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Abstract: We provide a conjectural extension of the web of
canonical 3-folds by proving the existence of some new deforma-
tion families of canonical 3-folds embedded in weighted projective
space P7(w0, . . . , w7). These families can be presented by using
the equations of Segre embedding of P2 × P2. We provide a ta-
ble of candidate numerical K3 transitions that can relate these
families to the existing web of canonical 3-folds.

Keywords: canonical 3-folds, weighted projective space, P2×P2

format, K3 transitions.

1 Introduction

A canonical 3-fold is a normal complex projective algebraic variety with
an ample canonical divisor class KX , with at worst, Q-factorial canonical
singularities. Since, by the Minimal Model Program, any 3-fold of general
type has a unique canonical model, it suffices for birational classification
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to classify canonical 3-folds. The canonical model Proj(R(X,KX)) of the
canonical graded ring

R(X,KX) =
⊕
m≥0

H0(X,mKX)

can be embedded in a weighted projective space.
The graded ring constructions of canonical models of 3-folds go back to

Reid and Iano-Fletcher [10, 7]. In particular, they listed 23 families of canon-
ical hypersurfaces, 59 codimension two and 37 codimension three families of
weighted complete intersections. These lists were proved to be complete
by Chen–Chen–Chen [5, Table 3]. Beyond complete intersections, the idea
of Gorenstein formats, i.e., describing the equations of canonical 3-folds by
using the structure of low codimension Gorenstein ideals, has been used
to construct new examples of non complete intersection canonical 3-folds.
In particular, Brown–Kasprzyk–Zhou produced 18 new families in Pfaffian
Gr(2, 5) format, and 84 families as hypersurface in Gr(2, 5) format in [3].
In [6], Coughlan introduced K3 transitions as a geometric tool to navigate
between deformation families of canonical 3-folds: one degenerates to a cone
over a (polarized) K3 surface, resolves, and then takes the canonical model
to land in a new family. Using this, the known geography has been shaped
into a web of canonical 3-folds and 137 families in codimension at most 3 are
listed, together with explicit K3 transitions between them.

In this note, we present a construction of nineteen deformation families
of wellformed and quasismooth canonical 3-folds embedded in weighted pro-
jective space P7(w) that can be described in terms of 2 × 2 minors of a
3 × 3 matrix, i.e. they are given by the image of P2 × P2 under the Segre
embedding, cf.[8]. To link the new families to the existing web of canonical
3-folds, in the sense of Coughlan, we list candidate numerical K3 transitions
for each of our families of 3-folds, i.e for each canonical 3-fold X in P2 × P2

format we identify the candidate K3 surfaces S and canonical 3-fold Y from
the graded ring database [1] such that their baskets and volumes satisfy the
conditions described in Theorem 4.2. The proof of Theorem 4.2 has not been
published, but it is instrumental in proving the existence of K3 transitions
in [6].

Theorem 1.1. Let X ⊂ P(w0, . . . , w7) be a canonical 3-fold whose image
under the canonical embedding can be described in terms of the equations
of Segre embedding of P2 × P2. Then there exist at least 19 such families of
canonical 3-folds with at worst terminal isolated orbifold points whose general
member is wellformed and quasismooth, listed in Table 1. Among these 19
cases, 3 are smooth canonical 3-folds.
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Table 1: Canonical 3-folds in P2 × P2 format

S.No Variety Basket B K3 χ K · c2 Weight matrix

1
X36,43

⊂ P(17, 2)
22 −6 144

1 1 1

2 2 2

2 2 2

2
X2,34,44

⊂ P(17, 2)
20 −6 144

1 1 2

1 1 2

2 2 3

3
X49

⊂ P(15, 23)
12 −4 96

2 2 2

2 2 2

2 2 2

4
X32,45,52

⊂ P(15, 23)
2× 1

2(1, 1, 1) 11 −4 99

1 1 2

2 2 3

2 2 3

5
X3,43,53,62

⊂ P(14, 23, 3)
3× 1

2(1, 1, 1)
13
2 −3 153

2

1 1 2

2 2 3

3 3 4

6
X44,54,6

⊂ P(14, 23, 3)
2× 1

2(1, 1, 1) 7 −3 75

1 2 2

2 3 3

2 3 3

7
X4,54,64

⊂ P(13, 23, 32)
4× 1

2(1, 1, 1) 4 −2 54

2 2 3

2 2 3

3 3 4

8
X42,53,63,7

⊂ P(13, 23, 32)
3× 1

2(1, 1, 1),
1
3(1, 2, 2)

