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Abstract: In this paper, we consider the achievability of the maxi-
mum and minimum numbers of occurrences of 3-circuits in Eulerian
orientations of complete graphs missing a transitive subset of edges:
complete graphs with an even number of vertices and a perfect
matching removed, and those with an odd number of vertices
and a Hamiltonian cycle removed. For each of these families of
digraphs, we obtain upper and lower estimates for the number of 3-
circuits and prove their achievability. Previously, orientations that
are extreme with respect to the number of 4-circuit occurrences
have been investigated in [1].
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1 Введение

В самом общем виде рассматриваемая задача формулируется следу-
ющим образом. Для произвольного семейства графов (в нашем случае –
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ориентированных эйлеровых) определить, на каких представителях се-
мейства достигает максимума или минимума число вхождений некото-
рого фиксированного фрагмента (например, 3-контура). Довольно часто
удается не только найти значение этого экстремума, но и охарактери-
зовать те графы, на которых он достигается [1]. Экстремальные гра-
фы при этом обычно обладают характерными свойствами совершенных
структур [2, 3] и получаются друг из друга свитчингами. Минимальными
нетривиальными фрагментами являются трехвершинные. В неориенти-
рованном случае они изучались в [4, 5].

Ориентацией графа G назовем орграф, получаемый из G заменой
каждого ребра vu на ровно одну из дуг vu или uv. Две ориентации од-
ного графа назовем эквивалентными, если изоморфны соответствующие
орграфы. Ориентация полного графа называется турниром. Ориентация
графа G называется эйлеровой, если в каждой вершине полустепень ис-
хода равна полустепени захода. Для связного графа G существует эй-
лерова ориентация тогда и только тогда, когда G является эйлеровым.
Через O(G) обозначим множество всех эйлеровых ориентаций графа G.
Например, O(K2n+1) — это множество эйлеровых турниров на (2n+1)-ой
вершине.

Любые три вершины произвольного турнира либо образуют ориенти-
рованный 3-цикл (контур), либо антиконтур. Хорошо известно, что чис-
ло 3-контуров в произвольном турнире однозначно определено набором
полустепеней исхода и захода вершин этого графа [1]. Это, в частно-
сти, означает, что в эйлеровых турнирах число 3-контуров не зависит от
выбора турнира. Для произвольной дуги e орграфа H обозначим через
fa(H, e) количество 3-контуров, проходящих через нее. Данный инвари-
ант зачастую позволяет разбить все дуги турнира на орбиты (классы
эквивалентности) относительно его группы автоморфизмов. В работе
охарактеризованы классы эйлеровых ориентаций некоторых графов, на
которых функция fa(H, e) достигает экстремальных распределений по
дугам H.

Ранее исследовались ориентации, экстремальные по числу вхождений
4-контуров [1]. Также представляет интерес экстремальное поведение
неориентированных графов с фиксированным числом ребер и макси-
мальным числом вхождений индуцированных K1,2 [5].

В работе изучаются минимальные и максимальные распределения 3-
контуров, проходящих через различные множества дуг произвольного
эйлерова турнира. Доказано, что среди эйлеровых ориентаций полно-
го графа с удаленным гамильтоновым циклом максимальное число 3-
контуров достигается с точностью до эквивалентности на циркулянтной
ориентации, в которой гамильтонов цикл расположен на периферии гра-
фа, а все дуги ориентированы по часовой стрелке. Для полного графа с
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четным числом вершин и удаленным паросочетанием получен аналогич-
ный результат. Паросочетание в этом случае состоит из ребер, соединяю-
щих диаметрально противоположные вершины, а максимум и минимум
числа 3-контуров достигается сразу на целых семействах ориентаций.

2 Ориентации циркулянтов

Согласно [1] через fa(H) обозначим количество 3-контуров в орграфе
H.

Обозначим через K2n \ M полный граф с удаленным совершенным
паросочетанием, а через K2n+1 \C полный граф с удаленным гамильто-
новым циклом.

