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1 Введение

Рассматриваются формулы в базисе {∨,∧,− }. В статье доказано сле-
дующее свойство минимальных (т. е. имеющих наименьшее число вхож-
дений переменных) формул, реализующих линейную булеву функцию,
существенно зависящую от 5, 6 или 7 переменных: в любую такую фор-
мулу хотя бы одна из переменных входит не менее 8 раз.

Как известно отрицания в формуле можно "опустить"до переменных,
производя эквивалентные преобразования x ∨ y = x ∧ y, x ∧ y = x ∨ y
и x = x. Полученная формула называется нормализованной. Поскольку
число вхождений любой переменной в формулу при этом не меняется,
далее мы ограничимся рассмотрением только нормализованных формул.

Яблонский в [1] предложил метод построения экономной Π-схемы или,
что фактически то же самое, нормализованной формулы, реализующей
линейную булеву функцию от n переменных. Из нижних оценок слож-
ности [2, 3, 4, 5, 6, 7] следует, что при n равном целой степени двойки
и при n = 3, 5, 6, 7 этот метод приводит к минимальной нормализован-
ной формуле реализующей эту функцию. В [8] посредством естественной
модификации метода Яблонского построен целый класс подобных фор-
мул (с тем же числом вхождений переменных) – класс так называемых
оптимальных совершенных нормализованных формул. Настоящая ста-
тья является важным промежуточным шагом доказательства гипотезы
о том, что при указанных значениях n этим классом исчерпываются все
реализующие линейную булеву функцию минимальные нормализован-
ные формулы.

Результат статьи можно также трактовать как ещё один способ (на
ряду со способами, изложенными в [5, 7]) получения точных нижних
оценок формульной сложности линейных функций (т. е. числа вхожде-
ний переменных в минимальные формулы для этих функций) от 5, 6
и 7 переменных. Действительно в соответствие с методом "забивания
переменных"Субботовской [9] вместо входящей не менее 8 раз в мини-
мальную формулу переменной можно подставить такую константу, что
сложность формулы (число вхождений в неё переменных) после соответ-
ствующих преобразований уменьшится как минимум на 8+ 4 = 12. При
этом получится формула, реализующая линейную функцию от на еди-
ницу меньшего числа переменных. В силу нижней оценки Храпченко [2]
формульная сложность линейной функции от 4 переменных не меньше
16. Отсюда следует, что формульные сложности линейных функций от
5, 6 и 7 переменных не меньше соответственно 16+12 = 28, 28+12 = 40
и 40+12 = 52. Эти оценки являются точными, поскольку они совпадают
со сложностью соответствующих формул Яблонского [1].

Отметим, что вышеуказанное свойство минимальных формул при n =
5 впервые посредством компьютерного перебора обнаружил Черухин [5].
В [6] и в [7] этот случай был разобран теоретическими средствами.
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2 Π-разбиения и порождаемые ими классы формул

Отрицание xi булевой переменной xi обычно обозначают через x0i , а
саму переменную – через x1i . В этом смысле удобно понимать нормализо-
ванную формулу как формулу в базисе {∨,∧} над множеством литералов
X = {xδi | i ∈ {1, 2, 3, . . . }, δ ∈ {0, 1}}.

Сложностью L(G) нормализованной формулы G называется число
вхождений в неё литералов из множества X.

Через Lδ
i (G) обозначим число вхождений в эту формулу литерала xδi .

Числом вхождения переменной xi в формулу G называется величина
Li(G) = L0

i (G) + L1
i (G).

Через N обозначим множество всех нормализованных формул, кото-
рые далее будем называть просто формулами.

Всюду далее равенство G = F для G,F ∈ N означает, что G и F это
одна и та же формула.

Реализующая булеву функцию f формула называется минимальной,
если она имеет наименьшую сложность среди всех реализующих эту
функцию формул.

Сложность L(f) булевой функции f есть сложность реализующей её
минимальной формулы F ∈ N.

Множество двоичных наборов

Bn = {α = (α1, . . . αi, . . . αn) | αi ∈ {0, 1}, 1 ≤ i ≤ n}
называется n-мерным единичным кубом или кубом Bn.

Прямоугольным подмножеством декартова квадрата куба Bn или
просто прямоугольником назовём любое такое непустое подмножество
P ⊆ Bn ×Bn, что P = A×B для некоторых A,B ⊆ Bn. При этом число
n будем называть размерностью этого прямоугольника, а множества A
и B – его соответственно вертикальной и горизонтальной стороной.

Через RECn обозначим множество всех прямоугольников размерности
n.

Множество REC(P ) для произвольного прямоугольника P ∈ RECn

определим равенством REC(P ) = {K ∈ RECn | K ⊆ P}.
Чтобы не загромождать изложение излишними индексами далее бу-

дем полагать, что n произвольное но фиксированное.
Прямоугольник X = Bn ×Bn назовём главным прямоугольником раз-

мерности n или просто главным прямоугольником. Прямоугольники

X0
i = {(α, β) ∈ X | αi = 1, βi = 0} и X1

i = {(α, β) ∈ X | αi = 0, βi = 1}
назовём соответственно отрицательной и положительной компонен-
той с номером i главного прямоугольника X; i = 1, . . . , n.

Множество M ⊆ X назовём (i, δ)-однородным, если выполнено вклю-
чение M ⊆ Xδ

i ; и назовём его просто однородным, если существуют такие
i ∈ {1, . . . , n} и δ ∈ {0, 1}, что M является (i, δ)-однородным.

Прямоугольники P1, P2 ∈ RECn назовём горизонтально (вертикаль-
но) соседними, если P1∩P2 = ∅ и вертикальная (горизонтальная) сторона
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P1 равна вертикальной (горизонтальной) стороне P2; и назовём их про-
сто соседними, если они являются либо горизонтально, либо вертикально
соседними.

Очевидно для любых двух соседних прямоугольников P1, P2 ∈ RECn

справедливо включение P1 ∪ P2 ∈ RECn.
Горизонтальным (вертикальным) разрезом прямоугольника P ∈ RECn

назовём такую пару {P1, P2} ⊆ RECn горизонтально (вертикально) со-
седних прямоугольников, что P1 ∪ P2 = P . Эта пару назовём просто
разрезом прямоугольника P , если она является либо горизонтальным
либо вертикальным его разрезом. При этом прямоугольники P1, P2 бу-
дем называть компонентами разреза.

Разбиением множества P называется семейство U непустых попарно
непересекающихся его подмножеств, объединение которых есть P . Вхо-
дящие в U подмножества называются блоками этого разбиения.

Прямоугольным разбиением прямоугольника P ∈ RECn назовём такое
его разбиение, все блоки которого являются прямоугольниками размер-
ности n.

Пусть U – произвольное прямоугольное разбиение прямоугольника
P ∈ RECn.

Сужение прямоугольного разбиения U на произвольный прямоуголь-
ник K ∈ REC(P ) определим равенством

U |K = {Q ∩K | Q ∈ U, Q ∩K ̸= ∅}.

Строгим сужением прямоугольного разбиения U будем называть та-
кое его сужение U ′, для которого выполнено равенство |U ′| = |U |.

Гиперблоком прямоугольного разбиения U назовём такой прямоуголь-
ник K ∈ REC(P ), что U |K ⊆ U .

Прямоугольным фрагментом прямоугольного разбиения U назовём
такое подсемейство блоков S ⊆ U , что множество

⋃
Q∈S Q является пря-

моугольником.
Через H(U) и F(U) обозначим множество соответственно всех гипер-

блоков и всех прямоугольных фрагментов прямоугольного разбиения U .
Заметим, что для любого гиперблока K ∈ H(U) справедливо вклю-

чение U |K ∈ F(U) и для любого прямоугольного фрагмента F ∈ F(U)
справедливо включение

⋃
Q∈F Q ∈ H(U). При этом равенство F = U |K

равносильно равенству K =
⋃

Q∈F Q.
Гиперблок K ∈ H(U) и прямоугольный фрагмент F ∈ F(U), F =

U |K, будем называть соответствующими друг другу. Очевидно это со-
ответствие является взаимно однозначным.

Заметим, что сами блоки прямоугольного разбиения U являются его
гиперблоками. Эти гиперблоки назовём элементарными. Все остальные
гиперблоки U назовём составными. Кроме того сам прямоугольник P

является гиперблоком. Этот гиперблок назовём главным и обозначим Û .
Отличные от Û гиперблоки U назовём неглавными.



ОБ ОДНОМ СВОЙСТВЕ МИНИМАЛЬНЫХ ФОРМУЛ 1691

В дальнейшем прямоугольное разбиения U прямоугольника P для
краткости будем называть просто прямоугольным разбиением U , имея в
виду, что U является прямоугольным разбиением прямоугольника Û .

Горизонтальным (вертикальным) разрезом гиперблока P ∈ H(U) пря-
моугольного разбиения U назовём такой горизонтальный (вертикаль-
ный) разрез прямоугольника P , что его компоненты являются гипер-
блоками U . Как горизонтальный так и вертикальный разрез гиперблока
P будем также называть просто разрезом гиперблока P .

Горизонтальным (вертикальным) разрезом прямоугольного разбие-
ния U назовём любой горизонтальный (вертикальный) разрез главного
гиперблока Û этого прямоугольного разбиения.

Через Ch(P,U) и Cv(P,U) обозначим соответственно множество всех
горизонтальных и множество всех вертикальных разрезов гиперблока P
прямоугольного разбиения U .

Через Ch(U) и Cv(U) обозначим соответственно множество всех го-
ризонтальных и множество всех вертикальных разрезов прямоугольно-
го разбиения U . Таким образом по определению выполнены равенства
Ch(U) = Ch(Û , U) и Cv(U) = Cv(Û , U).

Гиперблок P прямоугольного разбиения U назовём горизонтально
(вертикально) разделимым, если Ch(P,U) ̸= ∅ (если Cv(P,U) ̸= ∅); в про-
тивном случае будем называть его горизонтально (вертикально) нераз-
делимым.

Гиперблок прямоугольного разбиения U назовём разделимым, если
он либо горизонтально либо вертикально разделим; в противном случае
будем называть его неразделимым.

