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Abstract: The article considers the 1D coefficient inverse problem
for the acoustic equation. New version of the I.M. Gelfand - B.M.
Levitan - M.G. Krein approach, applicable for the general time
form of the sounding wave, is proposed. The new set of linear
integral equations, equivalent to the inverse problem, is obtained.

Keywords: coefficient inverse problems, ill-posed problems, direct
methods, integral equations.

1 Введение

Данная работа посвящена решению коэффициентных обратных задач
для гиперболических уравнений. Такие задачи, как правило, связаны с
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определением параметров различных сред по данным, полученным в ре-
зультате распространения в среде волнового (акустического, сейсмиче-
ского или электродинамического) процесса и имеют большое практиче-
ское значение. Поэтому разработка новых методов решения таких задач
представляет большой интерес.

Метод И.М. Гельфанда—Б.М. Левитана—М. Г. Крейна, основанный на
сведении коэффициентной обратной задачи для гиперболического урав-
нения к семейству линейных интегральных уравнений, является одним
из перспективных подходов. Его сильные стороны хорошо известны —
это прямой метод определения параметров исследуемой среды без мно-
гократного решения прямой задачи и использования априорной инфор-
мации о строении среды. Прямым методом решения коэффициентных
обратных задач также является метод граничного управления.

Первой работой, посвящённой применению метода И.М. Гельфанда—
Б.М. Левитана—М.Г. Крейна для решения задачи о струне, является
работа М.Г. Крейна [1]. В работе А.С. Благовещенского [2] впервые был
предложен динамический вариант метода Крейна и доказана эквива-
лентность полученного семейства интегральных уравнений и обратной
задачи. Помимо использования предлагаемого подхода во временной об-
ласти, существует также множество работ, посвящённых спектральному
варианту метода, из которых наиболее близкой к исследуемой задаче
является работа А.С. Алексеева и В.С. Белоносова [3]. В ней авторы
рассмотрели несколько вариантов постановок обратных задач в частот-
ной области и показали их эквивалентность.

Метод граничного управления был применён для решения задач аку-
стики в работах [4, 5]. В работе [6] показано, что для одномерной обрат-
ной задачи акустики уравнения, полученные в методе граничного управ-
ления, после дискретизации совпадают с дискретным аналогом уравне-
ния М.Г. Крейна. В работе [7] метод граничного управления применен
для решения двумерной обратной задачи акустики. Многомерные ал-
горитмы решения обратных задач для гиперболических уравнений рас-
сматривались также в работах [8, 9, 10], а в работах [11, 12, 13] бы-
ли предложены численные алгоритмы решения многомерных аналогов
уравнений И.М. Гельфанда—Б.М. Левитана—М.Г. Крейна.

Целью данной работы является обобщение метода И.М. Гельфанда—
Б.М. Левитана—М.Г. Крейна для постановок задач, более приближен-
ных к приложениям. В частности, интерес представляет возможность
применения подхода в случае источника произвольного вида. В данный
момент наиболее хорошо изученной является постановка с источником
типа дельта-функции. С одной стороны, это приводит к специальной
структуре данных обратной задачи и позволяет свести обратную задачу
к семейству интегральных уравнений второго рода. С другой стороны,
на практике такой подход подразумевает получение импульсной харак-
теристики среды, что приводит к необходимости решать задачу декон-
волюции. Отметим, что источник произвольной формы по времени был
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рассмотрен в работе [14], но на основе подхода И.М. Гельфанда—Б.М.
Левитана.

2 Основные результаты

В качестве модели волнового процесса в данной работе будет рассмот-
рена одномерная коэффициентная обратная задача для уравнения аку-
стики:

utt(x, t) = Lσu, x > 0, t > 0; (1)
u|t<0 ≡ 0, x > 0; (2)

ux|x=0 = g(t), t > 0; (3)
u|x=0 = f(t), t > 0, (4)

где оператор Lσ имеет вид

Lσu ≡ σ(x)

(
1

σ(x)

∂u

∂x

)
.

Здесь u(x, t) описывает колебание точек среды, σ(x) — акустическая
жёсткость среды. Мы предполагаем, что среда находилась в состоянии
покоя до момента t = 0, в который на среду действует расположенный на
дневной поверхности x = 0 источник акустических волн, форма которо-
го задаётся функцией g(t). Этот источник приводит к распространению
акустических волн в среде, которые отражаются от неоднородностей и
возвращаются на дневную поверхность, где колебание точек среды f(t)
регистрируется приёмниками. Таким образом, обратная задача заклю-
чается в определении неизвестной функции σ(x) по заданным f(t), g(t).

