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Abstract: We prove a version of Strassen’s law of iterated log-
arithm in the space of continuous functions with weighted sup –
metric for a Wiener process defined on the half-axis. We consider
weight functions of the form 1/(1+ tα), where α > 1/2. The result
is unimprovable in the class of power weight functions.

Keywords: Wiener process, Strassen’s law of iterated logarithm.

1 Introduction, formulation of the main result

Let w(t), t ⩾ 0 be a Wiener process defined on a probability space
(Ω,F,P). We will be interested in the limit behavior of the following se-
quence of random processes

wn(t) =
w(nt)√
nφ(n)

, n ∈ N,

where φ(n) :=
√
2 ln ln(3 ∨ n). Note that for any n ∈ N the random process

w̃(t) = w(nt)/
√
n is also a Wiener process.
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We will consider trajectories of random processes wn in the space C of
functions continuous on the half-axis [0,∞), with a metric

ρ(f, g) = ρα(f, g) := sup
t⩾0

|f(t)− g(t)|
1 + tα

,

where 1/(1 + tα) is a power weight function and α > 1
2 is a fixed constant.

Let us denote as AC0[0,∞) and AC0[0, T ] sets of functions starting from
zero and absolutely continuous on intervals [0,∞) and [0, T ] respectively.

We define the Strassen’s ball on the half-axis

K :=

{
f ∈ AC0[0,∞) :

∫ ∞

0
ḟ2(s)ds ⩽ 1

}
,

where ḟ is the derivative in the sense of absolute continuity.
We also define the Strassen’s ball on [0, T ]

KT :=

{
f ∈ AC0[0, T ] :

∫ T

0
ḟ2(s)ds ⩽ 1

}
.

The following Theorem is the main result of the paper.

Theorem 1. For any α > 1
2 the set limit points of the sequence wn in the

metric space C coincides with the set K a.s.

Now we will do a brief review of results obtained earlier. The case of α = 1
was considered in the paper [2, Theorem 1.4.1] for multidimensional Wiener
process; the result then was used to prove the Strassen’s law of iterated
logarithm for small time in [3, Theorem 3]. The paper [4, Theorem 1] is also
dedicated to the case, when α = 1, but a class of more general normalizing
functions than φ(n) =

√
2 ln ln(3 ∨ n) was considered. We note that the

methods of proof used in this paper differ significantly form those proposed
in [4]. We also mention the paper [5]. In that paper the moderate deviations
principle for diffusion processes was obtained for the case when α ⩾ 1, which
is the main tool for proving the Strassen’s law of iterated logarithm.

Remark 1. In the case when α ⩽ 1
2 , the Strassen’s law of iterated logarithm

cannot be obtained, since for such α, due to the Khinchin’s law of iterated
logarithm, the following holds

lim sup
t→∞

|w̃(t)|
1 + tα

⩾ lim sup
t→∞

|w̃(t)|
1 +

√
t
= ∞ a.s. (1)

Also, due to the Cauchy–Bunyakovsky–Schwarz inequality, for any f ∈ K
the following bound holds

|f(t)| ⩽
∫ t

0
|ḟ(s)|ds ⩽

√
t

(∫ t

0
ḟ2(s)ds

)1/2

⩽
√
t. (2)
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Using formulas (1) and (2) we can conclude that for any α ⩽ 1
2 , any function

f ∈ K and any n ∈ N the following holds

ρα(wn, f) = sup
t⩾0

|wn(t)− f(t)|
1 + tα

⩾ sup
t⩾0

(
|wn(t)|
1 + tα

− |f(t)|
1 + tα

)
⩾ sup

t⩾0

(
|wn(t)|
1 + tα

−
√
t

1 + tα

)
= sup

t⩾0

1 +
√
t

1 + tα

(
|wn(t)|
1 +

√
t
−

√
t

1 +
√
t

)
⩾ sup

t⩾0

1 +
√
t

1 + tα

(
|wn(t)|
1 +

√
t
− 1

)
= ∞ a.s.

Thus, the result of Theorem 1 is unimprovable in the class of power weight
functions.

