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is proved. An example of input data satisfying the conditions of
the theorem is given.
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1 Introduction

The class of inverse problems, that is di�cult to study, is coe�cient
inverse problems, in which, along with the primary source, it is necessary
to determine some physical properties of the process (coe�cients).

Coe�cient inverse problems for quasilinear parabolic equations describe,
model and control nonlinear di�usion and �ltration processes, are used to
identify (thermophysical) characteristics (with a large change in the tempere-
ture interval, the thermophysical characteristics of the medium depend on the
temperature distribution) of the processes in thermophysics and mechanics
of continuous media, etc.

Note that the de�nition of quasilinear parabolic equations is given in [1].
The problems of determining the coe�cients of quasilinear parabolic equ-

ations were investigated by N.L. Gol'dman, K.T. Iskakov, A.D. Iskenderov,
S.I. Kabanikhin, I.V. Koptyug, A. Lorenzi, R.Z. Sagdeev, V.M. Volkov [2] -
[9] and others.

In [9], an inverse problem is considered for a quasilinear equation in a semi-
in�nite strip in the case of one unknown coe�cient for the second derivative
with respect to the variable x, depending on the solution of the equation.

In [2] - [6], [8] coe�cient inverse problems for quasilinear parabolic equati-
ons in bounded domains are investigated.

The problem considered in [7] clearly demonstrates the practical applicati-
on of the solution of the inverse problem for a quasilinear parabolic equation.
Namely, mass transport of liquids which obeys the equation with liquid
concentration - dependent di�usivity is considered and water concentration
pro�les measured experimeally in the course of drying of water-saturated
porous alumina pellets are shown to be successfully modelled assuming expo-
nential concentration dependence of di�usivity.

In the present paper, the problem of determining two unknown coe�cients
depending on time and the independent variable x in a multidimensional
quasilinear parabolic equation is investigated for the unique solvability.

The study is conducted using the following method:
- on the basis of the overdetermination conditions, the initial inverse

problem is reduced to an auxiliary direct Cauchy problem for a nonlinear
loaded equation;

- solvability of the direct problem is proved using su�ciently smooth input
data and the weak approximation method [10];

- the solution of the inverse problem is written out explicitly through the
solution of the direct problem, on this basis the theorem of existence and
uniqueness of the classical solution of the inverse problem in the class of
smooth bounded functions for t ∈ [0, t∗] is proved.

Previously, this method was used in the case of coe�cient inverse problems
for linear and semilinear parabolic equations, see, for example, [11], [12].

Also in the present paper, the condition for the dependence of t∗ on the
constants limiting the input data was written out, in [11], [12] this condition
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was not written out. An example of input data satisfying the conditions of
the proved theorem of existence and uniqueness of the classical solution of
the inverse problem is given.

2 Problem statement

In G[0,T ] = {(t, x, z)
∣∣0 ⩽ t ⩽ T, x ∈ En, z ∈ E1} we have the Cauchy

problem

∂u

∂t
= Lx(u) + a(t, x)uuzz + β1(t, x)uz + β2(t, x)u

2 + b(t, x)f(t, x, z), (1)

u(0, x, z) = u0(x, z), (x, z) ∈ En+1. (2)

Here

Lx(u) =

n∑
i,j=1

αij
∂2u

∂xi∂xj
+

n∑
i=1

αi
∂u

∂xi
,

functions f(t, x, z) and u0(x, z) are given in G[0,T ] and En+1 respectively,

coe�cients αij , αi, i, j = 1, n, β1(t, x), β2(t, x) are continuously di�erentiable,
real-valued functions of t, and t, x, respectively, 0 ⩽ t ⩽ T > 0, T − const,
En is the n-dimensional Euclidian space, n ⩾ 1, n ∈ N.

Let be αij(t) = αji(t) and the ratio

n∑
i,j=1

αijξiξj > 0 ∀ξ ∈ En\{0}, t ∈ [0, T ],

is satis�ed.
We assume that overdetermination conditions on two di�erent hyper-

surface z = d1(t) and z = d2(t) are hold:

u(t, x, d1(t)) = ϕ1(t, x), u(t, x, d2(t)) = ϕ2(t, x), (t, x) ∈ Π[0,T ], (3)

where Π[0,T ] = {(t, x)| 0 ⩽ t ⩽ T, x ∈ En}, d1(t) ̸= d2(t) and ϕ1(t, x),
ϕ2(t, x) � are given functions, which satisfy matching conditions

ϕ1(0, x) = u0(x, d1(0)), ϕ2(0, x) = u0(x, d2(0)). (4)

The solution to the inverse problem (1) � (3) is a triple of functions
u(t, x, z), a(t, x), b(t, x), that belong to the class Z(t∗), 0 < t∗ ⩽ T , see
(7), and satisfy relations (1) � (3).