Прямоугольное разбиение назовём разделимым, если каждый его со-
ставной гиперблок является разделимым.

Прямоугольное разбиение назовём однородным, если каждый его блок
является однородным множеством.

Π-разбиением назовём такое прямоугольное разбиение, которое явля-
ется одновременно однородным и разделимым.

Размерностью Π-разбиения назовём размерность его главного гипер-
блока.

Через Πn обозначим множество всех Π-разбиений размерности n.
Для произвольного Π-разбиения U ∈ Πn множества его блоков

U0
i = {Q ∈ U | Q ⊆ X0

i } и U1
i = {Q ∈ U | Q ⊆ X1

i }

назовём соответственно отрицательной и положительной компонен-
той с номером i этого Π-разбиения, i = 1, . . . , n.

Монохромной составляющей компоненты U δ
i Π-разбиения U назовём

множество U δ
(i) всех тех блоков из этой компоненты, которые не принад-

лежат ни какой другой компоненте U .
Класс N(U) порождаемых Π-разбиением U ∈ Πn формул определим,

опираясь на следующее очевидное утверждение.
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Предложение 1. Любой прямоугольный фрагмент любого Π-разбиения
U ∈ Πn является Π-разбиением соответствующего ему гиперблока U .

Сформулируем индуктивное определение класса формул N(U).
а) При |U | = 1 класс N(U) состоит из всех таких литералов xδi , что

единственный блок P этого разбиения является (i, δ)-однородным мно-
жеством. Другими словами, для Π-разбиения вида U = {P} по опреде-
лению справедливо равенство

N(U) = {xδi | P ⊆ Xδ
i , i ∈ {1, . . . , n}, δ ∈ {0, 1}}.

б) Пусть m ≥ 1 и класс N(U) определён для всех Π-разбиений U ∈ Πn

мощности |U | ≤ m. Определим его для произвольного Π-разбиения U ∈
Πn мощности |U | = m+ 1.

Для двух произвольных классов формул K1,K2 ⊆ N классы формул
K1 ∧K2 и K1 ∨K2 определим следующими равенствами:

K1 ∧K2 = {(F1 ∧ F2) | F1 ∈ K1, F2 ∈ K2},

K1 ∨K2 = {(F1 ∨ F2) | F1 ∈ K1, F2 ∈ K2}.
Из неравенства |U | = m + 1 > 1 следует, что главный гиперблок Π-

разбиения U является составным. Значит, либо множество Ch(U) го-
ризонтальных разрезов либо множество Cv(U) вертикальных разрезов
Π-разбиения U не является пустым. Поскольку компоненты любого го-
ризонтального разреза {P1, P2} ∈ Ch(U) являются гиперблоками U , по
предложению 1 соответствующие им прямоугольные фрагменты U |P1

и U |P2 являются Π-разбиениями этих гиперблоков, т. е. U |P1 ∈ Πn и
U |P2 ∈ Πn. Очевидно мощности этих Π-разбиений не превосходят m.
Следовательно определены классы формул N(U |P1) и N(U |P2). И точно
также для любого вертикального разреза {P1, P2} ∈ Cv(U) определены
классы формул N(U |P1) и N(U |P2).

Класс формул M∨(U,P1, P2) для компонент произвольного горизон-
тального разреза {P1, P2} ∈ Ch(U) определим равенством

M∨(U,P1, P2) = N(U |P1) ∨N(U |P2).

Класс формул M∧(U,P1, P2) для компонент произвольного вертикаль-
ного разреза {P1, P2} ∈ Cv(U) определим равенством

M∧(U,P1, P2) = N(U |P1) ∧N(U |P2).

Классы формул N∨(U) и N∧(U) определим равенствами

N∨(U) =
⋃

{P1,P2}∈Ch(U)

(
M∨(U,P1, P2) ∪M∨(U,P2, P1)

)
,

N∧(U) =
⋃

{P1,P2}∈Cv(U)

(
M∧(U,P1, P2) ∪M∧(U,P2, P1)

)
.

Класс формул N(U) определим равенством

N(U) = N∨(U) ∪N∧(U).
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Заметим, что для любого U ∈ Πn справедливо неравенство N(U) ̸= ∅.
Следующее очевидное утверждение на ряду с предложением 1 слу-

жит основой доказательств, проводимых индукцией по мощности Π-
разбиения.

Предложение 2. Если главные гиперблоки Û1 и Û2 Π-разбиений соот-
ветственно U1 ∈ Πn и U2 ∈ Πn являются соседними прямоугольника-
ми, то объединение U1 ∪ U2 этих Π-разбиений является Π-разбиением
прямоугольника Û1 ∪ Û2.

Лемма 1. Для любого прямоугольника P ∈ RECn сужение любого
его Π-разбиения на любой прямоугольник P ′ ∈ REC(P ) является Π-
разбиением прямоугольника P ′.

Доказательство. Индукция по по мощности Π-разбиения U прямоуголь-
ника P .

При условии |U | = 1 утверждение леммы очевидно выполнено.
Пусть m ≥ 1 и утверждение леммы выполнено для любого прямо-

угольника P ∈ RECn и любого его Π-разбиения U при условии |U | ≤ m.
Покажем, что тогда оно выполнено для произвольного прямоугольника
P ∈ RECn и произвольного его Π-разбиения U при условии |U | = m+1.

Из неравенства |U | = m + 1 > 1 следует, что либо Ch(U) ̸= ∅ либо
Cv(U) ̸= ∅. Без ограничения общности считаем Ch(U) ̸= ∅. Рассмотрим
произвольный горизонтальный разрез {P1, P2} ∈ Ch(U). Поскольку пря-
моугольники P1 и P2 являются гиперблоками Π-разбиения U , по пред-
ложению 1 соответствующие им прямоугольные фрагменты U |P1 и U |P2

являются их Π-разбиениями. Очевидно мощности этих Π-разбиений не
превосходят m. Значит, в случае P ′ ⊆ P1 по предположению индукции
сужение (U |P1)|P ′ является Π-разбиением прямоугольника P ′. Следова-
тельно в этом случае сужение U |P ′ является Π-разбиением прямоуголь-
ника P ′ в силу очевидного равенства U |P ′ = (U |P1)|P ′. Аналогичные
рассуждения справедливы и в случае P ′ ⊆ P2.

В случае P ′ ∩ P1 ̸= ∅ и P ′ ∩ P2 ̸= ∅ по предположению индукции
сужения

U1 = (U |P1)|(P ′ ∩ P1) и U2 = (U |P2)|(P ′ ∩ P2)

являются Π-разбиениями прямоугольников P ′∩P1 и P ′∩P2 соответствен-
но. Очевидно эти прямоугольники являются горизонтально соседними и
справедливы равенства

(P ′ ∩P1)∪ (P ′ ∩P2) = P ′, Û1 = P ′ ∩P1, Û2 = P ′ ∩P2, U |P = U1 ∪U2.

Следовательно в этом случае сужение U |P ′ является Π-разбиением пря-
моугольника P ′ в силу предложения 2. Лемма 1 доказана. □

Заметим, что по определению для любого Π-разбиения U ∈ Πn лю-
бое его сужение U ′ является сужением этого Π-разбиения на некоторый
прямоугольник P ′ ∈ REC(Û) и по лемме 1 является Π-разбиением этого
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прямоугольника. Следовательно для него как и для самого U справед-
ливо включение U ′ ∈ Πn а, значит, и определён класс формул N(U ′).

Лемма 2. Для любого Π-разбиения U ∈ Πn и любого его строгого суже-
ния U ′ справедливо включение N(U) ⊆ N(U ′).

Доказательство. Индукция по мощности Π-разбиения U .
Через P обозначим главный гиперблок Π-разбиения U . И пусть P ′ –

произвольный прямоугольник из REC(P ) такой, что сужение U ′ = U |P ′

строгое. По лемме 1 это сужение является Π-разбиением P ′. Следова-
тельно P ′ является главным гиперблоком Π-разбиения U ′.

При |U | = 1 как Π-разбиение U состоит из единственного блока P , так
и произвольное его строгое сужение U ′ состоит из единственного блока
P ′. Множества N(U) и N(U ′) в этом случае состоят из литералов. При
этом для произвольного xδi ∈ N(U) по определению выполнено включе-
ние P ⊆ Xδ

i . И поэтому из включения P ′ ⊆ P следует P ′ ⊆ Xδ
i . А это

по определению означает, что xδi ∈ N(U ′). Что в свою очередь в силу
произвольности выбора xδi ∈ N(U) означает, что N(U) ⊆ N(U ′).

Пусть m ≥ 1 и утверждение леммы выполнено для любого Π-разбиения
U ∈ Πn мощности |U | ≤ m. Докажем, что тогда оно выполнено и для
произвольного Π-разбиения U ∈ Πn мощности |U | = m+ 1.

По определению класса N(U) для произвольной формулы F ∈ N(U)
возможны два случая: F ∈ N∨(U) и F ∈ N∧(U). Рассмотрим первый
случай, второй рассматривается аналогично.

По определению класса формул N∨(U) существует такой горизонталь-
ный разрез {P1, P2} ∈ Ch(U) и такие две формулы F1 ∈ N(U |P1) и
F2 ∈ N(U |P2), что F = (F1∨F2). По предложению 1 соответствующие ги-
перблокам P1 и P2 Π-разбиения U прямоугольные фрагменты U1 = U |P1

и U2 = U |P2 являются Π-разбиениями этих гиперблоков, т. е. справед-
ливы включения U1 ∈ Πn и U2 ∈ Πn. При этом очевидно выполнены
неравенства |U1| ≤ m и |U2| ≤ m.

Из строгости сужения U ′ следует P ′
1 = P1 ∩P ′ ̸= ∅ и P ′

2 = P2 ∩P ′ ̸= ∅.
Поэтому множества P ′

1 и P ′
2 являются прямоугольниками, и для них

справедливы включения P ′
1 ∈ REC(P1) и P ′

2 ∈ REC(P2). Из строгости
сужения U ′ также следует, что сужения U ′

1 = U1|P ′
1 и U ′

2 = U2|P ′
2 Π-

разбиений U1 и U2 на эти прямоугольники являются строгими. Значит,
по предположению индукции справедливы включения

N(U1) ⊆ N(U ′
1) и N(U2) ⊆ N(U ′

2).

