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STRASSEN’S LAW OF ITERATED LOGARITHM FOR
A WIENER PROCESS DEFINED ON THE HALF-AXIS

E.V. EFREMOV~ AND A.V. LOGACHOV

Communicated by N.S. ARKASHOV

Abstract: We prove a version of Strassen’s law of iterated log-
arithm in the space of continuous functions with weighted sup—
metric for a Wiener process defined on the half-axis. We consider
weight functions of the form 1/(1+4t*), where o > 1/2. The result
is unimprovable in the class of power weight functions.
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1 Introduction, formulation of the main result

Let w(t), t > 0 be a Wiener process defined on a probability space
(©,5,P). We will be interested in the limit behavior of the following se-
quence of random processes

t

Vinp(n)’

where ¢(n) := /2Inln(3 V n). Note that for any n € N the random process
w(t) = w(nt)//n is also a Wiener process.
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We will consider trajectories of random processes w,, in the space C of
functions continuous on the half-axis [0, 00), with a metric

3 o () = 9(t)]
p(f,9) = palf,g9) = Y ST

i

where 1/(1 + %) is a power weight function and a > £ is a fixed constant.
Let us denote as ACy[0, 00) and ACy[0,T7] sets of functions starting from

zero and absolutely continuous on intervals [0, 00) and [0, T] respectively.
We define the Strassen’s ball on the half-axis

K= {f € hCof0.00): [ s < 1},

where f is the derivative in the sense of absolute continuity.
We also define the Strassen’s ball on [0, 7]

Krp:= {f € AC[0,T] : /OT fA(s)ds < 1}.

The following Theorem is the main result of the paper.

Theorem 1. For any a > % the set limit points of the sequence wy, in the
metric space C coincides with the set K a.s.

Now we will do a brief review of results obtained earlier. The case of a =1
was considered in the paper [2, Theorem 1.4.1| for multidimensional Wiener
process; the result then was used to prove the Strassen’s law of iterated
logarithm for small time in |3, Theorem 3|. The paper [4, Theorem 1] is also
dedicated to the case, when @ = 1, but a class of more general normalizing
functions than ¢(n) = 1/2Inln(3 vV n) was considered. We note that the
methods of proof used in this paper differ significantly form those proposed
in [4]. We also mention the paper [5]. In that paper the moderate deviations
principle for diffusion processes was obtained for the case when o > 1, which
is the main tool for proving the Strassen’s law of iterated logarithm.

Remark 1. In the case when a < %, the Strassen’s law of iterated logarithm
cannot be obtained, since for such «, due to the Khinchin’s law of iterated
logarithm, the following holds
o(t o(t
lim sup M > lim sup M =
t—o0 1+« t—00 1+\/7€

Also, due to the Cauchy—Bunyakovsky—Schwarz inequality, for any f € K
the following bound holds

a.s. (1)

)] < /Ot 1f(s)|ds < Vi (/Ot fz(s)ds> v < Vi (2)



STRASSEN’S LIL FOR A WIENER PROCESS DEFINED ON THE HALF-AXIS 1733

1

Using formulas (1) and (2) we can conclude that for any o < 5, any function

f € K and any n € N the following holds
o) 110 (0] _ 1)
t=0

pa(Wy, f) = sup

>0 1+t 1+t 14t
(Iwn(t)l Vi >_ 1+x/5(|wn(t)| Vit >
>s — = sup —
>0 \ 1+t 141t >0 1+t \ 14+t 1+t
1+\/i<|wn(t)l )
> sup -1 =00 a.s.
=0 1+t \ 1+ /1

Thus, the result of Theorem 1 is unimprovable in the class of power weight
functions.

Let us introduce some more new notations. For fixed T' € (0, 00) we will
denote the space of functions continuous on the interval [0, 7] as C[0,T]. On
that space we define the following sup —metric

_ 1) 9@
pr(f,9) : tes[%%] T

where o > %; and the uniform metric

pru(f,g) == sup |f(t)—g(t)|.
te[0,7

The rest of the paper consists of Section 2 and Section 3. In Section 2 we
prove the main result. In Section 3 we formulate and prove auxiliary results.