3 Main results

In the presented paper a following the existence and uniqueness theorem
of the solution of the original inverse problem is proved:
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Theorem. Let conditions (4),

N1(0, x)u0(x, z) = (P (0, x)f(0, x, d2(0))−
−Q(0, x)f(0, x, d1(0)))u0(x, z) ⩾ δ1,

N2(0, x) = ϕ1(0, x)
∂2u0(x, d1(0))

∂z2
f(0, x, d2(0))−

− ϕ2(0, x)
∂2u0(x, d2(0))

∂z2
f(0, x, d1(0)) ⩾ δ2,

(5)

where δ1, δ2 > 0, δ1, δ2= const,

P (0, x) = ϕ1t(0, x)− Lx(ϕ1(0, x))− (β1(0, x) + d′1(0))u0z|z=d1(0)−
−β2(0, x)ϕ21(0, x),

Q(0, x) = ϕ2t(0, x)− Lx(ϕ2(0, x))− (β1(0, x) + d′2(0))u0z|z=d2(0)−
−β2(0, x)ϕ22(0, x),

be ful�lled. It is assumed that the input data are smooth enough, have all
continuous derivatives included in the following relation

|Dγ
x

∂l1

∂zl1
∂g

∂tg
f(t, x, z)|+ |Dγ

x

∂g

∂tg
Lx(ϕg1(t, x))|+

+|Dγ
x

∂l1

∂zl1
u0(x, z)|+ |Dγ

x

∂g

∂tg
βg1(t, x)|+

+|Dγ
x

∂g

∂tg
ϕg1(t, x)|+ | d

s1

dts1
dg1(t)| ⩽ C,

(6)

here (t, x, z) ∈ G[0,T ], l1 = 0, 10− 2|γ|, |γ| ⩽ 4, g = 0, 1, g1 = 1, 2, s1 = 1, 2,

γ = (γ1, ..., γn) -multi-index, Dγ
x = ∂|γ|

∂x
γ1
1 ...∂xγnn

, |γ| =
n∑

i=0

γi, C ⩾ 1 - constant.

It should be noted that here and below C are di�erent constants. Then there
exists a unique solution u(t, x, z), a(t, x), b(t, x) of the problem (1) - (3) in

Z(t∗) = {u(t, x, z), a(t, x), b(t, x)|u ∈ C1,2,4
t,x,z (G[0,t∗]),

a(t, x), b(t, x) ∈ C0,2
t,x (Π[0,t∗])},

(7)

satis�es inequalities

∑
|β|⩽2

4∑
k=0

∣∣∣Dβ
x

∂k

∂zk
u(t, x, z)

∣∣∣ ⩽ C, (t, x, z) ∈ G[0,t∗], (8)

∑
|β|⩽2

∣∣∣Dβ
xa(t, x)

∣∣∣+ ∑
|β|⩽2

∣∣∣Dβ
xb(t, x)

∣∣∣ ⩽ C, (t, x) ∈ Π[0,t∗], (9)
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where the class C1,2,4
t,x,z (G[0,t∗]) is de�ned as follows

C1,2,4
t,x,z (G[0,t∗]) = {f1(t, x, z)|

∂g

∂tg
f1 ∈ C(G[0,t∗])),

Dβ
x

∂k

∂zk
f1 ∈ C(G[0,t∗]), |β| ≤ 2, k = 0, 4, g = 0, 1},

(10)

and
C0,2
t,x (Π[0,t∗]) = {a1(t, x)|Dβ

xa1(t, x) ∈ C(Π[0,t∗]), |β| ⩽ 2}.

The constant is t∗ = min
(
t∗,

δ1
2K1

, δ2
2K2

)
, where constants K1, K2 depends on

C, δ1, δ2, from relations (5), (6), t∗ satis�es the inequality

e60Ct∗(U(0)+1)20eCt∗(1+U(0))20

⩽ 2,

here U(0) from (21) with t = 0, the constant C depend on C, δ2, from (5), (6).

The proof of this theorem is given in section 4.
An example of input data satisfying the conditions of theorem is given in

section 5.