Очевидно пара прямоугольников {P ′
1, P

′
2} представляет собой горизон-

тальный разрез Π-разбиения U ′, т. е. {P ′
1, P

′
2} ∈ Ch(U

′). Кроме того оче-
видно сужения U ′

1 и U ′
2 Π-разбиений U1 и U2 и прямоугольные фраг-

менты U ′|P ′
1 и U ′|P ′

2 Π-разбиения U ′ связаны равенствами U ′
1 = U ′|P ′

1 и
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U ′
2 = U ′|P ′

2. Отсюда и из определения класса формул N(U ′) имеем

F = (F1 ∨ F2) ⊆ N(U |P1) ∨N(U |P2) = N(U1) ∨N(U2)

⊆ N(U ′
1) ∨N(U ′

2) = N(U ′|P ′
1) ∨N(U ′|P ′

2) ⊆ N(U ′).

Поскольку формула F ∈ N(U) выбрана произвольно, из включения
F ∈ N(U ′) следует N(U) ⊆ N(U ′). Лемма 2 доказана. □

Теорема 1. При любом целом n ≥ 1 для любого Π-разбиения U ∈ Πn и
любой формулы F ∈ N(U) справедливы следующие соотношения:

L(F ) = |U |,
Lδ
i (F ) ≥ |U δ

(i)| при i ∈ {1, . . . , n}, δ ∈ {0, 1},

Lδ
i (F ) = 0 при i ∈ {n+ 1, n+ 2, . . . }, δ ∈ {0, 1}.

Доказательство. Индукция по мощности Π-разбиения U .
При |U | = 1 по определению класса N(U) для произвольной формулы

F ∈ N(U) и единственного блока P Π-разбиения U существуют такие
j ∈ {1, . . . , n} и σ ∈ {0, 1}, что F = xσj и P ⊆ Xσ

j . Поэтому справедливы
следующие соотношения:

L(F ) = |U | = Lσ
j (F ) = 1 ≥ |Uσ

(j)|, Lσ⊕1
j (F ) = |Uσ⊕1

(j) | = 0, 1

Lδ
i (F ) = |U δ

(i)| = 0 при i ∈ {1, . . . , n} \ {j}, δ ∈ {0, 1},
L0
i (F ) = L1

i (F ) = 0 при i > n.

Значит, в этом случае утверждение теоремы справедливо.
Пусть m ≥ 1 и для любого Π-разбиения U ∈ Πn мощности |U | ≤ m все

соотношения теоремы выполнены. Покажем, что тогда они выполнены
и для произвольного U ∈ Πn мощности |U | = m+ 1.

По определению класса N(U) для произвольной формулы F ∈ N(U)
возможны два случая: F ∈ N∨(U) и F ∈ N∧(U). Рассмотрим первый
случай, второй рассматривается аналогично.

По определению класса формул N∨(U) существует такой горизонталь-
ный разрез {P1, P2} ∈ Ch(U) и такие две формулы F1 ∈ N(U |P1) и
F2 ∈ N(U |P2), что F = (F1∨F2). В силу предложения 1 для прямоуголь-
ных фрагментов V = U |P1 и W = U |P2 Π-разбиения U справедливо
включение V,W ∈ Πn. И очевидно справедливы неравенства |V | ≤ m и
|W | ≤ m. Следовательно по предположению индукции все соотношения
теоремы выполнены как для Π-разбиения V и формулы F1 так и для Π-
разбиения W и формулы F2. Поэтому справедливость теоремы вытекает
из следующих очевидных равенств

L(F ) = L(F1) + L(F2), |U | = |V |+ |W |,
Lδ
i (F ) = Lδ

i (F1) + Lδ
i (F2), |U δ

(i)| = |V δ
(i)|+ |W δ

(i)|, при 1 ≤ i ≤ n, δ ∈ {0, 1},

Lδ
i (F ) = Lδ

i (F1) + Lδ
i (F2) при i > n, δ ∈ {0, 1}.

1⊕ – сумма по модулю 2.
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Теорема 1 доказана. □

3 Представления формул

Представлением формулы F ∈ N назовём любое такое Π-разбиение U ,
что выполнено включение F ∈ N(U). При этом также будем говорить,
что формула F представима Π-разбиением U .

Представлением формулы F ∈ N на прямоугольнике P ∈ RECn на-
зовём любое такое представление U этой формулы, что U является Π-
разбиением P .

Будем говорить, что формула F ∈ N представима на прямоугольнике
P ∈ RECn, если существует такое Π-разбиение U этого прямоугольника,
что U является представлением F .

Булеву функцию будем называть тривиальной, если она тождествен-
но равна константе, и – нетривиальной в противном случае.

Собственным прямоугольником нетривиальной булевой функции f
назовём прямоугольник Pf = f−1(0)× f−1(1).

Теорема 2. Если формула F ∈ N представима на прямоугольнике
P ∈ RECn, то она реализует некоторую нетривиальную булеву функ-
цию f(x1, . . . , xn), для собственного прямоугольника которой справед-
ливо включение P ⊆ Pf .

Доказательство. Индукция по мощности представляющего формулу F
Π-разбиения U прямоугольника P .

При |U | = 1 по определению класса N(U) для некоторых i ∈ {1, . . . , n},
δ ∈ {0, 1} выполнены равенство F = xδi и включение P ⊆ Xδ

i . Из равен-
ства следует, что формула F реализует нетривиальную булеву функцию
f(x1, . . . , xn) = xδi . Поэтому справедливость теоремы в этом случае сле-
дует из включения и очевидного равенства Pf = f−1(0)× f−1(1) = Xδ

i .
Пусть m ≥ 1 и теорема доказана для всех U ∈ Πn мощности |U | ≤ m.

Докажем её для произвольного U ∈ Πn мощности |U | = m+ 1.
По определению класса N(U) для формулы F ∈ N(U) возможны два

случая: F ∈ N∨(U) и F ∈ N∧(U). Рассмотрим первый случай, второй
рассматривается аналогично.

По определению класса формул N∨(U) существует такой горизонталь-
ный разрез {P1, P2} ∈ Ch(U) и такие две формулы F1 ∈ N(U |P1) и
F2 ∈ N(U |P2), что F = (F1∨F2). В силу предложения 1 для прямоуголь-
ных фрагментов U1 = U |P1 и U2 = U |P2 Π-разбиения U справедливо
включение U1, U2 ∈ Πn. И очевидно справедливы неравенства |U1| ≤ m
и |U2| ≤ m. Следовательно по предположению индукции формулы F1 и
F2 реализуют некоторые нетривиальные булевы функций f1(x1, . . . , xn)
и f2(x1, . . . , xn), для собственных прямоугольников которых справедли-
вы включения P1 ⊆ Pf1 и P2 ⊆ Pf2 . Отсюда в частности следует, что
формула F реализует булеву функцию f(x1, . . . , xn), для которой спра-
ведливо равенство f = f1 ∨ f2.
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Поскольку пара прямоугольников {P1, P2} является горизонтальным
разрезом прямоугольника P , все эти три прямоугольника имеют общую
вертикальную сторону. Обозначим её A. Из равенства f1 ∨ f2 = f сле-
дует f−1

1 (0) ∩ f−1
2 (0) = f−1(0) и f−1

1 (1) ∪ f−1
2 (1) = f−1(1). Поэтому из

включений P1 ⊆ Pf1 , P2 ⊆ Pf2 следует

P = P1 ∪ P2 ⊆ (A× f−1
1 (1)) ∪ (A× f−1

2 (1)) ⊆ A× (f−1
1 (1) ∪ f−1

2 (1))

= A× f−1(1) ⊆ (f−1
1 (0) ∩ f−1

2 (0))× f−1(1) = f−1(0)× f−1(1).

Поскольку по определению прямоугольник P является непустым мно-
жеством, из включения P ⊆ f−1(0) × f−1(1) следует f−1(0) ̸= ∅ и
f−1(1) ̸= ∅. Поэтому функция f является нетривиальной и для её соб-
ственного прямоугольника справедливо включение P ⊆ Pf . Теорема 2
доказана. □

Следствие 1. Если формула F ∈ N представима на собственном пря-
моугольнике нетривиальной булевой функции g(x1, . . . , xn), то она реа-
лизует эту функцию.

Доказательство. По теореме 2 из включения Pg = g−1(0) × g−1(1) ∈
RECn следует, что формула F реализует некоторую нетривиальную бу-
леву функцию f(x1, . . . , xn), для собственного прямоугольника которой
справедливо включение Pg ⊆ Pf . Из этого включения очевидным обра-
зом следует равенство Pg = Pf а, значит, и равенство g = f . Следствие
1 доказано. □

Теорема 3. Если формула F ∈ N реализует нетривиальную булеву
функцию f(x1, . . . , xn) и является минимальной, то она представима
на собственном прямоугольнике этой функции.

Доказательство. Индукция по сложности функции f .
При L(f) = 1 сложность реализующей f минимальной формулы по

определению также равна единице. Потому F есть некоторый литерал
xδi , i ∈ {1, . . . , n}, δ ∈ {0, 1}, а для собственного прямоугольника функ-
ции f справедливо равенство Pf = Xδ

i . В этом случае одноэлементное
семейство прямоугольников U = {Xδ

i } является Π-разбиением прямо-
угольника Pf , представляющим F .

Пусть m ≥ 1 и утверждение теоремы выполнено для любой функ-
ции f сложности L(f) ≤ m. Покажем, что тогда оно выполнено и для
произвольной функции f сложности L(f) = m+ 1.

Из минимальности формулы F следует L(F ) = L(f) = m + 1 > 1,
поэтому возможны два случая: F = (H ∨ T ) и F = (H ∧ T ). Рассмотрим
первый случай, второй рассматривается аналогично.