2 Proof of the main result

Proof. We divide the proof into two steps.

Step 1. Let us prove that the set of limit points of the sequence w, is
contained in K a.s. To this end we show that the conditions of Lemma 2 are
met for w,, a.s.

From |1, appendix 8, Theorem 4| and the inequality pp (wnr(c),KT) <
PT.U (wm(c),KT) it follows that for any ¢ > 1 and T > 0 the following
equality holds

P (lim sup pr (wm(c), Kr) = 0> =1, (3)
r—00
where n,(c) = [¢"|. That is, the condition (1) of Lemma 2 is satisfied a.s.
Now we show that for any € > 0 there is 7T, > 0 such that for any ¢ > 1
the following equality holds

a.
el S0 [on @ (o) e 1 (1)
11m su su = 1.
r—>oop t}jlg‘: 1+te
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For T' > 0 we define a set of events as follows

max [, (o) (s)
A, = sup —— >ep, relN
t>T 1 +

Using Lemma 4, we obtain the following bound

S P(4,) < O(T,0) S 205 { ‘TQa_lwz(nr(c))EQ }
r=1 r=1

. 2
= O(T, 5) Z (1n(3 v nr(c>))T2a7152/27

r=1

from which it follows that the series Y P(A,) converges if
r=1

1/(2a—1)
na(2)
3

Therefore, from Borel-Cantelli Lemma it follows that the equality (4) holds,
and consequently the condition (2) of Lemma 2 is satisfied a.s.

Thus, all the conditions of Lemma 2 are satisfied a.s., and we can conclude
that the set of limit points of the sequence w, is contained in K a.s.

Step 2. It remains to show that for any function f € K and almost all
w € Q there is a sequence ny(w) such that klggo P(Why () f) = 0.

We fix € > 0. Let us choose T . such that the following equality holds

max |wy,(s)]
P | limsup [ sup el <el|l=1 (5)
n—o0 t>Te 1 + ¢ ‘

We recall that such choice is possible due to the equality (4) and the Lemma
1.
Let f € K. For any T > 0 the following bound holds (see 2)

|F(T)| < VT.

Therefore we can choose T, > 0 such that for any 7' > T . the following
holds

Lf(T)]
sup —— < €. 6
t>IT) 1+t (©)
Since f is in K, for any € > 0 there is T3, > 0 such that
o0
A(s)ds < 2. (7)
TS,S

It is easy to see that for T, := max (11 ., To ., T3 ) the inequalities (5), (6)
and (7) hold simultaneously.
Using the Cauchy-Bunyakovsky—Schwarz inequality we get
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0 = @] Sl F@lds “pm/ﬁ HOI

S S X
t>T. 1+t >T. 1+t* t>T. Jr. 1+ 8%

00 |f(5)‘ oo o 1/2 % ds 1/2
<J treees(f, rom) (] aren) <o ©

From inequalities (6) and (8) it follows that

() = O], T = FOL - fu(® = £0)

X

p(wnaf) < sup

tefo1) 1+t 1. 1+ tep;] 1+t
If(t) — f(Tv)] Wy, (1) |f(T2)]
+sup ————> + su + su
o 1tte o Tte T DR T
t) — f(t t
< |wy, (1) — f(1)] +su |wy, (t)] O+ (9)

telo, 1) 1+t 7. 1+

Using the equality (5) we can conclude that for almost all w € € there is
n(e,w) such that for all n > n(e,w) the following equality holds

sup [wn(®)] < 2e. (10)

1. 1+t

From [1, appendix 8, Theorem 4] (the law of iterated logarithm for the
Wiener process on the interval [0, 7¢]) it follows that for any function f € K.
and almost all w € Q exists a sequence ng(w) such that klim P10 (Wny ()5 f) =

— 00

0. Therefore for almost all w €

i ‘wnk(w) (t) - f(t)’
im sup
k—o0 te[0,12] 1+t

< klinolo pTE,U(wnk(w)7 f) =0. (11)

From (9), (10) and (11) it follows that for any function f € K, € > 0 and
almost all w € Q there is a subsequence ny(w) such that

lim sup p(wp, (), f) < (3 + Ca)e.

k—o0

The Theorem 1 is fully proven. ([

3 Auxiliary results

For function g € C we set

gn(t) = _g(nt) n € N.