Let us introduce some more new notations. For fixed T ∈ (0,∞) we will
denote the space of functions continuous on the interval [0, T ] as C[0, T ]. On
that space we define the following sup – metric

ρT (f, g) := sup
t∈[0,T ]

|f(t)− g(t)|
1 + tα

,

where α > 1
2 ; and the uniform metric

ρT,U (f, g) := sup
t∈[0,T ]

|f(t)− g(t)| .

The rest of the paper consists of Section 2 and Section 3. In Section 2 we
prove the main result. In Section 3 we formulate and prove auxiliary results.

2 Proof of the main result

Proof. We divide the proof into two steps.
Step 1. Let us prove that the set of limit points of the sequence wn is

contained in K a.s. To this end we show that the conditions of Lemma 2 are
met for wn a.s.

From [1, appendix 8, Theorem 4] and the inequality ρT
(
wnr(c),KT

)
⩽

ρT,U
(
wnr(c),KT

)
it follows that for any c > 1 and T > 0 the following

equality holds

P

(
lim sup
r→∞

ρT
(
wnr(c),KT

)
= 0

)
= 1, (3)

where nr(c) = ⌊cr⌋. That is, the condition (1) of Lemma 2 is satisfied a.s.
Now we show that for any ε > 0 there is Tε > 0 such that for any c > 1

the following equality holds

P

lim sup
r→∞

sup
t⩾Tε

max
s∈[0,t]

∣∣wnr(c)(s)
∣∣

1 + tα

 < ε

 = 1. (4)
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For T > 0 we define a set of events as follows

Ar :=

sup
t⩾T

max
s∈[0,t]

∣∣wnr(c)(s)
∣∣

1 + tα
⩾ ε

 , r ∈ N.

Using Lemma 4, we obtain the following bound
∞∑
r=1

P(Ar) ⩽ C(T, ε)
∞∑
r=1

2 exp

{
−T 2α−1φ2(nr(c))ε

2

4

}

= C(T, ε)

∞∑
r=1

2

(ln(3 ∨ nr(c)))T
2α−1ε2/2

,

from which it follows that the series
∞∑
r=1

P(Ar) converges if

Tε >

(
2

ε2

)1/(2α−1)

.

Therefore, from Borel–Cantelli Lemma it follows that the equality (4) holds,
and consequently the condition (2) of Lemma 2 is satisfied a.s.

Thus, all the conditions of Lemma 2 are satisfied a.s., and we can conclude
that the set of limit points of the sequence wn is contained in K a.s.

Step 2. It remains to show that for any function f ∈ K and almost all
ω ∈ Ω there is a sequence nk(ω) such that lim

k→∞
ρ(wnk(ω), f) = 0.

We fix ε > 0. Let us choose T1,ε such that the following equality holds

P

lim sup
n→∞

sup
t⩾Tε

max
s∈[0,t]

|wn(s)|

1 + tα

 < ε

 = 1. (5)

We recall that such choice is possible due to the equality (4) and the Lemma
1.

Let f ∈ K. For any T > 0 the following bound holds (see 2)

|f(T )| ⩽
√
T .

Therefore we can choose T2,ε > 0 such that for any T ⩾ T2,ε the following
holds

sup
t⩾T

|f(T )|
1 + tα

< ε. (6)

Since f is in K, for any ε > 0 there is T3,ε > 0 such that∫ ∞

T3,ε

ḟ2(s)ds ⩽ ε2. (7)

It is easy to see that for Tε := max(T1,ε, T2,ε, T3,ε) the inequalities (5), (6)
and (7) hold simultaneously.

Using the Cauchy–Bunyakovsky–Schwarz inequality we get
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sup
t⩾Tε

|f(t)− f(Tε)|
1 + tα

⩽ sup
t⩾Tε

∫ t
Tε

|ḟ(s)|ds
1 + tα

⩽ sup
t⩾Tε

∫ t

Tε

|ḟ(s)|
1 + sα

ds

⩽
∫ ∞

Tε

|ḟ(s)|
1 + sα

ds ⩽

(∫ ∞

Tε

ḟ2(s)ds

)1/2

·
(∫ ∞

Tε

ds

(1 + sα)2

)1/2

⩽ εCα. (8)