23
6 −2 331

6

1 2 2

2 3 3

3 4 4

9
X52,65,72

⊂ P(12, 23, 33)
5× 1

2(1, 1, 1), 2× 1
3(1, 2, 2)

13
6 −1 221

6

2 2 3

3 3 4

3 3 4

10
X4,52,63,72,8

⊂ P(13, 22, 32, 4)
2× 1

2(1, 1, 1) 3 −2 51

1 2 3

2 3 4

3 4 5

Continued on next page
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S.No Variety Basket B K3 χ K ·c2 Weight matrix

11
X4,52,63,72,8

⊂ P(12, 23, 33)
4× 1

2(1, 1, 1), 3× 1
3(1, 2, 2) 2 −1 38

1 2 3

2 3 4

3 4 5

12
X64,74,8

⊂ P(12, 22, 33, 4)
2× 1

2(1, 1, 1), 2× 1
3(1, 2, 2)

5
3 −1 97

3

2 3 3

3 4 4

3 4 4

13
X5,62,72,82,9,10

⊂ P(12, 22, 32, 4, 5)
4× 1

2(1, 1, 1),
1
3(1, 2, 2)

4
3 −1 98

3

1 2 3

3 4 5

4 5 6

14
X6,72,83,92,10

⊂ P(12, 2, 32, 42, 5)
2× 1

2(1, 1, 1) 1 −1 27

2 3 4

3 4 5

4 5 6

15
X6,72,83,92,10

⊂ P(1, 22, 33, 4, 5)
4× 1

2(1, 1, 1), 5× 1
3(1, 2, 2)

2
3 0 58

3

2 3 4

3 4 5

4 5 6

16
X82,93,103,11

⊂ P(1, 2, 32, 42, 52)
2× 1

2(1, 1, 1),
1
3(1, 2, 2)

1
4(1, 3, 3),

1
5(2, 3, 4)

23
60 0 853

60

3 4 4

4 5 5

5 6 6

17
X8,92,103,112,12

⊂ P(1, 2, 32, 4, 52, 6)
2× 1

2(1, 1, 1), 4× 1
3(1, 2, 2)

1
3 0 41

3

3 4 5

4 5 6

5 6 7

18
X8,92,103,112,12

⊂ P(2, 33, 42, 52)
2× 1

2(1, 1, 1), 8× 1
3(1, 2, 2)

2× 1
4(1, 3, 3)

1
6 1 47

6

3 4 5

4 5 6

5 6 7

19
X10,112,12,132,14

⊂ P(2, 32, 4, 52, 6, 7)
3× 1

2(1, 1, 1), 6× 1
3(1, 2, 2)

2× 1
5(2, 3, 4)

1
10 1 61

10

4 5 6

5 6 7

6 7 8

The proof requires the use of an algorithmic approach developed in [9, 3] to
search for possible examples and then proving the existence of these canonical
3-folds. We outline the details in section 3.
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Table notations. In this part, we explain the notations used in the Table
1. We list canonical 3-folds in their canonical embedding Xd ⊂ P(w) in
column “variety”. Here P(w) = P(w0, . . . , w7) is a weighted projective space
and d are the degrees of the defining equations, written in compact form: For
example, X36,43 ⊂ P(17, 2) means six cubics and three quartics define this
3-fold inside P7(w0, . . . , w7) with 7 variables of degree one and 1 variable
of degree two. The column Basket contains a multiset of terminal cyclic
quotient singularities

B =
{
mi × 1

ri
(ai, bi, ci)

}
,

listed with multiplicities mi. The holomorphic Euler characteristic χ =

χ(OX) gives the

χ(OX) =

3∑
i=0

(−1)ihi(OX).

In column K3, we list the self-intersection number (canonical volume) K3
X of

X and the intersection number KX · c2(X) appears in the next column. The
last column records the 3× 3 array of variable weights used by the P2 × P2

(Segre) Gorenstein format; it lists the degrees of the variables (xij : 1 ≤
i, j ≤ 3) that appear in the equations of P2 × P2.

2 Preliminaries

In this section, we provide some definitions and notations that are later
used in the proofs.

A weighted projective variety X ⊂ PN (w) of codimension c is wellformed
if PN (w) is wellformed, i.e. no N − 1 weights have a non trivial common
factor, and

dimX − dim
(
X ∩ Sing(PN (w)

)
≥ 2.