В силу того, что F реализует зависящую от переменных x1, . . . , xn
нетривиальную булеву функцию и является минимальной, она не содер-
жит литералов отличных от x01, . . . , x

0
n и x11, . . . , x

1
n. Значит, формулы H

и T также не содержат таких литералов. Поэтому они также реализуют
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некоторые зависящие от переменных x1, . . . , xn функции. Обозначим эти
функции h(x1, . . . , xn) и t(x1, . . . , xn) соответственно. Кроме того из ми-
нимальности F следует, что формулы H и T являются минимальными, а
функции h и t являются различными нетривиальными булевыми функ-
циями. При этом очевидно выполнены неравенства L(h) ≤ L(f)− 1 = m
и L(t) ≤ L(f)−1 = m. Значит, по предположению индукции формулы H
и T представимы на собственных прямоугольниках Ph и Pt этих функ-
ций. Пусть UH и UT это Π-разбиения прямоугольников соответственно
Ph и Pt, представляющие эти формулы.

Из минимальности F также следует, что функции f , h, t попарно раз-
личны. Поэтому в силу связывающего их равенства f = h∨ t множества

Pf , P1 = Pf ∩ Ph, P2 = Pf \ P1, P3 = Pf ∩ Pt

являются прямоугольниками с общей вертикальной стороной f−1(0).
При этом очевидно выполнены соотношения

Pf = P1 ∪ P2, P1 ∩ P2 = ∅ и P1 ⊆ Ph, P2 ⊆ P3 ⊆ Pt.

Эти соотношения означают, что пара прямоугольников {P1, P2} являет-
ся горизонтальным разрезом собственного прямоугольника Pf функции
f , компонента P1 этого разреза содержится в собственном прямоуголь-
нике Ph функции h, компонента P2 – в собственном прямоугольнике Pt

функции t.
По лемме 1 сужения U1 = UH |P1 и U2 = UT |P2 представлений UH и

UT формул H и T являются Π-разбиениями прямоугольников P1 и P2

соответственно. По предложению 2 объединение U = U1 ∪ U2 этих Π-
разбиений является Π-разбиением собственного прямоугольника Pf =
P1 ∪ P2 функции f . Покажем, что Π-разбиение U является представле-
нием формулы F .

Для этого сначала заметим, что сужения U1 и U2 представлений UH и
UT являются строгими. Действительно в противном случае выполнено
хотя бы одно из неравеств |U1| < |UH | либо |U2| < |UT |.Следовательно в
силу теоремы 1 для любой формулы G ∈ N(U) имеем

L(G) = |U | = |U1|+ |U2| < |UH |+ |UT | = L(H) + L(T ) = L(F ),

т. е. справедливо строгое неравенство L(G) < L(F ). Но поскольку фор-
мула G в силу следствия 1 реализует функцию f , это неравенство про-
тиворечит минимальности формулы F .

По лемме 2 из строгости сужений U1 = UH |P1 и U2 = UT |P2 следу-
ют включения N(UH) ⊆ N(U1) и N(UT ) ⊆ N(U2). Кроме того очевидно
сужения U1 и U2 являются прямоугольными фрагментами Π-разбиения
U , соответствующими гиперблокам P1 и P2 этого разбиения. Значит, для
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них справедливы равенства U1 = U |P1 и U2 = U |P2. Отсюда и из опре-
деления класса формул N(U) следует

F = (H ∨ T ) ∈ N(UH) ∨N(UT ) ⊆ N(U1) ∨N(U2)

= N(U |P1) ∨N(U |P2) ⊆ N(U).

Т. е. справедливо включение F ∈ N(U), которое и означает, что Π-
разбиение U собственного прямоугольника функции f является пред-
ставлением формулы F . Теорема 3 доказана. □

4 Правильные разбиения (0-1)-рёбер линейной булевой
функции

Через Φ будем обозначать собственный прямоугольник линейной бу-
левой функции φ(x1, . . . , xn) =

⊕n
i=1 xi, а через N0 и N1 – множества

соответственно φ−1(0) и φ−1(1).
Таким образом имеют место равенства Φ = N0 ×N1 и

N0 = {α ∈ Bn |
⊕n

i=1
αi = 0}, N1 = {β ∈ Bn |

⊕n

i=1
βi = 1}.

Пару наборов (α, β) ∈ Φ будем называть (0-1)-парой линейной булевой
функции φ или просто (0-1)-парой. При этом набор α будем называть
чётным концом, а набор β – нечётным концом этой пары.

Через N0(M) и N1(M) обозначим соответственно множество всех чёт-
ных и всех нечётных концов (0-1)-пар из произвольного непустого под-
множества M ⊆ Φ.

Прямоугольной окрестностью непустого множества M ⊆ Φ назовём
прямоугольник [M] = N0(M)×N1(M).

Сумму двоичных наборов α, β ∈ Bn определим равенством

α+ β = (α1 ⊕ β1, α2 ⊕ β2, . . . , αn ⊕ βn).

Через e1, e2, ... ,en обозначим двоичные наборы из Bn с единственной
единичной компонентой:

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1).

(0-1)-ребром линейной булевой функции φ или просто (0-1)-ребром на-
зывается такая (0-1)-пара (α, β) ∈ Φ, что для некоторого i ∈ {1, . . . , n}
выполнено равенство β = α+ ei.

Через R обозначим множество всех (0-1)-рёбер линейной булевой функ-
ции φ.

Множества R0
i = R ∩ X0

i и R1
i = R ∩ X1

i назовём соответственно от-
рицательной и положительной компонентой с номером i множества
R, а элементы этих множеств – соответственно отрицательными и по-
ложительными (0-1)-рёбрами направления i; i = 1, . . . , n.

Множество Rδ1...δn для произвольных δ1, . . . , δn ∈ {0, 1} определим ра-
венством Rδ1...δn = Rδ1

1 ∪ · · · ∪ Rδn
n .
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Заметим, что для любого (0-1)-ребра существует единственная содер-
жащая его компонента Xδ

i главного прямоугольника X. Поэтому семей-
ство компонент R0

1, . . . ,R
0
n, R1

1, . . . ,R
1
n множества R является разбиением

множества R. Кроме того все компоненты R являются однородными мно-
жествами, и для любого однородного подмножества Q ⊆ R существует
единственная содержащая Q компонента R и единственная содержащая
Q компонента X.

Правильным разбиением множества R назовём такое разбиение этого
множества, все блоки которого являются однородными множествами, а
их прямоугольные окрестности попарно не пересекаются.

Для произвольного правильного разбиения V множества R множества
блоков

V 0
i = {Q ∈ V | Q ⊆ R0

i } и V 1
i = {Q ∈ V | Q ⊆ R1

i }

назовём соответственно отрицательной и положительной компонен-
той с номером i этого разбиения, i = 1, . . . , n.

Множество V δ1...δn для произвольных δ1, . . . , δn ∈ {0, 1} определим
равенством

V δ1...δn = V δ1
1 ∪ · · · ∪ V δn

n .

Заметим, что семейство компонент V 0
1 , . . . , V

0
n , V 1

1 , . . . , V
1
n правильно-

го разбиения V множества R является разбиением множества V , и каж-
дая компонента V δ

i разбиения V является разбиением соответствующей
компоненты Rδ

i множества R. Кроме того множество V δ1...δn является
разбиением множества Rδ1...δn .

Для произвольного Π-разбиения U прямоугольника Φ через V(U) обо-
значим следующее семейство подмножеств множества R:

V(U) = {Q ∩ R | Q ∈ U,Q ∩ R ̸= ∅}.

Очевидно семейство V(U) является разбиением множества R. Будем на-
зывать его разбиением множества R, порождённым Π-разбиением U .

Лемма 3. Для любого Π-разбиения U прямоугольника Φ порождённое
им разбиение V(U) множества R является правильным и справедливы
неравенства

|V(U)| ≤ |U | и |Vδ
i (U)| ≤ |U δ

(i)|, i = 1, . . . , n, δ = 0, 1.

Доказательство. По определению любой блок M разбиения V(U) яв-
ляется подмножеством некоторого блока Q Π-разбиения U , который по
определению является однородным множеством. Поэтому M также яв-
ляется однородным множеством. При этом очевидно из M ⊆ Q сле-
дует [M] ⊆ Q. Значит, поскольку разные блоки V(U) являются под-
множествами разных блоков U , из попарной непересекаемости блоков U
следует попарная непересекаемость прямоугольных окрестностей блоков
V(U). В следствие чего разбиение V(U) множества R является правиль-
ным.
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Первое неравенство леммы следует непосредственно из определения
разбиения V(U). Справедливость остальных неравенств вытекает из то-
го, что любой блок V(U) а вместе с ним и содержащий его блок U явля-
ется подмножеством некоторой единственной компоненты Xδ

i главного
прямоугольника X. Лемма 3 доказана. □

Заметим, что сложность минимальной формулы F , реализующей ли-
нейную булеву функцию φ(x1, . . . , xn), не превышает сложности постро-
енной для этой функции формулы Яблонского [1]. Т. е. при n = 2k + ρ,
0 ≤ ρ < 2k, имеет место неравенство L(F ) ≤ 4k + 3ρ2k или (что то же
самое) неравенство

L(F ) ≤ n2 + (n− 2⌊log2 n⌋)n− 2(n− 2⌊log2 n⌋)2.

Кроме того, по теореме 3 минимальная формула F представима на пря-
моугольнике Φ. А в силу леммы 3 и теоремы 1 для любого представ-
ляющего её Π-разбиения U этого прямоугольника и порождённого им
разбиения V(U) множества R справедливы неравенства

|V(U)| ≤ |U | = L(F ),

|V0
i (U)|+ |V1

i (U)| ≤ |U0
(i)|+ |U1

(i)| ≤ L0
i (F ) + L1

i (F ) ≤ Li(F ), i = 1, . . . , n.

Поэтому чтобы показать, что некоторая переменная входит в F не менее
8 раз, достаточно доказать следующее утверждение.