Выходящей окрестностью N+(v) вершины v в ориентации H графа
G будем называть множество вершин, в которые ведут дуги, начинаю-
щиеся в v. Аналогично определяется входящая окрестность N−(v). Для
любой дуги e = uv орграфа H имеем

fa(H, e) = |N+(v) ∩N−(u)|. (1)

Предложение 1. Для любой дуги e эйлеровой ориентации T ∈ O(K2n+1)
верны неравенства

1 ≤ fa(T, e) ≤ n. (2)

Доказательство. Пусть e = uv. Верхняя оценка следует из равенства

|N+(v)| = |N−(u)| = n.

Для доказательства нижней оценки остается заметить, что

|N+(v) ∪N−(u)| ≤ |V (T ) \ {v, u}| = 2n− 1. (3)

□

Предложение 2. Если для дуги e = uv эйлеровой ориентации T ∈
O(K2n+1) имеем fa(T, e) = 1, то справедливы равенства

|N+(v) ∩N+(u)| = |N−(v) ∩N−(u)| = n− 1.

Доказательство. Поскольку |N+(v)∩N−(u)| = 1, то |N+(v)∪N−(u)| =
2n− 1. □

Согласно [1] количество 3-контуров в произвольной эйлеровой ориен-
тации T ∈ O(K2n+1) равно

fa(T ) =
2n+ 1

3

(
n+ 1

2

)
. (4)

Из (4) непосредственно следует следующее утверждение.

Предложение 3. Для любой эйлеровой ориентации T ∈ O(K2n+1) вер-
но ∑

e∈T
fa(T, e) = (2n+ 1)

(
n+ 1

2

)
. (5)
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Через CN (d1, . . . , dp), 0 < d1 < · · · < dp < N/2, обозначим неориенти-
рованный циркулянтный граф на N вершинах {0, . . . , N − 1}, в котором
две вершины i и j соединены ребром тогда и только тогда, когда

min(|i− j|, N − |i− j|) ∈ {d1, . . . , dp}.

Иными словами, если вершины расположить по циклу, то ребром со-
единяем вершины, между которыми расстояние по циклу (расстояние)
равно dk для некоторого k.

Через CN (d1, . . . , dp; t1, . . . , tp), ti ∈ {−1,+1}, обозначим эйлерову ори-
ентацию графа CN (d1, . . . , dp), в которой дуга между вершинами на рас-
стоянии dk ориентирована по часовой стрелке, если tk = +1, и против
часовой стрелки, если tk = −1. Заметим, что

C2n+1(1, . . . , n; t1, . . . , tn) ∈ O(K2n+1),

C2n(1, . . . , n− 1; t1, . . . , tn−1) ∈ O(K2n \M).

Предложение 4. Для T = C2n+1(1, . . . , n; +1, . . . ,+1) значения fa(T, e)
на каждой дуге e, соединяющей вершины на расстоянии p, принимает
значение p.

Это легко следует из простого факта, что число целочисленных реше-
ний уравнения x+y+z = 2n+1 при фиксированных x и n с ограничением
0 < y, z ≤ n равно x.

3 Турниры с выделенным гамильтоновым циклом

В данном разделе дается характеризация турниров, у которых ребрам
некоторого гамильтонова контура соответствует экстремальное значение
параметра fa(T, e).

Теорема 1. Пусть в турнире T ∈ O(K2n+1) для каждой дуги e неко-
торого гамильтонова контура значение fa(T, e) равно 1. Тогда выпол-
няется T ≃ C2n+1(1, . . . , n; +1, . . . ,+1).

Доказательство. Рассмотрим гамильтонов контур C = v0, v1, . . . , v2n
такой, что

fa(T, vivi+1) = 1, 0 ≤ i ≤ 2n.