From inequalities (6) and (8) it follows that

ρ(wn, f) ⩽ sup
t∈[0,Tε]

|wn(t)− f(t)|
1 + tα

+sup
t⩾Tε

|wn(t)− f(t)|
1 + tα

⩽ sup
t∈[0,Tε]

|wn(t)− f(t)|
1 + tα

+ sup
t⩾Tε

|f(t)− f(Tε)|
1 + tα

+ sup
t⩾Tε

|wn(t)|
1 + tα

+ sup
t⩾Tε

|f(Tε)|
1 + tα

⩽ sup
t∈[0,Tε]

|wn(t)− f(t)|
1 + tα

+ sup
t⩾Tε

|wn(t)|
1 + tα

+ (1 + Cα)ε. (9)

Using the equality (5) we can conclude that for almost all ω ∈ Ω there is
n(ε, ω) such that for all n ⩾ n(ε, ω) the following equality holds

sup
t⩾Tε

|wn(t)|
1 + tα

< 2ε. (10)

From [1, appendix 8, Theorem 4] (the law of iterated logarithm for the
Wiener process on the interval [0, Tε]) it follows that for any function f ∈ KTε

and almost all ω ∈ Ω exists a sequence nk(ω) such that lim
k→∞

ρTε,U (wnk(ω), f) =

0. Therefore for almost all ω ∈ Ω

lim
k→∞

sup
t∈[0,Tε]

|wnk(ω)(t)− f(t)|
1 + tα

⩽ lim
k→∞

ρTε,U (wnk(ω), f) = 0. (11)

From (9), (10) and (11) it follows that for any function f ∈ K, ε > 0 and
almost all ω ∈ Ω there is a subsequence nk(ω) such that

lim sup
k→∞

ρ(wnk(ω), f) < (3 + Cα)ε.

The Theorem 1 is fully proven. □

3 Auxiliary results

For function g ∈ C we set

gn(t) :=
g(nt)√
nφ(n)

, n ∈ N.

Lemma 1. Let g ∈ C and let the following inequality hold for some T > 0

lim sup
r→∞

sup
t⩾T

max
s∈[0,t]

|g2r(s)|

1 + tα

 < ε. (12)
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Then for the same T > 0 the following inequality holds

lim sup
n→∞

sup
t⩾T

max
s∈[0,t]

|gn(s)|

1 + tα

 < 2ε.

Proof. Since the inequality in condition (12) is strict, there is r(ε) such that
for all r ⩾ r(ε) the following holds

sup
t⩾T

max
s∈[0,t]

|g2r(s)|

1 + tα
< ε,

φ(2r+1)

φ(2r)
<

√
2. (13)

It is easy to see, that for any n ⩾ 2r(ε) there is r(n) ⩾ r(ε) such that
2r(n) ⩽ n < 2r(n)+1. Therefore, using inequalities (13), for n ⩾ 2r(ε) we get

sup
t⩾T

max
s∈[0,t]

|gn(s)|

1 + tα
= sup

t⩾T

max
s∈[0,t]

|g(ns)|

(1 + tα)
√
nφ(n)

⩽ sup
t⩾T

max
s∈[0,t]

∣∣g(2r(n)+1s)
∣∣

(1 + tα)
√
2r(n)φ(2r(n))

=

√
2r(n)+1φ(2r(n)+1)√
2r(n)φ(2r(n))

· sup
t⩾T

max
s∈[0,t]

∣∣g(2r(n)+1s)
∣∣

(1 + tα)
√
2r(n)+1φ(2r(n)+1)

=

√
2φ(2r(n)+1)

φ(2r(n))
· sup
t⩾T

max
s∈[0,t]

|g2r(n)+1(s)|

1 + tα
< 2ε.

□

Lemma 2. Let g ∈ C and let it satisfy the following conditions:
(1) for any c > 1 and T > 0

lim sup
r→∞

ρT
(
gnr(c),KT

)
= 0,

where nr(c) = ⌊cr⌋, r ∈ N, ρT
(
gnr(c),KT

)
:= inf

f∈KT

ρT
(
gnr(c), f

)
;

(2) for any ε > 0 there is Tε > 0 such that for any c > 1

lim sup
r→∞

sup
t⩾Tε

max
s∈[0,t]

∣∣gnr(c)(s)
∣∣

1 + tα

 < ε. (14)

Then
lim sup
n→∞

ρ (gn,K) = 0.