Теорема 4. При n = 5, 6, 7 не существует такого правильного разбие-
ния V множества (0-1)-рёбер линейной булевой функции φ(x1, . . . , xn),
для которого выполнены неравенства

|V | ≤ n2 + (n− 2⌊log2 n⌋)n− 2(n− 2⌊log2 n⌋)2, (1)

|V 0
i |+ |V 1

i | < 8, i = 1, . . . , n. (2)

Оставшаяся часть статьи посвящена доказательству этой теоремы.

5 Об одном свойстве правильных разбиений множества
R, обладающих полным набором маломощных

компонент

По определению правильное разбиение V множества R обладает пол-
ным набором маломощных компонент, если для каждого i ∈ {1, . . . , n}
существует такое δ ∈ {0, 1}, что |V δ

i | ≤ 3.
Заметим, что разбиение V , о котором идёт речь в формулировке тео-

ремы 4, обладает полным набором маломощных компонент.
Гранью куба Bn называется множество

Bn σ1,...,σk
i1,...,ik

= {(α1, ..., αn) ∈ Bn | αi1 = σ1, . . . , αik = σk}, σ1, . . . , σk ∈ {0, 1}.

При этом множество {1, . . . , n} \ {i1, . . . , ik} называется множеством
образующих, число n− k – размерностью этой грани.
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Через Form(F ) и dim(F ) обозначим соответственно множество обра-
зующих и размерность грани F куба Bn.

Через F(Bn) обозначим множество всех граней куба Bn, через Fk(Bn)
– множество всех граней размерности k куба Bn, и для произвольной
грани F ∈ F(Bn) через Fk(F ) – множество всех таких граней G ∈ Fk(Bn),
что G ⊆ F ; k = 0, 1, . . . , n.

Для произвольного однородного подмножества Q ⊆ R через Q̂ обозна-
чим минимальную по включению грань куба Bn, содержащую все концы
(0-1)-рёбер из Q.

Через Rδ
i (F ) обозначим множество всех таких (0-1)-рёбер из Rδ

i , оба
конца которых принадлежат грани F куба Bn.

R-множеством будем называть такое непустое подмножество M ⊆ R,
что для некоторых i ∈ {1, . . . , n}, δ ∈ {0, 1}, F ∈ F(Bn) имеет место ра-
венство M = Rδ

i (F ). При этом размерностью R-множества M назовём
размерность грани F , а саму грань F – порождающей R-множество M .

Корректность определения размерности R-множества вытекает из пер-
вого из следующих двух очевидных утверждений.

Предложение 3. Для любого R-множества M существует единствен-
ная порождающая его грань куба Bn. Этой гранью является грань M̂ .

Предложение 4. При 2 ≤ k ≤ n для любой грани F ∈ Fk(Bn) справед-
ливы равенства

|R0
i (F )| = |R1

i (F )| =
{

2k−2 при i ∈ Form(F ),
0 в противном случае.

Через R3 обозначим множество всех R-множеств размерности 3.
Заметим, что любое R-множество является однородным подмноже-

ством R. В частности, в силу предложения 4 любое R-множество раз-
мерности 3 является однородным двухэлементным подмножеством R.

Через E обозначим множество всех однородных двухэлементных под-
множеств множества R и через E(Q) – множество всех двухэлементных
подмножеств произвольного однородного множества Q ⊆ R.

Множества E0
i = E(R0

i ) и E1
i = E(R1

i ) назовём соответственно отри-
цательной и положительной компонентой с номером i множества E;
i = 1, . . . , n.

Очевидно семейство компонент E0
1, . . . ,E

0
n, E1

1, . . . ,E
1
n множества E яв-

ляется разбиением множества E.
Для произвольного однородного множества Q ⊆ R через K(Q) обо-

значим полный граф с множеством вершин Q.
Элементы множества E будем называть рёбрами, имея в виду, что они

являются рёбрами полных графов Kδ
i = K(Rδ

i ), i = 1, . . . , n; δ = 0, 1. А
элементы его компонент E0

i и E1
i – отрицательными и положительными

рёбрами индекса i соответственно.
Множество E(V ) рёбер, порождённых правильным разбиением V мно-

жества R, определим равенством E(V ) =
⋃

Q∈V E(Q).
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Множества E0
i (V ) =

⋃
Q∈V 0

i
E(Q) и E1

i (V ) =
⋃

Q∈V 1
i
E(Q) назовём соот-

ветственно отрицательной и положительной компонентой с номером
i множества E(V ); i = 1, . . . , n.

Очевидно семейство компонент E0
1(V ), . . . ,E0

n(V ), E1
1(V ), . . . ,E1

n(V ) мно-
жества E(V ) является разбиением множества E(V ).

Концами ребра e = {r1, r2} ∈ E по определению являются (0-1)-рёбра
r1 и r2.

Расстоянием Хэмминга между наборами (α1, ..., αn), (β1, ..., βn) ∈ Bn

называется величина
∑n

i=1 |αi − βi| (т. е. число разрядов, в которых эти
наборы отличаются).

Длиной ребра e ∈ E будем называть расстояние Хэмминга между чёт-
ными концами (0-1)-рёбер, являющихся концами ребра e, и будем обо-
значать её length(e).

Следующее утверждение очевидно.

Предложение 5. Длина ребра e ∈ E и размерность содержащей его
минимальной по включению грани куба Bn связаны равенством

length(e) + 1 = dim(ê).

Через T обозначим множество всех рёбер из E, имеющих длину 2.
Множества T0

i = T ∩ E0
i и T1

i = T ∩ E1
i назовём соответственно отри-

цательной и положительной компонентой с номером i множества T;
i = 1, . . . , n.

Из предложений 3, 4, 5 очевидным образом вытекают следующие утвер-
ждения.

Предложение 6. Справедливо равенство R3 = T.

Предложение 7. Для любой грани F ∈ F3(Bn) и каждого i ∈ Form(F )
справедливы включения R0

i (F ) ∈ T0
i и R1

i (F ) ∈ T1
i .

Опираясь на предложения 3, 6, 7, для каждого i = 1, . . . , n следующим
образом определим взаимно однозначное соответствие между компонен-
тами T0

i и T1
i множества T: рёбра e ∈ T0

i и u ∈ T1
i соответствуют друг

другу, если и только если для некоторой грани F ∈ F3(Bn) справедливы
равенства e = R0

i (F ) и u = R1
i (F ).

Отношение двойственности на множестве T определим следующим
образом: рёбра e, u ∈ T связаны отношением двойственности, если и
только если для некоторых i ∈ {1, . . . , n}, δ ∈ {0, 1} выполнены включе-
ния e ∈ Tδ

i , u ∈ Tδ⊕1
i и рёбра e и u соответствуют друг другу.

Двойственно независимым будем называть такое множество рёбер
A ⊆ E, что ни какие два ребра из A ∩ T не связаны отношением двой-
ственности.

Оболочкой ребра e ∈ E назовём множество ⟨e⟩ = [e]\e. Другими слова-
ми оболочка ребра e ∈ E, концами которого являются (0-1)-рёбра (α1, β1)
и (α2, β2), есть множество ⟨e⟩, состоящее из двух (0-1)-пар (α1, β2) и
(α2, β1).
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Весом (0-1)-пары (α, β) ∈ Φ назовём величину w((α, β)), равную рас-
стоянию Хэмминга между её концами, т. е. между α и β.

Будем говорить, что (0-1)-пара (α, β) ∈ Φ является диаметральной
для грани F ∈ F(Bn), если α, β ∈ F и w((α, β)) = dim(F ).

Через D(F ) обозначим множество всех (0-1)-пар, являющихся диамет-
ральными для грани F ∈ F(Bn).

Множества D0
i (F ) = D(F ) ∩ X0

i и D(F )1i = D(F ) ∩ X1
i будем назы-

вать соответственно отрицательной и положительной компонентой с
номером i множества D(F ); i = 1, . . . , n.

Лемма 4. Если рёбра e, u ∈ T не связаны отношением двойственности,
то из равенства ê = û следует ⟨e⟩ ∩ ⟨u⟩ ̸= ∅.

Доказательство. При e = u утверждение очевидно.
Пусть e ̸= u. Тогда в силу предложения 6 из включения e, u ∈ T сле-

дует e, u ∈ R3. Поэтому грань F = ê = û, которая по предложению
3 является порождающей для R-множеств e и u, имеет размерность 3.
Следовательно, по определению R-множеств и в силу предложения 4
существуют такие i, j ∈ Form(F ) и δ, σ ∈ {0, 1}, что справедливы ра-
венства e = Rδ

i (F ) и u = Rσ
j (F ). При этом поскольку рёбра e и u не

связаны отношением двойственности, имеет место неравенство i ̸= j.
Поэтому справедливость неравенства ⟨e⟩ ∩ ⟨u⟩ ̸= ∅ вытекает из очевид-
ного равенства ⟨Rδ

i (F )⟩ = Dδ
i (F ) и следующих очевидных (выполненых

при j ̸= i) равенств: |⟨Rσ
j (F )⟩ ∩D0

i (F )| = |⟨Rσ
j (F )⟩ ∩D1

i (F )| = 1. Лемма 4
доказана. □

Лемма 5. Для любого правильного разбиения V множества R и любых
двух различных рёбер e, u ∈ E(V ) справедливо равенство ⟨e⟩ ∩ ⟨u⟩ = ∅.

Доказательство. Для произвольных двух различных рёбер e, u ∈ E(V )
через Qe и Qu обозначим блоки разбиения V , для которых выполнены
включения e ∈ E(Qe) и u ∈ E(Qu). Тогда при Qe = Qu в силу однород-
ности блоков разбиения V существует такая компонента Eδ

i множества
E, что e, u ∈ Eδ

i . В этом случае равенство ⟨e⟩ ∩ ⟨u⟩ = ∅ очевидным об-
разом выполнено. Если же Qe ̸= Qu, то равенство ⟨e⟩ ∩ ⟨u⟩ = ∅ следует
из очевидных включений ⟨e⟩ ⊆ [Qe], ⟨u⟩ ⊆ [Qu] и из попарной непере-
секаемости прямоугольных окрестностей блоков разбиения V . Лемма 5
доказана. □

Следующее утверждение является основой доказательства теоремы 4.

