jn} являются графы E9

и J9 (m = 9), а серии {In} — граф I7 (m = 7).
Каждому графу Γn соответствует группа Кокстера Gn = G(Γn) [1]:

Gn = ⟨s1, ... , sn | s2i = (sksj)
2 = (sisj)

3 = 1, 1 ≤ i, j, k ≤ n, (k, j) /∈ Γn, (i, j) ∈ Γn⟩,
(2)

или коротко Gn = ⟨Sn | Rn⟩, где Sn = {s1, ..., sn}, Rn — соотношения
группы Gn из (2).

В группах Wn при отображении si → wi (i = 1, ..., n) выполняют-
ся все соотношения Rn группы Gn. Есть гипотеза, что группа Wn ∈
{Sp2l(2)×Z2, O

±
2l(2)} — это единственная конечная фактор-группа груп-

пы Gn с простым неабелевым коммутантом. Для n ≤ 20 с помощью
системы GAP доказано [4, теорема 1], что либо Wn ≃ O±(2), либо
Wn ≃ Spn−1(2) × Z2, либо O2(Wn) является элементарной абелевой 2-
подгруппой порядка 2n−1. Во всех случаях Wn изоморфна фактор-группе
Gn/Nw, где Nw — нормальное замыкание в Gn элемента w2. В слу-
чаях Γn = En и Γn = Jn элемент w = ss9 есть произведение инво-
люции s9 на корневую симметрию s = wr группы Вейля W (E8), где
r = 2p1+4p2+6p3+3p4+5p5+4p6+3p7+2p8 — максимальный положитель-
ный корень, {p1, ..., p8} — фундаментальная система корней {p1, ..., p8}
типа E8. В случае Γn = In элемент w = ss7, где s = wr — корневая
симметрия, r = p1 +2p2 +3p3 +2p4 +2p5 + p6 — максимальный положи-
тельный корень системы корней типа E6. И группа Wn имеет следующее
копредставление

⟨s1, ..., sn | s2i = (sksj)
2 = (sisj)

3 = w2 = 1, 1 ≤ i, j, k ≤ n, (k, j) /∈ Γn, (i, j) ∈ Γn⟩,
(3)

или Wn = ⟨Sn | Rn, Qn⟩, где Sn = {s1, ..., sn}, Rn — соотношения группы
Gn из (2) и множество дополнительных соотношений Qn = {x(s1, ..., sm) =
1 | x ∈ Wm} (в копредставлении (3) группы Wn множество Qn состоит
из одного соотношения (ssm)2 = (wrsm)2 = 1).

Теорема о копредставление коммутанта группы Wn

Теорема 1. Если Wn = ⟨Sn | Rn, Qn⟩ — копредставление группы Wn ∈
{Sp2l(2)×Z2, O

±
2l(2)}, то копредставление ее коммутанта Yn = ⟨q1, ..., gn−1⟩
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задано соотношениями (4)-(5):

g2i = 1, (gigj)
2 = 1, (gkgj)

3 = 1, где (i, j) /∈ Γn−2, (k, j) ∈ Γn−2; (4)

g3n−1 = 1, (gn−2gn−1)
3 = 1, (gign−1)

2 = 1, 1 ≤ i ≤ n− 3,

x(g1, ..., gm) = 1, где x ∈ Qn. (5)

Доказательство. Коммутант Hn группы Кокстера Gn состоит из эле-
ментов четной длины [3]. По [4, лемма 1] коммутант Yn группы Wn

порожден элементами wiwj , где (i, j) ∈ Γn, состоит из всех элементов
группы Wn четной длины, [Wn : Yn] = 2, Wn = Yn ⋋ ⟨wn⟩, и ограниче-
ние гомоморфизма Gn → Wn на Hn есть сюрьективный гомоморфизм
Hn → Yn (см. также теорема 3.42 [2]).