4 Proof of the theorem

By means of overdetermination conditions (3) and equation (1) we receive
the system of linear algebraic equations by solving which we get form of the
coe�cients

a(t, x) =
P (t, x)f(t, x, d2(t))−Q(t, x)f(t, x, d1(t))

ϕ1(t, x)uzz|z=d1(t)f |z=d2(t) − ϕ2(t, x)uzz|z=d2(t)f |z=d1(t)
,

b(t, x) =
Q(t, x)ϕ1(t, x)uzz|z=d1(t) − P (t, x)ϕ2(t, x)uzz|z=d2(t)

ϕ1(t, x)uzz|z=d1(t)f |z=d2(t) − ϕ2(t, x)uzz|z=d2(t)f |z=d1(t)
.

(11)

Substituting (11) into (1), we arrive at the auxiliary direct problem:

ut = Lx(u) +
N1

N2
uuzz + β1(t, x)uz + β2(t, x)u

2 +
N3

N2
f(t, x, z), (12)

u(0, x, z) = u0(x, z), (13)

here

N1 = N1(t, x) = P (t, x)f(t, x, d2(t))−Q(t, x)f(t, x, d1(t)),

N2 = N2(t, x) = ϕ1(t, x)uzz|z=d1(t)f |z=d2(t)−
− ϕ2(t, x)uzz|z=d2(t)f |z=d1(t),

N3 = N3(t, x) = Q(t, x)ϕ1(t, x)uzz|z=d1(t)−
− P (t, x)ϕ2(t, x)uzz|z=d2(t),

P = P (t, x) = ϕ1t(t, x)− Lx(ϕ1(t, x))− (β1(t, x) + d′1(t))uz|z=d1(t)−
− β2(t, x)ϕ

2
1(t, x),

Q = Q(t, x) = ϕ2t(t, x)− Lx(ϕ2(t, x))− (β1(t, x) + d′2(t))uz|z=d2(t)−
− β2(t, x)ϕ

2
2(t, x).

(14)
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In order for the coe�cient of the highest derivative to be positive and the
denominators in the coe�cients do not equal zero, we introduce the cuto�
function Sδ(y) ∈ C10(E1), with the following properties

Sδ(y) ⩾
δ

3
> 0, Sδ(y) =


y, y ⩾ δ

2 ,

χ(y), δ
3 < y < δ

2 ,
δ
3 , y ⩽ δ

3 ,

(15)

where y ∈ E1, δ = const, χ(y) ∈ C10(E1).
So we get following direct problem (16), (13)

ut = Lx(u) +
Sδ1(N1(t, x)u)

Sδ2(N2(t, x))
uzz + β1(t, x)uz+

+β2(t, x)u
2 +

N3(t, x)

Sδ2(N2(t, x))
f(t, x, z).

(16)

Let us prove the existence of a solution to the direct problem (16), (13). We
apply the weak approximation method [10]. We split the problem (16), (13)

and linearize it by a time shift by
τ

3
in the nonlinear terms

uτt = 3Lx(u
τ ), sτ < t ⩽ (s+

1

3
)τ, (17)

uτt = 3(
Sδ1(N

τ
1 (t, x)u

τ (t− τ
3 ))

Sδ2(N
τ
2 (t, x))

uτzz+

+ β1(t, x)u
τ
z), (s+

1

3
)τ < t ⩽ (s+

2

3
)τ,

(18)

uτt = 3(β2(t, x)u
τuτ (t− τ

3
)+

+
N τ

3 (t, x)

Sδ2(N
τ
2 (t, x))

f(t, x, z)), (s+
2

3
)τ < t ⩽ (s+ 1)τ,

(19)

uτ (0, x, z) = u0(x, z), x ∈ En, z ∈ E1, (20)

here s = 0, 1, ..., N − 1, τN = T,N > 0,N ∈ Z, uτ = uτ (t) = uτ (t, x, z),

N τ
1 = N τ

1 (t, x) = P τ (t, x)f(t, x, d2(t))−Qτ (t, x)f(t, x, d1(t)),

N τ
2 = N τ

2 (t, x) = ϕ1(t, x)u
τ
zz(t−

τ

3
, x, d1(t))f |z=d2(t)−

−ϕ2(t, x)uτzz(t−
τ

3
, x, d2(t))f |z=d1(t),
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N τ
3 = N τ

3 (t, x) = Qτ (t, x)ϕ1(t, x)u
τ
zz(t−

τ

3
, x, d1(t))−

−P τ (t, x)ϕ2(t, x)u
τ
zz(t−

τ

3
, x, d2(t)),

P τ = P τ (t, x) = ϕ1t(t, x)− Lx(ϕ1(t, x))− (β1(t, x) + d′1(t))·

·uτz(t−
τ

3
, x, d1(t))− β2(t, x)ϕ

2
1(t, x),

Qτ = Qτ (t, x) = ϕ2t(t, x)− Lx(ϕ2(t, x))− (β1(t, x) + d′2(t))·

·uτz(t−
τ

3
, x, d2(t))− β2(t, x)ϕ

2
2(t, x).