It is called quasismooth if its affine cone X̃ ⊂ AN+1 is smooth outside the
origin. A format is a structured presentation of equations for a family of
varieties. For example, the Segre embedding of P2 × P2 is defined by the
2× 2 minors of a 3× 3 matrix.

Definition 2.1 ([3]). A codimension c Gorenstein format F is a triple
(Ṽ ,R, µ) where Ṽ ⊂ An is an affine Gorenstein subvariety of codimension c,
R is a minimal graded free resolution of O

Ṽ
over OAn , and µ : C× ⟳ Ṽ is

a grading by strictly positive weights. We assume µ preserves Ṽ and R is
C×-equivariant. (Definition 2.2 below fits this framework.)

Definition 2.2 ([2]). Let Σ ⊂ P8(xij) be the Segre image of P2 × P2 for
1 ≤ i, j ≤ 3. Let t ∈ C× act on the punctured affine cone Σ̃ \ {0} by

t · xij = t ei+fjxij (1 ≤ i, j ≤ 3),
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for non-negative integer vectors e = (e1, e2, e3) and f = (f1, f2, f3) with

ei + fj > 0, e1 ≤ e2 ≤ e3, f1 ≤ f2 ≤ f3.

Then the quotient is called a weighted P2 × P2 variety, which we denote by
wP. If wij = ei + fj , then we have

wP ↪→ P8
(
wij : 1 ≤ i, j ≤ 3

)
.

Its image is cut out by the 2× 2 minors of the 3× 3 matrix of variables, and
we record the degrees via the weight matrix

w11 w12 w13

w21 w22 w23

w31 w32 w33

 . (2.1)

If wP is wellformed, then its canonical divisor is

KwP =
(
−

3∑
i=1

wii

)
D, (2.2)

where D = OwP(1) is the hyperplane class.

Theorem 2.3 (Bertini). Let L = |OP(w0,...,wn)(d)| be a linear system and let
X ∈ L be a general member. Then X is quasismooth away from the reduced
base locus Bs(L)red.

3 Proof of Theorem 1.1

The proof of the theorem consists of a mix of algorithmic, computational,
and theoretical ideas. We first find the list of candidate 3-folds in P2 × P2

format that may contain at worst isolated terminal quotient singularities
by using their Hilbert series data. Then, for each candidate, we prove or
disprove the existence of a given variety in P2 × P2 format.

3.1. Steps of the proof. In this section, we describe various steps involved
in the proof of Theorem 1.1.

3.1.1. Finding isolated candidate orbifolds. We enumerate candidate
canonical 3-folds with isolated terminal singularities using the algorithmic
approach of [9], which applies the orbifold Riemann–Roch formula of Buckley–
Reid–Zhou [4]. The formula states that if X has a basket B = {ki × Qi :

ki ∈ Z>0} of isolated points, then

PX(t) = Psmooth(t) +
∑
Qi∈B

ki PQi(t), (3.1)

where Psmooth is the smooth contribution and PQi are the local point con-
tributions. In a given ambient weighted variety wF ↪→ PN (w) of dimension
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d ≫ 0 and fixed codimension c, the algorithm generates a complete list of
orbifolds of dimension n ≤ d, orbifold canonical class KX = O(k), and spec-
ified type (terminal or canonical) of isolated orbifold points. The condition
d ≫ 0 means, for our purposes, at least d = 4 if we aim to construct canonical
3-folds.

First, compute the Hilbert series and the canonical divisor of the ambient
weighted projective variety wF . Next, we enumerate embeddings X ↪→
Ps(w), with KX = O(k), by applying adjunction and finding appropriate
combinations of weights for Ps(w). For each embedding, compute PX(t)

and extract its smooth part Psmooth(t). From the weights of Ps(w), list all
possible subsets of the isolated orbifold points that could lie on X. Then,
for every subset B, test whether

PX(t)− Psmooth(t) =
∑
Qi∈B

ki PQi(t)

for suitable integers ki. Finally, accept X as a candidate n-fold with basket B
precisely when all resulting coefficients are non-negative integers, and repeat
this over all embeddings.

Candidate canonical 3-folds in P2 × P2 format. For each choice of
parameters e = (e1, e2, e3) and f = (f1, f2, f3), we obtain a weighted P2×P2

variety

wP ↪→ P
(
wij = ei + fj | 1 ≤ i, j ≤ 3

)
.