Proof. It is suffices to show that for any ε > 0

lim sup
n→∞

ρ

(
g(nt)√
nφ(n)

,K

)
< 3ε. (15)

Fix ε > 0. Let us denote CTε := {f ∈ C : f(t) ≡ f(Tε), for t ⩾ Tε}. It is
obvious, that

K̃ε := KTε ∩ CTε ⊂ K, (16)
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and, due to the Cauchy–Bunyakovsky–Schwarz inequality, for any function
f ∈ KTε the following equality holds

sup
t∈[0,Tε]

|f(t)| ⩽
∫ Tε

0
|ḟ(s)|ds ⩽

√
Tε

(∫ Tε

0
ḟ2(s)ds

)1/2

⩽
√
Tε.

Therefore for any Tε large enough the following inequality holds for f ∈ K̃ε

sup
t⩾Tε

max
s∈[0,t]

|f(s)|

1 + tα
= sup

t⩾Tε

max
s∈[0,Tε]

|f(s)|

1 + tα
⩽

√
Tε

1 + Tα
ε

< ε. (17)

It is easy to see, that if the inequality (14) holds for some Tε > 0, then it
also holds for any T > Tε. For this reason, from now on, we will assume that
Tε is chosen such that both inequalities (14) and (17) hold.

Using (16) and (17) we get

lim sup
n→∞

ρ(gn,K) ⩽ lim sup
n→∞

ρ(gn, K̃ε)

⩽ lim sup
n→∞

inf
f∈K̃ε

(
sup

t∈[0,Tε]

|gn(t)− f(t)|
1 + tα

+ sup
t⩾Tε

|gn(t)− f(t)|
1 + tα

)

⩽ lim sup
n→∞

inf
f∈K̃ε

 sup
t∈[0,Tε]

|gn(t)− f(t)|
1 + tα

+ sup
t⩾Tε

max
s∈[0,t]

|gn(s)|

1 + tα
+ ε


⩽ lim sup

n→∞
ρTε (gn,KTε) + lim sup

n→∞

sup
t⩾Tε

max
s∈[0,t]

|gn(s)|

1 + tα

+ ε. (18)

It is easy to see that ρTε (gn,KTε) ⩽ ρTε,U (gn,KTε) ⩽ (1 + Tα
ε )ρTε(gn,KTε).

We also note that the set KTε is compact in the metric space (C[0, Tε], ρTε,U )
(see, for example, [1, appendix 8, Lemma 2]). Therefore from condition (1)
and [1, appendix 8, Lemma 6] it follows that

lim sup
n→∞

ρTε (gn,KTε) = 0. (19)

Applying condition (2) and Lemma 1, we get

lim sup
n→∞

sup
t⩾Tε

max
s∈[0,t]

|gn(s)|

1 + tα

 < 2ε. (20)

Inequality (15) follows from formulas (18)–(20). □

Lemma 3. Let the function f(t) be continuous on [0,∞), and let ε > 0.
Then

lim sup
t→∞

max
s∈[0,t]

|f(s)|

1 + tα
⩾ ε (21)
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if and only if

lim sup
t→∞

|f(t)|
1 + tα

⩾ ε. (22)

Proof. It is easy to see that (21) follows from (22).
Now we show that from the inequality

lim sup
t→∞

|f(t)|
1 + tα

< ε, (23)

it follows that

lim sup
t→∞

max
s∈[0,t]

|f(s)|

1 + tα
< ε. (24)

Suppose that (23) holds, but (24) does not. Then there are sequences sm
and tm such that 0 ⩽ sm ⩽ tm for all m ∈ N, lim

m→∞
tm = ∞ and

lim
m→∞

|f(sm)|
1 + tαm

⩾ ε. (25)

If lim inf
m→∞

sm < ∞, then due to the continuity of the function f the inequality
(25) cannot hold. Therefore lim

m→∞
sm = ∞. Then, due to the fact, that

sm ⩽ tm, we have

ε ⩽ lim
m→∞

|f(sm)|
1 + tαm

⩽ lim
m→∞

|f(sm)|
1 + sαm

⩽ lim sup
t→∞

|f(t)|
1 + tα

< ε.

The resulting contradiction completes the proof. □

Lemma 4. For any n ∈ N, T > 0 and ε > 0 the following bound holds

P

sup
t⩾T

max
s∈[0,t]

|wn(s)|

1 + tα
⩾ ε

 ⩽ 2 exp

{
−T 2α−1φ2(n)ε2

4

}
C(T, ε),

where the constant 0 < C(T, ε) < ∞ depends only on T and ε.