Лемма 6. Блоки любого обладающего полным набором маломощных
компонент правильного разбиения V множества R не содержат R-
множеств размерности 4.

Доказательство. Предположим противное: некоторый блок Q ∈ V со-
держит R-множество M размерности 4. Тогда в силу предложения 4 и по
определению R-множества существует такая грань F ∈ F4(Bn) и такие



ОБ ОДНОМ СВОЙСТВЕ МИНИМАЛЬНЫХ ФОРМУЛ 1705

i ∈ Form(F ), δ ∈ {0, 1}, что имеет место равенство M = Rδ
i (F ). Из вы-

полненного по предложению 4 равенства |Rδ
i (F )| = 4 следует |E(M)| = 6.

Кроме того очевидно имеет место включение E(M) ⊆ Tδ
i , и для любого

e ∈ E(M) справедливо включение ê ∈ F3(F ). Поэтому в силу включения
E(M) ⊆ E(Q) множество E(Q) содержит 6 рёбер e ∈ Tδ

i , для которых
справедливо включение ê ∈ F3(F ).

Поскольку V обладает полным набором маломощных компонент, для
любого j ∈ Form(F ) существует такое σ ∈ {0, 1}, что выполнено неравен-
ство |V σ

j | ≤ 3. Следовательно в силу равенства |Rσ
j (F )| = 4 существует

такой блок P ∈ V σ
j , что |P ∩ Rσ

j (F )| ≥ 2. Поэтому множество E(P ) со-
держит ребро e ∈ Tσ

j , для которого справедливо включение ê ∈ F3(F ).
Поскольку в силу равенства |Form(F )| = dim(F ) = 4 множество Form(F )
кроме i содержит ещё три элемента j1, j2, j3, отсюда следует, что для
некоторых σ1, σ2, σ3 ∈ {0, 1} существует три блока P1 ∈ V σ1

j1
, P2 ∈ V σ2

j2
,

P3 ∈ V σ3
j3

и три соответствующих ребра e1 ∈ Tσ1
j1

, e2 ∈ Tσ2
j2

, e3 ∈ Tσ3
j3

, для
которых справедливы включения e1 ∈ E(P1), e2 ∈ E(P2), e3 ∈ E(P3) и
ê1, ê2, ê3,∈ F3(F ).

Заметим, что множество A = E(M) ∪ {e1, e2, e3} состоит из 9 рёбер,
является двойственно независимым и для него справедливы включения
A ⊆ T, A ⊆ E(V ). Поэтому из равенства |F3(F )| = 8 следует, что множе-
ство A содержит два различных ребра e и u, для которых справедливо
равенство ê = û, и, значит, по лемме 4 для них справедливо неравенство
⟨e⟩ ∩ ⟨u⟩ ̸= ∅. Но это противоречит тому, что по лемме 5 для этих рёбер
справедливо равенство ⟨e⟩ ∩ ⟨u⟩ = ∅. Лемма 6 доказана. □

6 Графы, порождённые правильным разбиением
множества R

Для произвольного правильного разбиения V множества R графы
G(V ) и Gδ

i (V ), i ∈ {1, . . . , n}, δ ∈ {0, 1}, определим равенствами

G(V ) =
⋃

Q∈V
K(Q) и Gδ

i (V ) =
⋃

Q∈V δ
i

K(Q).

Заметим, что множеством вершин графов G(V ) и Gδ
i (V ) являются

множества соответственно R и Rδ
i , множеством рёбер – множества соот-

ветственно E(V ) и Eδ
i (V ).

Для произвольного ребра e ∈ T через e∗ обозначим ребро, связанное
с e отношением двойственности. Множество (M)∗ для произвольного
подмножества M ⊆ T определим равенством (M)∗ = {e∗ | e ∈ M}.

Заметим, что для любого e ∈ T справедливо равенство e∗∗ = e и для
любого M ⊆ T справедливо равенство ((M)∗)∗ = M .

Граф G̃δ
i (V ), i ∈ {1, . . . , n}, δ ∈ {0, 1}, определим равенством

G̃δ
i (V ) = Gδ

i (V ) \
(
Eδ⊕1
i (V ) ∩ Tδ⊕1

i

)∗
.
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Графы Gδ1...δn(V ), G̃δ1...δn(V ) и Gδ1...δn(V ), δ1, . . . , δn ∈ {0, 1}, опреде-
лим равенствами

Gδ1...δn(V ) =

n⋃
i=1

Gδi
i (V ), G̃δ1...δn(V ) =

n⋃
i=1

G̃δi
i (V ),

Gδ1...δn(V ) = Gδ1...δn(V ) ∪ G̃δ1⊕1...δn⊕1(V ).

Справедливость следующего утверждения вытекает непосредственно
из определений отношения двойственности и графа Gδ1...δn(V ).

Предложение 8. Для любого правильного разбиения V множества R
и любых δ1, . . . , δn ∈ {0, 1} множество рёбер графа Gδ1...δn(V ) является
двойственно независимым подмножеством множества E(V ).

Суть доказательства теоремы 4 заключается в получении для произ-
вольного удовлетворяющего условию этой теоремы разбиения V верх-
ней и нижней оценок числа рёбер графа Gδ1...δn(V ) и в подборе таких
δ1, . . . , δn ∈ {0, 1}, при которых эти оценки противоречат друг другу.

Для произвольного графа G через |G| обозначим число рёбер этого
графа.

Через Φk обозначим множество всех (0-1)-пар из Φ, имеющих вес k;
k = 1, . . . , n.

Заметим, что справедливо равенство Φ1 = R.

Лемма 7. При n ≥ 2 для любого правильного разбиения V множества
R и любых δ1, . . . , δn ∈ {0, 1} справедливо неравенство

|Gδ1...δn(V )| ≤ |Φ| − |R|
2

− 1

4
|Φ3|. (3)

Доказательство. Из предложения 8 и леммы 5 следует, что оболоч-
ки рёбер графа Gδ1...δn(V ) попарно не пересекаются. Непосредственно
из определения ребра e ∈ E и его оболочки следует length(e) ≥ 2,
⟨e⟩ ⊆ Φlength(e)+1 и |⟨e⟩| = 2. Поэтому оболочки рёбер графа Gδ1...δn(V )
являются подмножествами множества Φ \ Φ1 и следовательно справед-
ливо неравенство |Gδ1...δn(V )| ≤ 1

2(|Φ| − |R|). В силу этого для доказа-
тельства неравенства (3) достаточно показать, что оболочки имеющих
длину 2 рёбер графа Gδ1...δn(V ) содержат не более половины (0-1)-пар
из множества Φ3. Предположив противное, следующим образом придём
к противоречию.

Заметим, что семейство множеств {D(F ) | F ∈ F3(Bn)} является раз-
биением множества Φ3 и для любой грани F ∈ F3(Bn) справедливо ра-
венство |D(F )| = 4. Кроме того для любого ребра e ∈ T справедливы
включения ê ∈ F3(Bn) и ⟨e⟩ ⊆ D(ê). В силу этого и поскольку оболочка
любого ребра состоит из двух (0-1)-пар, среди имеющих длину 2 рё-
бер графа Gδ1...δn(V ) найдутся два различных ребра e и u, для которых
справедливо равенство ê = û (иначе наше предположение неверно). По
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предложению 8 и лемме 4 для оболочек этих рёбер справедливо нера-
венство ⟨e⟩ ∩ ⟨u⟩ ̸= ∅. Это противоречит тому, что оболочки рёбер графа
Gδ1...δn(V ) попарно не пересекаются. Лемма 7 доказана. □

Следствие 2. При n ≥ 2 для любого правильного разбиения V множе-
ства R и любых δ1, . . . , δn ∈ {0, 1} справедливо неравенство∣∣∣Gδ1...δn(V )

∣∣∣ ≤ (2n−1)2 − n2n−1

2
− 1

4

(
n

3

)
2n−1. 2

7 Нижняя оценка числа рёбер графа Gδ1...δn(V )

Непосредственно из определения графа Gδ1...δn(V ) следует

|Gδ1...δn(V )| = |Gδ1...δn(V )|+ |G̃δ1⊕1...δn⊕1(V )|.

Оценим по отдельности величины |Gδ1...δn(V )| и |G̃δ1⊕1...δn⊕1(V )|.
Для произвольного целого положительного k через Zk обозначим мно-

жество всех целочисленных наборов z = (z1, . . . , zk) и пусть

M(k) = {z ∈ Zk | 1 ≤ z1 ≤ . . . ≤ zk}.
Величины ∥z∥C и ∥z∥T для произвольного z ∈ M(k) определим равен-

ствами

∥z∥C =
k∑

i=1

(
zi
2

)
и ∥z∥T =

k∑
i=1

⌊
(zi − 1)2

4

⌋
. 3

Для произвольного целого положительного S ≥ k множество M(k, S)
определим равенством

M(k, S) = {z ∈ M(k) |
k∑

i=1

zi = S}.

Заметим, что существует единственный набор z ∈ M(k, S), компонен-
ты которого отличаются друг от друга не более чем на 1. Этот набор
назовём максимально равномерным и обозначим его m(k, S).

Лемма 8. При любых целых k, S, 1 ≤ k ≤ S, для любого z ∈ M(k, S)
справедливы неравенства

∥z∥C ≥ ∥m(k, S)∥C и ∥z∥T ≥ ∥m(k, S)∥T.

Доказательство. Для произвольных двух номеров i, j, 1 ≤ i < j ≤ k,
отображение Oi,j : Z

k → Zk определим следующим правилом:

Oi,j(z) = (z1, . . . , zi−1, zi − 1, zi+1, . . . , zj−1, zj + 1, zj+1, . . . , zk).

Это отображение назовём операцией переноса единицы (слева направо)
из разряда с номером i в разряд с номером j.

2(n
r

)
= n(n−1)...(n−r+1)

r!
.

3⌊x⌋ – наибольшее целое число, не превосходящее x.
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Очевидно для любого отличного от m(k, S) набора z ∈ M(k, S) най-
дётся такая последовательность операций переноса единицы, которая,
не выводя за пределы множества M(k, S), переведёт набор m(k, S) в z.