Vng(n)’

Lemma 1. Let g € C and let the following inequality hold for some T > 0

limsup [sup 0/ | <& 12
'r—>oop t}]B 1+t ( )
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Then for the same T > 0 the following inequality holds

max lgn(s)]

limsup | sup < 2e.

n—o00 t=T 1 + @

Proof. Since the inequality in condition (12) is strict, there is r(¢) such that
for all r > r(e) the following holds

max |gor(s)]

s€(0,1] p(2th)
sup /4 <, < V2. 13

It is easy to see, that for any n > 27() there is r(n) > r(e) such that
27" < n < 27(WF1 Therefore, using inequalities (13), for n > 27®) we get

or(n)+1
max |gn(s)] - max |g(ns) . max [g( s)|
sup——— = <
er 1+t oot (1+10)v/mg(n) o1 (14 t2)V2r(mp(2r(n)
r(n)+1
1/2r(n)+1¢(2r(n)+1) srél[%?;] ‘9(2 S)‘
= - su
2r(n)¢(2r(n)) t>$ (1 4 ta),/2r(n)+lgp(2r(n)+1)
\/§¢<2r(n)+1) srél[%}i] ’92’“(71)-4'1 (8)|
= ’ 2¢.
o2y ST e S
O
Lemma 2. Let g € C and let it satisfy the following conditions:
(1) for anyc>1andT >0
lim sup p7 (9, (), K1) =0,
r—00
where nr(c) = LCTJ, reN, pr (gnr(c)v KT) = flergT pr (gnr(c)7 f) 5
(2) for any e > 0 there is T. > 0 such that for any ¢ > 1
I 25 om0 <e (14)
imsup | su .
T—)oop t;II“Z 1 + te
Then
lim sup p (gn, K) = 0.
n—oo
Proof. 1t is suffices to show that for any ¢ > 0
) g(nt) >
lim su —— K| < 3e. 15
mows (250 1)

Fix € > 0. Let us denote Cr. :={f € C: f(t) = f(I:), for t > T.}. It is
obvious, that

K.:= K. NCr, CK, (16)



STRASSEN’S LIL FOR A WIENER PROCESS DEFINED ON THE HALF-AXIS 1737

and, due to the Cauchy—Bunyakovsky—Schwarz inequality, for any function
f € K. the following equality holds

1/2

wp\ﬂﬂ%ééﬂLﬂ@Wséx@%<Aﬂf%$®) < VT

te€[0,T%]

Therefore for any 7. large enough the following inequality holds for f € K c

max £ ()l e £ ()l T
sup S <

FEH O <
t>1.  1+1¢ t;jl“z 1+t 14+T7T¢

<e. (17)

It is easy to see, that if the inequality (14) holds for some T, > 0, then it
also holds for any T" > T,. For this reason, from now on, we will assume that
T. is chosen such that both inequalities (14) and (17) hold.

Using (16) and (17) we get

lim sup p(gn, K) < limsup p(gn, K.)

n—oo n—oo

t)—j(t t)—J(t
ey i [ oy O FOL a8 = £00)
n—oo feK. \te[0,T:] 1+t t>T- 1+t
max |g,,(s)|
- ~ |gn () — ()] selog
<limsup inf | sup ———" 4 sup——— +¢
n—oo feK. \ te[0,Tx] 1+t t>1. 1+t
max [gn(s)|
. . s€[0,t]
< limsup pr. (gn, K7.) + limsup | sup ———— | +&. (18)
n—o00 n—o00 t>T. 1+ t«

It is easy to see that pr. (gn, K1.) < prv (9n, K1) < (1 +T2)pr. (g0, K1)
We also note that the set K7, is compact in the metric space (C[0,T%], pr. /)
(see, for example, [1, appendix 8, Lemma 2|). Therefore from condition (1)
and |1, appendix 8, Lemma 6] it follows that

lim sup pr. (gn, K1.) = 0. (19)

n—o0

Applying condition (2) and Lemma 1, we get

max [gn (s)|
limsup | sup €0 < 2e. (20)
n—00 t>Te 1+ to
Inequality (15) follows from formulas (18)—(20). O