Здесь и далее индексы берутся по модулю 2n + 1. Покажем, что та-
кой гамильтонов контур задает нумерацию вершин, при которой T =
C2n+1(1, . . . , n; +1, . . . ,+1). В силу транзитивности C достаточно дока-
зать

N+(v0) = {vj | 1 ≤ j ≤ n}
N−(v0) = {vj |n+ 1 ≤ j ≤ 2n}.

(6)
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Рис. 1. Если i ∈ S+ и (i+ 1) ∈ S−, то fa(T, vivi+1) > 1.

Для дуги v0v1 множество индексов {2, . . . , 2n} разобьем на множества

S1 = {j | vj ∈ N+(v0) ∩N−(v1)},
S0 = {j | vj ∈ N−(v0) ∩N+(v1)},
S+ = {j | vj ∈ N+(v0) ∩N+(v1)},
S− = {j | vj ∈ N−(v0) ∩N−(v1)}.

Поскольку fa(T, vivi+1) = 1, то из Предложения 2 имеем

|S1| = 0, |S0| = 1, |S+| = |S−| = n− 1. (7)

Заметим, что
если i ∈ S+, то (i+ 1) ̸∈ S−. (8)

Иначе fa(T, vivi+1) > 1 (Рис. 1).
Поскольку v2 ∈ N+(v1), то 2 ∈ S0 ∪ S+. Если 2 ∈ S0, то дуга v1v2

принадлежит 3-контуру v0, v1, v2. Следовательно, v3 ∈ N+(v1) и 3 ∈ S+,
что противоречит (7) и (8). Таким образом, 2 ∈ S+. Из (7) и (8) имеем

S0 = {n+ 1},
S+ = {2, 3, . . . , n},
S− = {n+ 2, n+ 3, . . . , 2n}.

Отсюда непосредственно следует (6). □

Теорема 2. Пусть в турнире T ∈ O(K2n+1) для каждой дуги e неко-
торого гамильтонова контура значение fa(T, e) равно n. Тогда выпол-
няется T ≃ C2n+1(1, . . . , n; +1, . . . ,+1).

Доказательство. Рассмотрим гамильтонов контур C = v0, v1, . . . , v2n
такой, что

fa(T, vivi+1) = n, 0 ≤ i ≤ 2n.

Из (1)
|N−(vi) ∩N+(vi+1)| = n.
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V1

V2

vi+2
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Рис. 2. Через дугу vi+2vi проходит ровно один контур.

Тогда множество N−(vi) равно множеству N+(vi+1). Обозначим его че-
рез V1. Очевидно, что vi+2 ∈ V1. Аналогично, поскольку |N−(vi+1) ∩
N+(vi+2)| = n, то N−(vi+1) = N+(vi+2) = V2, и vi ∈ V2. Получили раз-
биение V (T ) = V1 ∪ V2 ∪ {vi+1} (Рис. 2).

В силу эйлеровости турнира

N−(vi+2) = V (T ) \ (V2 ∪ {vi+2}) = (V1 ∪ {vi+1}) \ {vi+2}.
Аналогично

N+(vi) = V (T ) \ (V1 ∪ {vi}) = (V2 ∪ {vi+1}) \ {vi}.
Следовательно, через дугу vi+2vi проходит ровно один контур (Рис. 2).

Таким образом, для каждой дуги e гамильтонова контура

v0, v−2, v−4, . . . , v2

значение fa(T, e) равно 1. По Теореме 1 выполняется

T ≃ G2n+1(1, . . . , n; +1, . . . ,+1).

□

4 Эйлеровы ориентации полного графа с удаленным
гамильтоновым циклом

Рассмотрим гамильтонов контур C = v0, v1, . . . , v2n в эйлеровом тур-
нире T ∈ O(K2n+1). Для каждой вершины vi рассмотрим систему тре-
угольников Ui = (qi1, . . . , q

i
2n−1), где qis = vi, vi+s, vi+s+1. Таким образом,

множестве U0 ∪ · · · ∪ U2n+1 является множеством всех треугольников в
T , имеющих общее с C ребро.