Since there is no bound on the search parameters, the search is, in principle,
infinite. We order the search by increasing total weight, where W :=

∑
i,j wij

and continue until limited by computer memory. In practice, the search
halts at W = 96, with the final candidate already appearing at W = 54.
It is therefore reasonable to conjecture that the list in Table 1 is complete.
Then, for each candidate, we perform the following steps to check for well-
formedness and quasismoothness. In total, we obtain 21 candidate canonical
3-folds with terminal quotient singularities, of which 19 are well-formed and
quasismooth, while two fail quasismoothness.

3.1.2. Existence and well-formedness. For each of the 21 candidates,
we verify that the baskets of candidates predicted in 3.1.1 matches the actual
singularities by intersecting X with the toric orbifold strata of Pn(w), usually
using the computer algebra system Magma. Since we only allow isolated
orbifold points, every such intersection must be zero-dimensional; this also
enforces well-formedness. We discard a candidate if any orbifold point is
non-terminal or if X meets a higher-dimensional orbifold locus.
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3.1.3. Quasismoothness. The step of proving quasismoothness is usually
the hardest among these steps. Taking complete intersections of degree d in-
side wP induces a base locus of |O(d)| that can be large due to weighted
degrees. By Bertini’s theorem, a general member is quasismooth away from
the reduced base locus; if that locus is zero-dimensional, theoretical argu-
ments suffice. In the more common higher-dimensional case, we use Magma
to write defining equations over the rational numbers and apply the Jacobian
criterion to prove quasismoothness.

3.2. Sample Computations. In this section, we record some of the com-
putations used to establish the existence of canonical 3-folds. As illustra-
tions, we present two cases (Examples 4 and 10) from the table. For Exam-
ples 1–9, the base locus coincides with the orbifold locus, thus quasismooth-
ness can be checked directly. In the remaining cases, the base locus is more
involved, we rely on computer algebra calculations to verify quasismoothness.

Example 4: X32,45,52 ⊂ P(15, 23). Let wP ⊂ P8 be the weighted Segre
4-fold defined by the 2×2 minors of the 3×3 matrix X = (xij) with weights

W =


1 1 2

2 2 3

2 2 3

 ,

so the ambient has graded coordinates of weights (12, 25, 32) and

KwP = OwP
(
−

3∑
i=1

wii

)
= OwP(−6).

We adjoin three new weight 1 variables that do not appear in the weight
matrix, to form the triple projective cone

V := C3wP ↪→ P(15, 25, 32), KV = OV (−9).

The intersection of V with two general cubics and two general quadrics, by
the adjunction formula, gives a canonical 3-fold X ⊂ P(15, 23).

Orbifold locus. The weight 2 locus intersects with X in 2 isolated points,
which we can show to be of type 1

2(1, 1, 1).

Base locus. On P(15, 25, 32) the linear system |O(3)| has base locus P(25)
(the coordinate subspace on which no degree 3 monomial can be formed).
Hence

V1 := {V ∩ (f3) ∩ (g3)} ⊂ P(15, 25)
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is quasismooth away from P(25) by a Bertini’s theorem. Intersecting further
with two general quadrics, the 3-fold

X := {V1 ∩ (f2) ∩ (g2)} ⊂ P(15, 23)

meets P(23) in exactly two points. A local Jacobian (implicit function) check
at each point shows that three suitably chosen tangent variables of odd
residue mod 2 give full rank, so both points are terminal cyclic quotients of
type 1

2(1, 1, 1). Away from these two points the Jacobian has full rank by a
Bertini’s theorem, whence X is quasismooth.

Example 10: X4,52,63,72,8 ⊂ P(13, 22, 32, 4). Let wP ⊂ P8 be the weighted
Segre 4–fold defined by the 2 × 2 minors of a 3 × 3 matrix X = (xij) with
weights

W =


1 2 3

2 3 4

3 4 5

 ,

so the ambient has graded coordinates of weights (1, 22, 33, 42, 5) and

KwP = OwP

(
−

3∑
i=1

wii

)
= OwP(−9).

We adjoin two new weight 1 variables that do not appear in the equations
of wP , to form the double projective cone over wP, given by

V := C2wP ↪→ P(13, 22, 33, 42, 5), KV = OV (−11).

Intersecting V with one general quintic, one general quartic, and one general
cubic, by adjunction, gives a canonical 3-fold

X := V ∩ (5) ∩ (3) ∩ (2)2 ⊂ P(13, 22, 32, 4),

as −11 + 5 + 4 + 3 = 1.