Proof. Let 0 < λ ∈ R. Applying Doob’s martingale inequality (see., for
example, [1, chapter 4, Corollary 5]) to the martingale exp

{
λw̃(t)− λ2

2 t
}

,
and using the fact, that the random process −w̃(t) is a Wiener process, for
any x > 0 and y > 0 we get

P

(
max
t∈[0,y]

|w̃(t)| ⩾ x

)
⩽ P

(
max
t∈[0,y]

w̃(t) ⩾ x

)
+P

(
max
t∈[0,y]

(−w̃(t)) ⩾ x

)
⩽ 2P

(
max
t∈[0,y]

exp

{
λw̃(t)− λ2

2
t

}
⩾ exp

{
λx− λ2

2
y

})

⩽
2E exp

{
λw̃(y)− λ2

2 y
}

exp
{
λx− λ2

2 y
} = 2 exp

{
−λx+

λ2

2
y

}
.



STRASSEN’S LIL FOR A WIENER PROCESS DEFINED ON THE HALF-AXIS 1739

By choosing λ = x
y , we will have

P

(
max
t∈[0,y]

|w̃(t)| ⩾ x

)
⩽ 2 exp

{
−x2

2y

}
. (26)

Using inequality (26), Lemma 3 and the Khinchin’s law of iterated logarithm,
we get

P

sup
t⩾T

max
s∈[0,t]

|wn(s)|

1 + tα
⩾ ε

 = P

sup
t⩾T

max
s∈[0,t]

|w̃(s)|

(1 + tα)φ(n)
⩾ ε


⩽ P

 ∞⋃
r=1

 sup
t∈[Tr,T (r+1)]

max
s∈[0,t]

|w̃(s)|

(1 + tα)
⩾ φ(n)ε


+P

lim sup
t→∞

max
s∈[0,t]

|w̃(s)|

(1 + tα)φ(n)
⩾ ε


= P

 ∞⋃
r=1

 sup
t∈[Tr,T (r+1)]

max
s∈[0,t]

|w̃(s)|

(1 + tα)
⩾ φ(n)ε


+P

(
lim sup
t→∞

|w̃(t)|
(1 + tα)φ(n)

⩾ ε

)

= P

 ∞⋃
r=1

 sup
t∈[Tr,T (r+1)]

max
s∈[0,t]

|w̃(s)|

(1 + tα)
⩾ φ(n)ε




⩽
∞∑
r=1

P

 sup
t∈[Tr,T (r+1)]

max
s∈[0,t]

|w̃(s)|

(1 + tα)
⩾ φ(n)ε

 ⩽
∞∑
r=1

P

 max
s∈[0,T (r+1)]

|w̃(s)|

(1 + (Tr)α)
⩾ φ(n)ε


⩽ 2

∞∑
r=1

exp

{
−(1 + (Tr)α)2φ2(n)ε2

2T (r + 1)

}
= 2

∞∑
r=1

exp

{
−(1 + 2(Tr)α + (Tr)2α)φ2(n)ε2

2T (r + 1)

}

= 2

∞∑
r=1

exp

{
−(1 + 2(Tr)α + (Tr)2α + T 2αr − T 2αr)φ2(n)ε2

2T (r + 1)

}

= 2
∞∑
r=1

exp

{
−(1 + 2(Tr)α + (Tr)2α − T 2αr)φ2(n)ε2

2T (r + 1)

}
exp

{
−T 2αrφ2(n)ε2

2T (r + 1)

}

⩽ 2

∞∑
r=1

exp

{
−(1 + 2(Tr)α + (Tr)2α − T 2αr)ε22 ln ln 3

2T (r + 1)

}
exp

{
−T 2α−1φ2(n)ε2

4

}

= 2 exp

{
−T 2α−1φ2(n)ε2

4

} ∞∑
r=1

exp

{
−(1 + 2(Tr)α + (Tr)2α − T 2αr)ε22 ln ln 3

2T (r + 1)

}
= 2 exp

{
−T 2α−1φ2(n)ε2

4

}
C(T, ε).

Lemma 4 is proven. □
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