По построению справедливы следующие два предложения (Рис. 3).

Предложение 5.

Ui ∩ Uj =

{
∅, если min(|i− j|, 2n+ 1− |i− j|) ̸= 2;
vi, vi+1, vi+2, если j = i+ 2.

Предложение 6. Если в Ui треугольник qis является контуром, s ≤
2n− 2, то qis+1 не является контуром.
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Рис. 3. Система треугольников Ui. Треугольники qi1 и qis
являются контурами

Обозначим через fa(T,C) количество 3-контуров в множестве U0∪· · ·∪
U2n+1. Таким образом, это количество 3-контуров в турнире T , имеющих
хотя бы одну общую дугу с гамильтоновым контуром C.

Предложение 7.

2n+ 1 ≤ fa(T,C) ≤ (n− 1)(2n+ 1).

Доказательство. Заметим, что треугольник qis является контуром тогда
и только тогда, когда vi+s ∈ N+(vi) и vi+s+1 ∈ N−(vi). Поскольку vi+1 ∈
N+(vi) и vi−1 ∈ N−(vi), то по крайней мере один контур в Ui есть (Рис.
3). Причем если qi1 — контур, то будет по крайней мере еще один переход
от исходящей из vi дуги к входящей, а, следовательно, еще один контур.
Аналогично, если qi2n−1 является контуром, то контуров не менее двух.
Следовательно, по Предложению 5 имеем fa(T,C) ≥ 2n+ 1.

По Предложению 6 если в Ui больше (n− 1) контуров, то их n штук,
и среди них есть qi1 и qi2n−1, которые по Предложению 5 также входят в
Ui+2 и Ui−2 соответственно. Следовательно, fa(T,C) ≤ (n−1)(2n+1). □

Теорема 3. Для любой ориентации D ∈ O(K2n+1\C) число 3-контуров
в ней удовлетворяет неравенствам

(2n+ 1)

(
(n+ 1)n

6
− (n− 1)

)
≤ fa(D) ≤ (2n+ 1)

(
(n+ 1)n

6
− 1

)
.

Доказательство. Любая ориентация D ∈ O(K2n+1 \ C) получается из
некоторого эйлерова турнира T ∈ O(K2n+1) удалением гамильтонова
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контура C = v0, v1, . . . , v2n. В силу (4) имеем

fa(D) = fa(T )− fa(T,C) =
2n+ 1

3

(
n+ 1

2

)
− fa(T,C). (9)

Следовательно, искомые неравенства следуют из Предложения 7. □

Теорема 4. Существует и единственная с точностью до разворота
всех дуг ориентация D ∈ O(K2n+1 \C), для которой справедливо равен-
ство

fa(D) = (2n+ 1)

(
(n+ 1)n

6
− (n− 1)

)
. (10)

Доказательство. Пусть для D ∈ O(K2n+1 \ C) верно (10). Тогда его
можно дополнить гамильтоновым контуром C = v0, v1, . . . , v2n до турни-
ра T . По Предложению 7 для C верно

fa(T,C) = (n− 1)(2n+ 1). (11)

Как было показано в доказательстве Предложения 7, каждая система
треугольников Ui в сумму (11) числа всех 3-контуров, имеющих общую
дугу с C, вносит вклад не больше (n − 1). А следовательно, для дости-
жения равенства должна вносить ровно (n − 1). Это возможно в двух
случаях: когда в Ui контурами являются n треугольников qi1, qi3, qi5, . . . ,
qi2n−1, либо когда в Ui контурами являются (n − 1) треугольник qi2, qi4,
qi6, . . . , q

i
2n.