Orbifold locus. We analyze the orbifold strata of the ambient P(w) that
could meet X. The weight 4 stratum is the coordinate point, however this
point does not lie on X. Likewise, the stratum P(3, 3) is disjoint from X:
restricting the equations to P(3, 3) eliminates both weight 3 variables, so
the intersection is empty. The only relevant orbifold stratum is P(2, 2, 4),
which parametrizes the locus where all variables of weight ̸= 2, 4 vanish. Its
intersection with the defining equations of X cuts this stratum in exactly two
reduced points. A local Jacobian computation shows that in suitable affine
coordinates each of these is analytically isomorphic to 1

2(1, 1, 1), so they are
terminal cyclic quotient singularities. There are no other orbifold points on
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X. Thus X is well-formed canonical 3-fold with the basket of singularities

B = { 2× 1
2(1, 1, 1) }.

Base locus. We analyze the base locus of the intersections with forms of
various degrees, stepwise. We first take intersection of V = C2wP with a
general quartic:

V1 := {V ∩ (f4)} ⊂ P(13, 22, 33, 4, 5).

Then by a Bertini’s theorem V1 is quasismooth away from the base locus
of |O(4)|, namely V1 ∩ P(33, 5), since degrees 4 monomials cannot contain
pure powers of weight 3 and weight 5 variables. Next, we intersect V1 with
a general quintic:

V2 := {V1 ∩ (f5)} ⊂ P(13, 22, 33, 4).

On V2 the base locus of |O(5)| is V2∩P(22, 33, 4), because degree 5 monomials
cannot be formed with pure powers of weights 2, 3, 4. The intersection of
this base locus with V2 is positive dimensional and we can not determine the
quasismoothness by analyzing the orbifold points on the locus. We finally
set

X := {V2 ∩ (f3)} ⊂ P(13, 22, 32, 4).
Here the residual base locus of |O(3)| meets X along P(22, 4), which for a
general cubic consists of exactly two reduced points. However, the base locus
of V2 is too large and so quasismoothness cannot be established purely by
the implicit function theorem. We need to use computer algebra to show
the quasismoothness and use the Jacobian criterion over Q in Magma for
random choices of coefficients; the computation certifies quasismoothness of a
general member. We can use the following code to show the quasismoothness
for this example.1

rpoly := func< P,d | d ge 0 select
&+[ Random([1..10])*m : m in MonomialsOfWeightedDegree(CoordinateRing(P),d)]
else CoordinateRing(P)!0 >;
P<x0,x1,x11,x12,x13,x21,x22,x23>:=ProjectiveSpace(Rationals(),[1,1,1,2,3,2,3,4]);
f3:=rpoly(P,3);f4:=rpoly(P,4);f5:=rpoly(P,5);
M := Matrix(3,3,[
x11,x12,x13,
x21, x22,x23,
f3, f4,f5
]);
X := Scheme(P,Minors(M,2));

1We provide codes for examples 10–21 on https://github.com/QureshiMI/P2-x-P2-
C3F.

https://github.com/QureshiMI/P2-x-P2-C3F
https://github.com/QureshiMI/P2-x-P2-C3F
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Dim:=Dimension(JacobianSubrankScheme(X));
print "Dimension of Jacobian subrank scheme=",Dim;

3.3. Non working candidates. It is an essential part of the calculation
to list the non working canonical 3-folds in the P2 × P2 model and write the
reason for failure. The first one fails as it contains the non-quasimooth 1

5

point and the second one contains a non-terminal point of type 1
4(1, 1, 1).

Table 2: Non-working canonical 3-fold candidates in P2 × P2

format

S.No Variety Basket B K3 χ K ·c2 Weight matrix

1
X7,82,92,102,11,12

⊂ P(1, 2, 32, 42, 52)
3× 1

2(1, 1, 1), 2×
1
3(1, 2, 2),

1
5(1, 4, 4)

11
30 0 439

30

2 3 4

4 5 6

5 6 7

2
X6,82,92,10,112,12

⊂ P(1, 2, 32, 42, 52)
1
2(1, 1, 1),

1
4(1, 3, 3), 2×

1
5(2, 3, 4)

7
20 0 297

20

2 3 5

3 4 6

5 6 8

4 Candidate numerical K3 Transitions

In this section, we recall the definition of K3 transition and provide a
table that lists candidate K3 surfaces and canonical 3-folds, from graded
ring database [1], that satisfy the properties listed in Theorem 4.2 for the
existence of K3 transition. First we recall the notion of K3 transition.