Замечание. В качестве основного уравнения задачи (1)—(4) можно
рассматривать уравнение

1

c2(z)
utt(z, t) = ρ(z)

(
uz
ρ(z)

)
z

,

где c(z) — скорость распространения волн в среде, ρ(z) — плотность
среды. Это уравнение можно свести к (1) с помощью замены

x =

z∫
0

dξ

c(ξ)
, σ(x) = c(x)ρ(x).

Тем самым можно рассматривать задачу восстановления c(x) (в случае,
если ρ - известна), задачу восстановления ρ(x) (если известна c(x)), или
же задачу восстановления акустической жёсткости σ(x) (если ни одна
из функций c(x), ρ(x) неизвестны).
Отметим, что в данной работе мы считаем, что функции f(t), g(t) явля-
ются гладкими , и можно считать, что f(+0) = g(+0) = 0. Кроме того,
нетрудно показать, что функция u(x, t) обладает свойством u(x, t) = 0
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при t < x. Учитывая это, мы продолжим все рассматриваемые функции
нечётным образом для значений t < 0:

u(x, t) = −u(x,−t), t ≤ 0.

f(−t) = −f(t), g(−t) = −g(t), t ≤ 0.

Тогда задача (1)-(4) приобретает следующий вид:

utt = Lσu, x > 0, t ∈ R, (5)
u|x=0 = f(t), ux|x=0 = g(t). (6)

При этом в силу нечётного продолжения

u(x, t) = 0, |t| < x. (7)

Далее, введём дополнительные функции W1(x, t), W2(x, t), являющиеся
решениями задач

W1tt = LσW1, x > 0, t ∈ R, (8)

W1

∣∣
x=0

= δ(t), W1x

∣∣
x=0

= 0; (9)

W2tt = LσW2, x > 0, t ∈ R, (10)

W2

∣∣
x=0

= 0, W2x

∣∣
x=0

= δ(t). (11)

соответственно. Тогда функции u(x, t),W1(x, t),W2(x, t) связаны следу-
ющим соотношением:

u(x, t) =

∫
R

f(t− s)W1(x, s)ds+

∫
R

g(t− s)W2(x, s)ds. (12)

Замечание 2. Если функция g(t) задаёт источник типа дельта-функции
(как, например, в [2]), то в условиях (6) функция f(t) имеет скачок при
t = 0, а второе условие становится однородным. В результате в правой
части равенства (12) остаётся только один интеграл, а скачок в данных
позволяет получить известное уравнение М.Г. Крейна второго рода (24).
Далее, соотношение (12) и условие (7) может быть использовано для по-
лучения уравнения типа И.М. Гельфанда - Б.М. Левитана, как это было
проделано, например, в [14]. В данной работе мы, адаптируя подход А.С.
Благовещенского [2] , применим к (12) дополнительное преобразование.
Введём функции

Vj(x, t) =

∫ x

0

Wj(ξ, t)

σ(ξ)
dξ, j = 1, 2.

Применяя оператор ∂
∂t

∫ x
0

1
σ(ξ)(·)dξ к обеим частям равенства (12), полу-

чим:

H(x, t) ≡
∫ x

0

ut(ξ, t)

σ(ξ)
dξ =

∂

∂t

∫
V1(x, s)f(t−s)ds+

∂

∂t

∫
V2(x, s)g(t−s)ds

(13)
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Теперь рассмотрим функцию H(x, t) в области x > |t|. В силу условия
(7)

Hx(x, t) =
ut(x, t)

σ(x)
= 0, x > |t|.

Таким образом, в указанной области функция H зависит лишь от пере-
менной t. Далее,

Ht(x, t) =

∫ x

0

utt(ξ, t)

σ(ξ)
dξ =

ux(x, t)

σ(x)
− ux(0, t)

σ(0)
= − g(t)

σ(0)
.

Отсюда можно заключить, что в области |t| < x

H(x, t) ≡ −
∫ t

0

g(τ)

σ(0)
dτ. (14)

Таким образом, равенство (13) приобретает следующий вид:

−
∫ t

0

g(τ)

σ(0)
dτ =

∫ x

−x
V1(x, s)f

′(t− s)ds+

∫ x

−x
V2(x, s)g

′(t− s)ds, t ∈ (−x, x)

(15)
Равенство (15) отличается от классического уравнения М.Г. Крейна в
том числе и тем, что содержит две неизвестные функции. При этом
нетрудно показать, что функции V1(x, t), V2(x, t) являются решениями
задач

V1tt = L̂σV1, x > 0, t ∈ R (16)

V1|x=0 = 0, V1x |x=0 =
δ(t)

σ(0)
; (17)

V2tt = L̂σV2 −
δ(t)

σ(0)
, x > 0, t ∈ R (18)

V2|x=0 = 0, V2x |x=0 = 0. (19)

соответственно. Здесь

L̂σV ≡ 1

σ(x)
(σVx)x .