Из Предложения 5 следует, что если для некоторой вершины vi си-
стема треугольников Ui содержит n контуров, то и система Ui+2 тоже
содержит n контуров. Поскольку вершин в графе нечетное число, то
тогда для любой вершины vi система треугольников Ui содержит n кон-
туров. Таким образом, для нумерации вершин, заданной гамильтоновым
контуром C, имеем

D = C2n+1(2, . . . , n;−1,+1,−1,+1, . . .). (12)

Причем по Предложению 4 и Теореме 2 эта ориентация эквивалентна
ориентации C2n+1(1, . . . , n − 1;+1, . . . ,+1), которая получается из тур-
нира C2n+1(1, . . . , n; +1, . . . ,+1) удалением дуг, соединяющих вершины
на расстоянии n.

Остается случай, когда для любой вершины vi система Ui содержит
(n−1) контур. Это полностью определяет ориентацию D, которая равна
C2n+1(2, . . . , n; +1,−1,+1,−1, . . .) и получается из (12) разворотом всех
дуг. □

Теорема 5. Существует и единственная с точностью до разворота
всех дуг ориентация D ∈ O(K2n+1 \ C), что

fa(D) = (2n+ 1)

(
(n+ 1)n

6
− 1

)
. (13)
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Доказательство. Пусть для D ∈ O(K2n+1\C) верно (13). Тогда D мож-
но дополнить гамильтоновым контуром C = v0, v1, . . . , v2n до турнира T .
По Предложению 7 для C верно

fa(T,C) = (2n+ 1).

Из Предложений 6 и 5 для любой вершины vi система треугольников
Ui содержит один или два контура, причем, если один, то это qin, а если
два, то qi1 и qi2n−1. Следовательно, если для всех i система Ui содержит
один контур, то любая дуга e гамильтонова контура C удовлетворяет
равенству fa(T, e) = 1, и по Теореме 1 и Предложению 4

D = C2n+1(2, . . . , n; +1, . . . ,+1). (14)

и получается из турнира C2n+1(1, . . . , n; +1, . . . ,+1) удалением дуг, со-
единяющих вершины на расстоянии 1.

Если же найдется такое i, что система Ui содержит два контура, то
Ui+2 тоже содержит два контура, а следовательно, в силу нечетности
числа вершин, все Uj содержат два контура. Это полностью определяет
ориентацию D, которая равна C2n+1(2, . . . , n;−1, . . . ,−1) и получается
из (14) разворотом всех дуг. □

5 Эйлеровы ориентации полного графа с удаленным
паросочетанием

Вершину v в H ∈ O(K2n \M) назовём противоположной для u, если
v и u не смежны в H. Таким образом все вершины в H разбиваются
на пары противоположных вершин. Будем считать, что все вершины
пронумерованы от 0 до 2n − 1, vi и vi+n — противоположные вершины
для всех i ∈ {0, . . . , n− 1}.

Теорема 6. Для ориентации H ∈ O(K2n \M) следующие оценки спра-
ведливы и достижимы:

2

(
n

3

)
≤fa(H) ≤ 2

(
n+ 1

3

)
, если n — нечетно;

2

(
n

3

)
≤fa(H) ≤ (n− 2)n(n+ 2)

3
, если n — четно.

Для доказательства Теоремы 6 потребуется ряд вспомогательных утвер-
ждений. Обозначим через ri количество дуг, ведущих из N+(vi) в N−(vi).
Тогда очевидно, что

fa(H) =
1

3

2n−1∑
i=0

ri. (15)

Количество дуг внутри множества N+(vi) обозначим через si, а количе-
ство дуг из N+(vi) в vi+n — через wi. Нетрудно видеть, что

ri + si + wi = (n− 1)2. (16)
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Лемма 1. Для любой ориентации H ∈ O(K2n \M) выполнено

fa(H) ≥ 2

(
n

3

)
.

Доказательство. Заметим, что si ≤
(
n−1
2

)
и wi ≤ n − 1. Тогда из (16)

следует

ri ≥ (n− 1)2 − (n− 1)−
(
n− 1

2

)
=

(n− 1)(n− 2)

2
.