Lemma 3. Let the function f(t) be continuous on [0,00), and let € > 0.
Then
max | f(s)]

. s€[0,t]
lim sup

— > c 21
t—o0 1+ta ( )
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if and only if

JOINe

lim sup > e. (22)

t—o00 1‘%ta

Proof. 1t is easy to see that (21) follows from (22).
Now we show that from the inequality

£ ()]

lim su <, 23
msup o (23)
it follows that
max | f(s)]
lim sup ol (24)
t—o00 1+t

Suppose that (23) holds, but (24) does not. Then there are sequences sy,
and t,, such that 0 < s,,, < t,, for allm € N, lim ¢, = co and

m—oo 1412,

> €. (25)

If lim inf s,,, < oo, then due to the continuity of the function f the inequality
m—0o0

(25) cannot hold. Therefore lim s, = oo. Then, due to the fact, that

m—0o0
Sm < tm, we have

t
P % SRV | B /()
m—o0 1—kt%/ n%»m)14—5% oo 1+ t¢
The resulting contradiction completes the proof. ([

Lemma 4. For anyn € N, T > 0 and € > 0 the following bound holds

200—1, .2

gp T € exp (T,e),

where the constant 0 < C(T,e) < oo depends only on T and €.
Proof. Let 0 < A € R. Applying Doob’s martingale inequality (see., for
example, |1, chapter 4, Corollary 5|) to the martingale exp {)\ﬁ)(t) — )‘7215},

and using the fact, that the random process —w(t) is a Wiener process, for
any x > 0 and y > 0 we get

P <max |w(t)| = x) <P (max w(t) > :U) +P <max (—w(t)) > x)
t€[0,y] t€[0,y] t€[0,y]

A2 A2
<2P (tfél[gtz] exp {)\w(t) - 2t} > exp {)\x — 23/})

2E exp {)\w(y) — /\;y} 22
< :2exp{—)\:c+y}.
o
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By choosing A = £, we will have

$2
P > <2 —— 5. 2
(J&%@‘w“‘ x) exp{ zy} (26)

Using inequality (26), Lemma 3 and the Khinchin’s law of iterated logarithm,
we get

max |wy ()] max |w(s)|
s€[0,t] se[o t]
Plsup———>¢| =P
e>r 1+t ( +1*)p(n )
. max|w( )| max |w(s)|

€[0,t]
—|— P hmsu 57
el (T %) ()

=

s€0,t]
<P sup  ————— > p(n)e
TL_JI te[rr 1) (1 +1)

0 max [w(s)]
=P sup selod > go(n)a} +P (hmsupw > >

>e¢
te[rrT(r+1)) (1419 oo (1 +t¥)p(n)

r=1
0o max |w(s)|
s€(0,t]
=P sup ——— 2 p(n)e
2 | terr ey (1 +12) ()
. () o (o [0
s€|0,t se r4
< P sup — 2 P > p(n)e
; te[rrT(r+1)) (1 +1%) Z (1+(Tr)*) e(n)
= (1+(Tr)*)%p +2(Tr)* + (Tr)**)* (n)e?
< J—
\QZ;“p{ 2Tv+1 25:&m oT(r + 1)
B > B (14 2(Tr)* + (Tr)?® + T2ar — T?%%r)p?%(n)e?
2§;wp{ °T(r + 1)
> (14 2(Tr)* + (Tr)?* — T%%r)p%(n)e? ~T?re%(n)e?
fry 2 — _—
;;“p{ 2T(r + 1) P\ T2+ 1)
s (1+2(Tr)* + (Tr)** — T?*r)e?2In1n 3 —T?0=1p2(n)e2
< _
\ZZ;“p{ 2T@+1) P 4

Il
[\
@
]
o]
—
N
N
Q
L
w
H,_/
%L

(@ 42(Tr)* + (Tr)?* — T?%1)e?21n1n 3
ex
P 2T(r + 1)

Lemma 4 is proven. [l
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