Definition 4.1. [6] Let X be a quasismooth canonical 3-fold that degener-
ates in a flat family to a central fibre X0 with a simple elliptic singularity P

(the vertex of the affine cone over a K3 surface).

(i) Take the weighted blow-up σ : Z→X0 so that the exceptional divisor
is a quasismooth K3 surface S ⊂ P(α).

(ii) Form the canonical model

Y0 = Proj
(⊕
n≥0

H0
(
Z, nKZ

))
;

the variety Y0 has only ordinary double points along the image of
S.
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(iii) If Y0 admits a (partial) smoothing to another quasismooth canonical
3-fold Y , the birational process

Z
σ

~~

π

  
X // X0 Y0 Yoo

is called a K3 transition through the surface S, written X ⇝ Y .

Theorem 4.2. [6, Thm. 2.1] Let X and Y be quasismooth canonical 3-folds
related by a K3 transition through a quasismooth K3 surface S.

Then the following are satisfied

K3
X = K3

Y +A2, pg(X) = pg(Y ) + 1, B(Y ) = B(X) ∪ B(S),

where
• K3

X (resp. K3
Y ) is the self?intersection number of the canonical di-

visor on X (resp. Y ) and A = OS(1),
• pg(•) = h0(•,K•) is the geometric genus,
• B(•) denotes the basket of quotient singularities on the variety •.

Here X is the original canonical 3-fold before transition, S the exceptional
K3 surface arising in the weighted blow-up of the singular fiber X0, and Y

the resulting canonical 3-fold after contracting and smoothing S. We say that
the candidate numerical K3 transition exists between X and Y , if there exist
a candidate K3-surface S satisfying all the properties listed in Theorem 4.2.

The Table 3 lists the graded ring database ID’s for the candidate K3

surfaces and canonical 3-folds. The K3 surfaces listed under these ID’s on
the GRDB shall be treated as candidates since the existence of all of these
are not proven. However, the canonical 3-folds listed below, do indeed exist
as wellformed and quasismooth 3-folds. The DNE in the Table 3 refers to
non-existing candidate for the given P2×P2 canonical 3-fold in the GRDB [1]
and NA means that the K3 transition can not exist as the geometric genus
pg = 0 in these cases. Establishing the existence of these K3 transitions will
be studied elsewhere.

Table 3: Candidate numerical K3 transitions

S.No Variety X GRDB K3 ID GRDB C3F ID

1
X36,43

⊂ P(17, 2)
24073 123

Continued on next page
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S.No Variety X GRDB K3 ID GRDB C3F ID

2
X2,34,44

⊂ P(17, 2)
24052 123

3
X49

⊂ P(15, 23)
24044 85

4
X32,45,52

⊂ P(15, 23)
24017 126

5
X3,43,53,62

⊂ P(14, 23, 3)
17408 128

6
X44,54,6

⊂ P(14, 23, 3)
17506 128

7
X4,54,64

⊂ P(13, 23, 32)
11157 131

8
X42,53,63,7

⊂ P(13, 23, 32)
11156 131

9
X52,65,72

⊂ P(12, 23, 33)
5939 95

10
X4,52,63,72,8

⊂ P(13, 22, 32, 4)
10879 133

11
X4,52,63,72,8

⊂ P(12, 23, 33)
5921 95

12
X64,74,8

⊂ P(12, 22, 33, 4)
5194 99

13
X5,62,72,82,9,10

⊂ P(12, 22, 32, 4, 5)
5094 135

14
X6,72,83,92,10

⊂ P(12, 2, 32, 42, 5)
4677 136

15
X6,72,83,92,10

⊂ P(1, 22, 33, 4, 5)
DNE DNE

16
X82,93,103,11

⊂ P(1, 2, 32, 42, 52)
844 108

Continued on next page



1686 M.I. QURESHI

S.No Variety X GRDB K3 ID GRDB C3F ID

17
X8,92,103,112,12

⊂ P(1, 2, 32, 4, 52, 6)
DNE DNE

18
X8,92,103,112,12

⊂ P(2, 33, 42, 52)
NA NA

19
X10,112,12,132,14

⊂ P(2, 32, 4, 52, 6, 7)
NA NA
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