Отсюда, используя (15) получаем

fa(H) =
1

3

2n−1∑
i=0

ri ≥
1

3
· 2n · (n− 1)(n− 2)

2
= 2

(
n

3

)
.

□

Лемма 2. Для любой ориентации H ∈ O(K2n \M) выполнено

fa(H) ≤ 2

(
n+ 1

3

)
.

Доказательство. Заметим, что si ≥
(
n−1
2

)
− n−1

2 и wi ≥ 0. Тогда из (16)
следует

ri ≤ (n− 1)2 −
((

n− 1

2

)
− n− 1

2

)
=

(n− 1)(n+ 1)

2
.

Отсюда, используя (15) получаем

fa(H) =
1

3

2n−1∑
i=0

ri ≥
1

3
· 2n · (n− 1)(n+ 1)

2
= 2

(
n+ 1

3

)
.

□

Заметим, что при четном n каждое из множеств N+(vi) и N−(vi) со-
держит нечетное число вершин. Отсюда следует

Предложение 8. Для любого чётного n для любой ориентации H ∈
O(K2n \M) для фиксированного i существует хотя бы одна пара про-
тивоположных вершин vj и vj+n таких, что одна из них принадлежит
N+(vi), а вторая N−(vi).

Лемма 3. Для любого чётного n для любой ориентации H ∈ O(K2n\M)
выполнено

fa(H) ≤ (n− 2)n(n+ 2)

3
.

Доказательство. Поскольку при четном n число n−1
2 не целое, то ниж-

нюю оценку для si из доказательства Леммы 2 можно усилить следую-
щим образом:

si ≥
(
n− 1

2

)
− n− 2

2
.
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vi

vi+n

vj+n vj

Рис. 4. wi = 0, φ(i) = j

Таким образом, используя (16), получаем верхнюю оценку:

fa(H) ≤ 1

3

2n−1∑
i=0

ri =
1

3

(
(n− 1)2 − si − wi

)
≤

≤ 1

3

2n−1∑
i=0

(
(n− 1)2 −

((
n− 1

2

)
− n− 2

2

)
− wi

)

=
1

3

(
2n · n

2 − 2

2
−

2n−1∑
i=0

wi

)
. (17)

Докажем, что
2n−1∑
i=0

wi ≥ 2n.

Заметим, что

n− 1 = |N+(vi)| = |(N+(vi) ∩N+(vi+n))|+ wi =

= |N+(vi+n)| = |(N+(vi) ∩N+(vi+n))|+ wi+n.

Поэтому для пары противоположных вершин vi и vi+n справедливо

wi = wi+n (18)

Пусть I0 = {i ∈ {0, . . . , n− 1} | wi = 0}, а I ′
0 = {i+ n | i ∈ I0}. Таким

образом, для любого j /∈ I0 ∪ I ′
0 имеем

wj ≥ 1. (19)

По Предложению 8 для каждого i ∈ I0 будет существовать j такое, что

vj ∈ N+(vi) ∩N+(vi+n), vj+n ∈ N−(vi) ∩N−(vi+n). (20)

Рассмотрим отображение φ, которое любому i ∈ I0 ставит в соот-
ветствие некоторое j, удовлетворяющее (20) (Рис. 4). Обозначим M =
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vj

vj+n

vi
vi+n

Рис. 5. i ∈ φ−1(j)

φ(I0), а M′ = {i+ n | i ∈ M}. Нетрудно видеть, что

|M| = |M′| ≤ |I0|. (21)

Пусть теперь R = {0, . . . , 2n− 1} \ (M∪M′ ∪ I0 ∪ I ′
0). Из (19) получаем

неравенство ∑
i∈R

wi ≥ |R|. (22)

Имеем разбиение {0, . . . , 2n − 1} = I0 ⊔ I ′
0 ⊔ M ⊔ M′ ⊔ R. Из (21)