Осталось заметить, что для любого набора z ∈ M(k, S) из включения
Oi,j(z) ∈ M(k, S) следует 2 ≤ zi ≤ zj а, значит, справедливы неравенства

∥Oi,j(z)∥C − ∥z∥C =
(zj+1

2

)
+

(
zi−1
2

)
−

(zj
2

)
−

(
zi
2

)
= zj − zi + 1 > 0,

∥Oi,j(z)∥T − ∥z∥T =

⌊
z2j
4

⌋
+

⌊
(zi−2)2

4

⌋
−
⌊
(zj−1)2

4

⌋
−
⌊
(zi−1)2

4

⌋
=

⌊
zj
2

⌋
−
⌊
zi−1
2

⌋
≥ 0.

Лемма 8 доказана. □

Лемма 9. При любых целых k, S, 1 ≤ k ≤ S, для любого z ∈ M(k, S)
справедлив неравенство

∥z∥C ≥ S2

2k
− S

2
.

Доказательство. Утверждение леммы является простым следствием нера-

венства k
k∑

i=1
z2i ≥ (

k∑
i=1

zi)
2 (неравенство Коши-Буняковского):

∥z∥C =

k∑
i=1

(
zi
2

)
=

k∑
i=1

zi(zi − 1)

2
=

1

2

k∑
i=1

z2i −
1

2

k∑
i=1

zi ≥
S2

2k
− S

2
.

Лемма 9 доказана. □

Лемма 10. При n ≥ 2 для любого правильного разбиения V множества
R и любых δ1, . . . , δn ∈ {0, 1} справедливы неравенства∣∣∣Gδ1...δn(V )

∣∣∣ ≥ ∥m(|V δ1...δn |, n2n−2)∥C,∣∣∣Gδ1...δn(V )
∣∣∣ ≥ 1

2

(
(n2n−2)2

|V δ1...δn |
− n2n−2

)
.

Доказательство. Поскольку множество V δ1...δn является разбиением мно-
жества Rδ1...δn , выполнено равенство

∑
Q∈V δ1...δn |Q| = |Rδ1...δn |. Поэтому

из определения графа Gδ1...δn(V ), лемм 8, 9 и равенства |Rδ1...δn | = n2n−2

следует∣∣Gδ1...δn(V )
∣∣ = n∑

i=1

∣∣∣Gδi
i (V )

∣∣∣ = n∑
i=1

∑
Q∈V δi

i

|K(Q)| =
∑

Q∈V δ1...δn

|K(Q)|

=
∑

Q∈V δ1...δn

(|Q|
2

)
≥

∥∥m (
|V δ1...δn |, n2n−2

)∥∥
C
≥ 1

2

(
(n2n−2)2

|V δ1...δn | − n2n−2
)
.

Лемма 10 доказана. □
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Лемма 11. При n ≥ 2 для любого обладающего полным набором мало-
мощных компонент правильного разбиения V множества R и любых
δ1, . . . , δn ∈ {0, 1} справедливо неравенство∣∣∣G̃δ1...δn(V )

∣∣∣ ≥ ∥∥∥m(
|V δ1...δn |, n2n−2

)∥∥∥
T
. (4)

Доказательство. Неравенство (4) является следствием того, что участ-
вующие в определении графов G̃δ

i (V ) множества(
Eδ⊕1
i (V ) ∩ Tδ⊕1

i

)∗
, i = 1, . . . , n, δ = 0, 1, (5)

не содержат треугольников. Здесь используется терминология теории
графов, и под треугольником понимается либо множество рёбер E(M)
полного трёхвершинного графа K(M), M ⊆ Rδ

i , |M | = 3, i ∈ {1, . . . , n},
δ ∈ {0, 1}, либо сам этот граф.

Сначала покажем, что множества (5) действительно не содержат тре-
угольников.

Предположим противное: для некоторых i ∈ {1, . . . , n}, δ ∈ {0, 1} мно-
жество (Eδ⊕1

i (V ) ∩ Tδ⊕1
i )∗ содержит некоторый треугольник E(M). Без

ограничения общности полагаем δ = 1 и пусть A = (E0
i (V ) ∩ T0

i )
∗. То-

гда из включений E(M) ⊆ A ⊆ T1
i следует M ⊆ R1

i , (E(M))∗ ⊆ T0
i . И

очевидно справедливо равенство |(E(M))∗| = 3.
Через Y обозначим множество всех (0-1)-рёбер, являющихся концами

рёбер из множества (E(M))∗. Очевидно выполнено включение Y ⊆ R0
i .

Через Z обозначим граф с множеством вершин Y и множеством рёбер
(E(M))∗, и пусть F = Ŷ .

Нетрудно понять, что граф Z является звездой с тремя лучами, т. е.
все три его ребра имеют общий конец; и при этом выполнены равенства
dim(F ) = 4 и Y = R0

i (F ). Поясним это следующим образом.
Через r1, r2, r3 обозначим (0-1)-рёбра из M , и через α1, α2, α3 – со-

ответственно их чётные концы. Тогда из включения M ⊆ R1
i следуют

равенства α1
i = α2

i = α3
i = 0 и

r1 = (α1, α1 + ei), r2 = (α2, α2 + ei), r3 = (α3, α3 + ei).

Через e1, e2, e3 обозначим рёбра из E(M): e1 = {r1, r2}, e2 = {r2, r3},
e3 = {r3, r1}. Тогда из включения E(M) ⊆ T1

i ⊆ T следует

length(e1) = length(e2) = length(e3) = 2.

Поэтому существуют такое β ∈ Bn и такие j1, j2, j3 ∈ {1, . . . , n}\{i}, что
выполнены равенства

α1 = β + ej1 , α2 = β + ej2 , α3 = β + ej3 .

Наборы β1, β2, β3 ∈ Bn определим равенствами

β1 = β + ej1 + ej2 , β2 = β + ej2 + ej3 , β3 = β + ej3 + ej1 .
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Тогда очевидно для рёбер из (E(M))∗ выполнены равенства

e∗1 = {(β + ei, β), (β1 + ei, β1)}, e∗2 = {(β + ei, β), (β2 + ei, β2)},

e∗3 = {(β + ei, β), (β3 + ei, β3)}.
Из этих равенств следует, что (0-1)-ребро (β + ei, β) является их общим
концом, справедливы равенства |Y | = 4, Form(F ) = {i, j1, j2, j3} и вклю-
чение Y ⊆ R0

i (F ). Из первого равенства, включения и предложения 4
следует Y = R0

i (F ). Из второго равенства следует dim(F ) = 4. Что и
требовалось пояснить.

Заметим, что концы любого ребра e ∈ E(V ) принадлежат одному и
тому же блоку разбиения V . Значит, поскольку граф Z является звездой,
из включения

(E(M))∗ ⊆ A∗ = ((E0
i (V ) ∩ T0

i )
∗)∗ = E0

i (V ) ∩ T0
i ⊆ E0

i (V ) ⊆ E(V )

следует, что для некоторого блока Q ∈ V справедливо включение Y =
R0

i (F ) ⊆ Q. Но это противоречит тому, что в силу леммы 6 блоки раз-
биения V не содержат R-множеств размерности 4. Значит, наше предпо-
ложение неверно и множества (5) не содержат треугольников.

Теперь докажем справедливость неравенства (4). Для этого мы вос-
пользуемся следствием известной теоремы Турана [10]:

Теорема 5. Наибольшее число рёбер у графов, имеющих q вершин и не
содержащих треугольников, равно ⌊q2/4⌋.

Следствие 3. Наименьшее число рёбер у графов, имеющих q вершин,
и в дополнении которых нет треугольников, равно ⌊(q − 1)2/4⌋.

Поскольку множества (5) не содержат треугольников, по определению
графа G̃δ

i (V ) и в силу следствия 3 имеем

|G̃δ
i (V )| =

∣∣∣Gδ
i (V ) \

(
E(V δ⊕1

i ) ∩ Tδ⊕1
i

)∗∣∣∣
=

∑
Q∈V δ

i

∣∣∣K(Q) \
(
E(V δ⊕1

i ) ∩ Tδ⊕1
i

)∗∣∣∣ ≥ ∑
Q∈V δ

i

⌊
(|Q|−1)2

4

⌋
.

Поэтому из равенства
∑

Q∈V δ1...δn

|Q| = |Rδ1...δn | = n2n−2 и леммы 8 следует

∣∣∣G̃δ1...δn(V )
∣∣∣ = n∑

i=1

∣∣∣G̃δi
i (V )

∣∣∣ = n∑
i=1

∑
Q∈V δi

i

⌊
(|Q|−1)2

4

⌋
=

∑
Q∈V δ1...δn

i

⌊
(|Q|−1)2

4

⌋
≥

∥∥m (
|V δ1...δn |, n2n−2

)∥∥
T
.

Лемма 11 доказана. □

Лемма 12. Для любых целых k, S, 1 ≤ k < S, справедливо неравенство

∥m(k, S)∥T ≥ ∥m(k + 1, S)∥T.
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Доказательство. Через p, x, y обозначим целые числа, для которых
выполнены соотношения

m(k, S) = (p, . . . , p︸ ︷︷ ︸
x

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
y

), 1 ≤ y ≤ k.

Тогда очевидно имеет место равенство

m(k, S − 1) = (p, . . . , p︸ ︷︷ ︸
x+1

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
y−1

).

Поэтому справедливо неравенство

∥m(k, S)∥T − ∥m(k, S − 1)∥T =

⌊
p2

4

⌋
−
⌊
(p− 1)2

4

⌋
≥ 0.

Через m(1)(k, S − 1) обозначим набор z ∈ M(k + 1, S), для которого
выполнены равенства z1 = 1 и (z2, . . . , zk+1) = m(k, S−1). Очевидно для
этого набора справедливо равенство ∥m(1)(k, S − 1)∥T = ∥m(k, S − 1)∥T.
Отсюда и из леммы 8 следует

∥m(k, S)∥T ≥ ∥m(k, S − 1)∥T =∥ m(1)(k, S − 1)∥T ≥ ∥m(k + 1, S)∥T
Лемма 12 доказана. □

Следствие 4. Для любых целых p, k, S, 1 ≤ p ≤ S, 1 ≤ k ≤ S, из
неравенства p ≤ k следует ∥m(p, S)∥T ≥ ∥m(k, S)∥T.