Для определения генетических кодов групп Yn ∈ {Sp2l(2), Ω±
2l(2)}, где

n ≥ m + 2, используем копредставление (3) группы Wn и ниже опреде-
ленные порождающие g1, ..., gn−1 группы Yn (см. также [1, упражнение 9,
стр. 46]). Итак, пусть n ≥ m+2, обозначим gk = sksn, где k = 1, ..., n−2, и
gn−1 = snsn−1. Тогда в Gn элементы g1, ..., gn−2 являются инволюциями,
а элемент gn−1 имеет порядок 3. Слово x = x(s1, ..., sm) из копредставле-
ния (3) в Gn имеет четную длину, и как элемент группы Gn, совпадает
со значением слова x(g1, ..., gm) из подгруппы ⟨g1, ..., gm⟩ (поскольку sn
перестановочна с инволюциями s1, ..., sm).

Таким образом, соотношения, выполняющиеся для порождающих g1, ..., gn−2, gn−1

группы Yn ≤ Xn, разбиваются на три части. Это соотношения (4), не
содержащие gn−1, и соотношения (5), содержащие gn−1, а также соотно-
шения из Qn.

Ввиду соотношения (gn−2gn−1)
3 = (sn−2sn ·snsn−1)

3 = (sn−2sn−1)
3 = 1

группа

U = ⟨gn−2, gn−1 | g2n−2 = 1, g3n−1 = 1, (gn−2gn−1)
3 = 1⟩ (6)

изоморфна знакопеременной группе A4 [3, таблица 5, стр. 201] и очевид-
но, что

U = ⟨gn−2, g
−1
n−1 | g

2
n−2 = 1, (g−1

n−1)
3 = 1, (gn−2g

−1
n−1)

3 = 1⟩. (7)

также генетический код группы U .
Докажем, что группа K = ⟨g1, ..., gn−1⟩, заданная соотношениями (4)

и (5), изоморфна группе Yn. Воспользуемся рекомендацией для решения
упражнения 9 [1, стр. 46]. Поскольку для 1 ≤ i ≤ n − 3 соотношения
(gign−1)

2 = 1 из (5) равносильны соотношениям (gig
−1
n−1)

2 = 1, то отоб-
ражение

t : gi → g−1
i (i = 1, ..., n− 1) (8)

продолжается до инволютивного автоморфизма t : g → gt группы Kn.
Рассмотрим в группе Kn⋋ ⟨t⟩ систему порождающих s′1 = y1t, ..., s

′
n−2 =
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yn−2t, s
′
n−1 = yn−1t, s

′
n = t. Согласно [1, упражнению 9, стр. 46] отобра-

жение s′i → si продолжается до изоморфизма групп Gn и ⟨s′1, ..., s′n⟩, и
мы можем эти группы отождествить. Как ранее было указано, при этом
отождествлении элементы соотношений из Qn, как слова от s1, ..., sm и
от s′1, ..., s

′
m остаются на месте. Следовательно нормальное замыкание

N в Gn множества этих слов из Qn определено однозначно. В силу сю-
рьективного гомоморфизма Hn → Yn заключаем, что Kn = Yn, что и
доказывает теорему. □

Заключение

Доказано, что если группа Wn задана соотношениями (3), то (4)-(5)
— генетический код ее коммутанта. Для n = 2l ≤ 20 с помощью компь-
терных вычислений в системе GAP установлено, что соотношения (3)
являются генетическим кодом групп Wn ∈ {O±

2l(2), Sp2l(2) × Z2}. Оста-
ется доказать, что группа Wn задана соотношениями (3) и для n > 20.
Заметим также, что как и в случаях групп Кокстера, соотношения (4)-
(5) легко восстанавить по графу Γn−1:

ee e h
m+ 1m n− 2 n− 1

3

Вершинам 1, ..., n−2 графа Γn−1 соответствуют инволюции g1, ..., gn−2,

а вершине n − 1 — элемент gn−1 порядка 3. Если (i, j) /∈ Γn−1, то в

группе выполняется соотношение (gigj)
2 = 1, а если (i, j) ∈ Γn−1, то

соотношение (gigj)
3 = 1.
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