Получим соотношения, связывающие функции V1, V2. Пусть Φ(x, t) яв-
ляется решением задачи

Φtt = L̂σΦ, x > 0, t ∈ R,
Φ|x=0 = θ(t),Φx|x=0 = −δ(t);

Тогда можно показать, что имеют место следующие представления функ-
ций V1, V2:

V1(x, t) =
1

2σ(0)
(1− Φ(x,−t)− Φ(x, t)) ; (20)

V2(x, t) =
1

2σ(0)

∫ t

0
(1 + Φ(x, τ)− Φ(x,−τ)) dτ − θ1(t)

σ(0)
. (21)
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Здесь

θ1(t) =

{
t, t > 0;

0, t < 0.

Теперь перепишем первое слагаемое в правой части (15), используя (20):

∂

∂t

∫ x

−x
V1(x, s)f(t− s)ds =

=
1

2σ(0)

[∫ x

−x
f ′(t− s)ds−

∫ x

−x

(
f ′(t+ s) + f ′(t− s)

)
Φ(x, s)ds

]
.

Аналогичным образом можно воспользоваться (21), чтобы переписать
второе слагаемое в правой части (15):

∂

∂t

∫
V2(x, s)g(t− s)ds =

=
1

2σ(0)

[
−2

∫
g(t− s)θ(s)ds+

∫ x

−x
g(t− s)ds+

+

∫ x

−x
(g(t− s)− g(t+ s)) Φ(x, s)ds

]
.

Подставляя полученные выражения в (15), получим:

−2

∫ t

0
g(τ)dτ −

∫ x

−x

[
g + f ′] (t− s)ds =

=

∫ x

−x

( [
g − f ′] (t− s)−

[
g + f ′] (t+ s)

)
Φ(x, s)ds, t ∈ (−x, x). (22)

Уравнение (22) является семейством линейных интегральных уравне-
ний первого рода относительно неизвестной функции Φ(x, s) с парамет-
ром x > 0 и является обобщением уравнения М.Г. Крейна. Решив (22),
можно определить акустическую жёсткость σ(x), используя структуру
функции Φ. Так, нетрудно показать, что

Φ(x, x− 0) = 1− σ(0)

σ(x)
.

Следовательно,

σ(x) =
σ(0)

(1− Φ(x, x− 0))2
. (23)

Замечание 3. Функции f(t), g(t), определяющие уравнение (22), связа-
ны соотношением:

f(t) =

∫ t

0
g(t− τ)R(τ)dτ.

Здесь R(τ) - импульсная характеристика среды. Её связь с решением об-
ратной задачи акустики была впервые изучена М.Г. Крейном в работе
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[1]. В частности, решив задачу деконволюции и использовав импульс-
ную характеристику среды, можно свести обратную задачу акустики к
семейству уравнений второго рода:

−2R(+0)V (x, t) +

∫ x

−x
R′(t− s)V (x, s)ds = 1, x > 0, t ∈ (−x, x). (24)

Замечание 4. Численное решение уравнения (22) целесообразно произ-
водить на основе дискретизации и последующем решении системы ли-
нейных алгебраических уравнений. При этом отметим, что матрица си-
стемы будет плохо обусловленной. Также матрица системы в силу струк-
туры нового аналога уравнения М.Г. Крейна будет представляться в ви-
де суммы тёплицевой и ганкелевой матриц. Это позволит привлекать
специальные методы для решения этой системы (как, например, в [11] ).
Замечание 5. Предложенный подход может быть адаптирован для ре-
шения многомерных задач, с использованием техники, предложенной в
работах [7, 8, 9].
Замечание 6. Предложенный подход может быть использован для ре-
шения задачи определения коэффициента q(x) уравнения utt = uxx −
q(x)u, которое возникает при решении спектральных обратных задач. В
этом случае аналог уравнения И.М. Гельфанда—Б.М. Левитана прини-
мает следующий вид:∫ x

−x
g(t− s)ds =

∫ x

−x

([
g − f ′] (t− s) +

[
g + f ′] (t+ s)

)
Φ(x, s)ds, t ∈ (−x, x)

3 Заключение

В работе была рассмотрена одномерная коэффициентная обратная за-
дача и предложен алгоритм её сведения к семейству интегральных урав-
нений. В дальнейшем планируется разработка и анализ численных мето-
дов на основе предложенного подхода, и сравнение с последовательным
решением задачи деконволюции и определения акустической жёсткости
по импульсной характеристике среды.
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