получаем, что
|R| ≥ 2n− 4|I0|. (23)

Пусть j ∈ M. Тогда для любого i ∈ φ−1(j) получаем vi, vi+n ∈ N−(vj)∩
N+(vj+n) (Рис. 5). Следовательно wj ≥ 2|φ−1(j)|. Значит,∑

j∈M
wj ≥ 2|I0|. (24)

В результате, в силу (18), (22), (23), (24), имеем:
2n−1∑
i=0

wi =
∑
i∈M

wi +
∑
i∈M′

wi +
∑
i∈R

wi = 2
∑
i∈M

wi +
∑
i∈R

wi ≥ 4|I0|+ |R| ≥ 2n.

Подставляя полученную оценку в (17), получаем

fa(H) ≤ 1

3

(
2n · n

2 − 2

2
−

2n−1∑
i=0

wi

)
≤ (n− 2)n(n+ 2)

3
.

□

Для эйлеровых ориентаций вида C2n(d1, . . . , dn−1; t1, . . . , tn−1) введём
обозначение

∆(C2n(d1, . . . , dn−1; t1, . . . , tn−1)) = |{(i, j)| i < j, di + dj = n, ti ̸= tj}| .
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Предложение 9.

0 ≤ ∆(C2n(1, . . . , n− 1; t1, . . . , tn−1)) ≤
⌊
n− 1

2

⌋
и существуют наборы t1, . . . , tn−1, на которых достигаются нижняя и
верхняя оценки.

Нетрудно видеть, что нижняя оценка достигается на любом наборе,
в котором все ti принимают одно и то же значение. Верхняя оценка
достигается на любом антисимметричном наборе t1, . . . , tn−1. Например,

t1, . . . , tn−1 = −1, . . . ,−1︸ ︷︷ ︸
n−1
2

,+1, . . . ,+1︸ ︷︷ ︸
n−1
2

для нечётного n, и

t1, . . . , tn−1 = −1, . . . ,−1︸ ︷︷ ︸
n−2
2

,−1,+1, . . . ,+1︸ ︷︷ ︸
n−2
2

для чётного.

Лемма 4. Пусть T = C2n(1, . . . , n− 1; t1, . . . , tn−1). Тогда

fa(T ) =

{
2
(
n+1
3

)
− 2n(n−1

2 −∆(T )), n — нечетно;
2
(
n+1
3

)
− (2n(n−2

2 −∆(T )) + n), n — четно.

Доказательство. Для каждого i ∈ {0, . . . , n− 1} добавим в ориентацию
T дугу из vi в vi+n. Получим турнир T ′, для которого

deg+ vi =

{
n, i ∈ {0, . . . , n− 1};
n− 1, i ∈ {n, . . . , 2n− 1}.

По [1] имеем:

fa(T
′) =

(
2n

3

)
−

2n−1∑
i=0

(
deg+ vi

2

)
=

(
2n

3

)
−n

(
n

3

)
−n

(
n− 1

3

)
= 2

(
n+ 1

3

)
.

Каждая добавленная дуга может образовать в T ′ 3-контур только с
парой дуг, соединияющих вершины на расстояниях равных j и n − j
для некоторого j ∈ {1, . . . , n − 1}. Если tj ̸= tn−j , то добавленная дуга
(vi, vi+n) не образует 3-контур с дугами длин j и n− j. Иначе, добавлен-
ная дуга образует ровно 2 3-контура с дугами этих длин (кроме случая
когда для четного n и j = n/2 будет получаться один 3-контур).

Таким образом, для нечетного n каждая добавленная дуга образует
2(n−1

2 −∆(T )) 3-контуров. Для четного n — образует (1+2(n−1
2 −∆(T )))

3-контуров. □

Из Лемм 1, 2, 3, 4 и Предложения 9 напрямую следует доказательство
теоремы 6.
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