8 Доказательство теоремы 4

Предположим противное: при некотором n ∈ {5, 6, 7} существует пра-
вильное разбиение V множества R, для которого справедливы неравен-
ства (1), (2).

Выберем δ1, . . . , δn ∈ {0, 1} так, чтобы были выполнены неравенства

|V δi
i | ≤ |V δi⊕1

i |, i = 1, . . . , n. (6)

Покажем, что при этих δ1, . . . , δn нижняя и верхняя оценки числа рёбер
графа Gδ1...δn противоречат друг другу.

Непосредственно из определения множеств V δ1...δn , V δ1⊕1...δn⊕1 и V
следует

|V δ1...δn |+ |V δ1⊕1...δn⊕1| = |V |.
Поэтому из неравенств (1), (2), (6) следует

|V δ1...δn | ≤ min

{
3n,

n2 + (n− 2⌊log2 n⌋)n− 2(n− 2⌊log2 n⌋)2

2

}
, (7)

|V δ1⊕1...δn⊕1| ≤ n2 + (n− 2⌊log2 n⌋)n− 2(n− 2⌊log2 n⌋)2 − |V δ1...δn |. (8)
Далее, чтобы не загромождать изложение, без ограничения общности

полагаем δ1 = . . . = δn = 0.
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Рассмотрим случай n = 5. В этом случае неравенства (7), (8) имеют
вид

|V 00000| ≤ 14, |V 11111| ≤ 28− |V 00000|.
При |V 00000| = 14 из первого неравенства леммы 10 следует∣∣G00000(V )

∣∣ ≥ ∥m(|V 00000|, 40)∥C = ∥m(14, 40)∥C.

Поэтому из равенства m(14, 40) = ( 2, 2︸︷︷︸
2

, 3, . . . , 3︸ ︷︷ ︸
12

) следует

∣∣G00000(V )
∣∣ ≥ 2 ·

(
2

2

)
+ 12 ·

(
3

2

)
= 38.

Отсюда и из второго неравенства леммы 10 вытекает следующая нижняя
оценка числа рёбер графа G00000(V ):

∣∣G00000(V )
∣∣ ≥


38 при |V 00000| = 14,
42 при |V 00000| = 13,
46 при |V 00000| = 12,
52 при |V 00000| ≤ 11.

(9)

В силу леммы 11 и следствия 4 имеем∣∣∣G̃11111(V )
∣∣∣ ≥ ∥∥m (

|V 11111|, 40
)∥∥

T
≥

∥∥m (
28− |V 00000|, 40

)∥∥
T
.

Поэтому при |V 00000| = 14 из равенства 28− |V 00000| = 14 и равенства

m(14, 40) = ( 2, 2︸︷︷︸
2

, 3, . . . , 3︸ ︷︷ ︸
12

)

следует

|G̃11111(V )| ≥ ∥m(14, 40)∥T = 2 ·
⌊
(2− 1)2

4

⌋
+ 12 ·

⌊
(3− 1)2

4

⌋
= 12.

При |V 00000| = 13 из равенства 28− |V 00000| = 15 и равенства

m(15, 40) = (2, . . . , 2︸ ︷︷ ︸
5

, 3, . . . , 3︸ ︷︷ ︸
10

)

следует

|G̃11111(V )| ≥ ∥m(15, 40)∥T = 5 ·
⌊
(2− 1)2

4

⌋
+ 10 ·

⌊
(3− 1)2

4

⌋
= 10.

При |V 00000| = 12 из равенства 28− |V 00000| = 16 и равенства

m(16, 40) = (2, . . . , 2︸ ︷︷ ︸
8

, 3, . . . , 3︸ ︷︷ ︸
8

)

следует

|G̃11111(V )| ≥ ∥m(16, 40)∥T = 8 ·
⌊
(2− 1)2

4

⌋
+ 8 ·

⌊
(3− 1)2

4

⌋
= 8.
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Поэтому имеет место следующая нижняя оценка числа рёбер графа
G̃11111(V ):

∣∣∣G̃11111(V )
∣∣∣ ≥


12 при |V 00000| = 14,
10 при |V 00000| = 13,
8 при |V 00000| = 12.
0 при |V 00000| ≤ 11.

(10)

Из определения графа G00000(V ) и неравенств (9), (10) следует

|G00000(V )| = |G00000(V )|+ |G̃11111(V )| ≥ 52.

Это противоречит тому, что в силу следствия 2 выполнено неравенство

|G00000(V )| ≤ 48.

Рассмотрим случай n = 6. В этом случае неравенства (7), (8) имеют
вид

|V 000000| ≤ 18, |V 111111| ≤ 40− |V 000000|.
Из второго неравенства леммы 10 вытекает следующая нижняя оцен-

ка числа рёбер графа G000000(V ):

∣∣G000000(V )
∣∣ ≥


208 при |V 000000| = 18,
223 при |V 000000| = 17,
240 при |V 000000| = 16,
259 при |V 000000| ≤ 15.

(11)

В силу леммы 11 и следствия 4 имеем∣∣∣G̃111111(V )
∣∣∣ ≥ ∥∥m (

|V 111111|, 96
)∥∥

T
≥

∥∥m (
40− |V 000000|, 96

)∥∥
T
.

Поэтому при |V 000000| = 18 из равенства 40−|V 000000| = 22 и равенства

m(22, 96) = (4, . . . , 4︸ ︷︷ ︸
14

, 5, . . . , 5︸ ︷︷ ︸
8

)

следует

|G̃111111(V )| ≥ ∥m(22, 96)∥T = 14 ·
⌊
(4− 1)2

4

⌋
+ 8 ·

⌊
(5− 1)2

4

⌋
= 60.

При |V 000000| = 17 из равенства 40− |V 000000| = 23 и равенства

m(23, 96) = (4, . . . , 4︸ ︷︷ ︸
19

, 5, . . . , 5︸ ︷︷ ︸
4

)

следует

|G̃111111(V )| ≥ ∥m(23, 96)∥T = 19 ·
⌊
(4− 1)2

4

⌋
+ 4 ·

⌊
(5− 1)2

4

⌋
= 54.

При |V 000000| = 16 из равенства 40− |V 000000| = 24 и равенства

m(24, 96) = (4, . . . , 4︸ ︷︷ ︸
24

)
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следует

|G̃111111(V )| ≥ ∥m(24, 96)∥T = 24 ·
⌊
(4− 1)2

4

⌋
= 48.

Поэтому имеет место следующая нижняя оценка числа рёбер графа
G̃111111(V ):

∣∣∣G̃11111(V )
∣∣∣ ≥


60 при |V 000000| = 18,
54 при |V 000000| = 17,
48 при |V 000000| = 16,
0 при |V 000000| ≤ 15.

(12)

Из определения графа G000000(V ) и неравенств (11) и (12) следует

|G000000(V )| = |G000000(V )|+ |G̃111111(V )| ≥ 259.

Это противоречит тому, что в силу следствия 2 выполнено неравенство

|G000000(V )| ≤ 256.

Рассмотрим случай n = 7. В этом случае неравенства (7), (8) имеют
вид

|V 0000000| ≤ 21, |V 1111111| ≤ 52− |V 0000000|.
Из второго неравенства леммы 10 вытекает следующая нижняя оцен-

ка числа рёбер графа G0000000(V ):

∣∣G0000000(V )
∣∣ ≥


1082 при |V 0000000| = 21,
1142 при |V 0000000| = 20,
1208 при |V 0000000| = 19,
1281 при |V 0000000| ≤ 18.

(13)

В силу леммы 11 и следствия 4 имеем∣∣∣G̃1111111(V )
∣∣∣ ≥ ∥∥m (

|V 1111111|, 224
)∥∥

T
≥

∥∥m (
52− |V 0000000|, 224

)∥∥
T
.

Поэтому при |V 0000000| = 21 из равенства 52− |V 0000000| = 31 и равен-
ства

m(31, 224) = (7, . . . , 7︸ ︷︷ ︸
24

, 8, . . . , 8︸ ︷︷ ︸
7

)

следует

|G̃1111111(V )| ≥ ∥m(31, 224)∥T = 24 ·
⌊
(7− 1)2

4

⌋
+ 7 ·

⌊
(8− 1)2

4

⌋
= 300.

При |V 0000000| = 20 из равенства 52− |V 0000000| = 32 и равенства

m(32, 224) = (7, . . . , 7︸ ︷︷ ︸
32

)

следует

|G̃1111111(V )| ≥ ∥m(32, 224)∥T = 32 ·
⌊
(7− 1)2

4

⌋
= 288.
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При |V 0000000| = 19 из равенства 52− |V 0000000| = 33 и равенства

m(33, 224) = (6, . . . , 6︸ ︷︷ ︸
7

, 7, . . . , 7︸ ︷︷ ︸
26

)

следует

|G̃1111111(V )| ≥ ∥m(33, 224)∥T = 7 ·
⌊
(6− 1)2

4

⌋
+ 26 ·

⌊
(7− 1)2

4

⌋
= 276.

Поэтому имеет место следующая нижняя оценка числа рёбер графа
G̃1111111(V ):

∣∣∣G̃11111(V )
∣∣∣ ≥


300 при |V 0000000| = 21,
288 при |V 0000000| = 20,
276 при |V 0000000| = 19,
0 при |V 0000000| ≤ 18.

(14)

Из определения графа G0000000(V ) и неравенств (13) и (14) следует

|G0000000(V )| = |G0000000(V )|+ |G̃1111111(V )| ≥ 1281.

Это противоречит тому, что в силу следствия 2 выполнено неравенство

|G0000000(V )| ≤ 1264.

Таким образом наше предположение неверно. Поэтому при n = 5, 6, 7
не существует такого правильного разбиения V множества R, для кото-
рого выполнены неравенства (1) и (2).

Теорема 4 доказана.
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