We introduce the notation

U τ,t0(t) =

10∑
k=0

U τ,t0
k (t), (21)

U τ,t0
k (t) = sup

t0<ξ≤t
sup

x∈En,z∈E1

∣∣∣∣ ∂k∂zk uτ (ξ, x, z)
∣∣∣∣ ,

Uk(0) = sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk u0(x, z)
∣∣∣∣ , (22)

U τ,t0
k (t0) = sup

x∈En,z∈E1

∣∣∣∣ ∂k∂zk uτ (t0, x, z)
∣∣∣∣ , t ∈ (t0, (n+

p

3
)τ ],

t0 ∈ [0, (n+
p

3
)τ), t > t0, p = 1, 2, 3.

(23)

The functions U τ,t0
k (t), U τ,t0

k (t0), Uk(0) are nonnegative and non-decreasing
on each half-interval (sτ, (s+ 1)τ ].

Let us prove the a priori estimates guaranteeing the compactness of a set
of solutions {uτ (t, x, z)} of the problem (17) � (20).

Let the half-interval (sτ, (s+ 1)τ ] be s-th time step, where s = 0, N − 1.
We consider the zero integer step (s = 0).
At the �rst fractional step (p = 1), we obtain the following estimate for the

solution uτ of problem (17), (20), due to (6) and the maximum principle [13]

|uτ (ξ, x, z)| ⩽ sup
x∈En,z∈E1

|u0(x, z)| , 0 < ξ ⩽
τ

3
. (24)

We obtain the following estimates using di�erentiating equations (17),
(20) with respect to z from one to ten times, respectively, due to (6) and the
maximum principle [13]∣∣∣∣ ∂k∂zk uτ (ξ, x, z)

∣∣∣∣ ⩽ sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk u0(x, z)
∣∣∣∣ , k = 1, 10, 0 < ξ ⩽

τ

3
. (25)

We obtain the following estimate from (24), (25) through (21), (22)

U τ,0(t) ⩽ U(0), 0 < t ⩽
τ

3
. (26)
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At the second fractional step (p = 2), we obtain the following estimate for
the solution of equation (18) with initial data uτ ( τ3 , x, z) due to (15), (6),
(21) � (23) and the maximum principle [13]

U τ, τ
3 (t) ⩽ (1 + U τ, τ

3 (
τ

3
))eCτ(1+Uτ,

τ
3 ( τ

3
))20 − 1,

τ

3
< t ⩽

2τ

3
. (27)

Collectively, due to (26), (27) on the �rst and second fractional steps, we
get

U τ,0(t) ⩽ (1 + U(0))eCτ(1+U(0))20 − 1, 0 < t ⩽
2τ

3
. (28)

At the third fractional step (p = 3), integrating the equation (19) with
t ∈

(
2τ
3 , ξ],

2τ
3 < ξ ⩽ τ, we receive the equality

uτ (ξ) = uτ (
2τ

3
) + 3

∫ ξ

2τ
3

(β2(η, x)u
τ (η)uτ (η − τ

3
, x, z)+

+
N τ

3 (η, x)

Sδ2(N
τ
2 (η, x))

f(η, x, z))dη.

The last relation implies the inequality

|uτ (ξ)| ⩽ |uτ (2τ
3
)|+ 3

∫ ξ

2τ
3

(|β2(η, x)|uτ (η)||uτ (η −
τ

3
)|+

+
|N τ

3 (η, x)|
|Sδ2(N τ

2 (η, x))|
|f(η, x, z)|)dη,

where 2τ
3 < ξ ⩽ t ⩽ τ.

Since this inequality holds for all x, z we replace the functions of the
integral terms by their exact upper bounds with respect to x ∈ En, z ∈ E1,
and then replace the function |uτ | , on the left-hand side of the inequality by

sup
x∈Enz∈E1

|uτ |, using notations (23), we obtain

U
τ, 2τ

3
0 (t) ⩽ U

τ, 2τ
3

0 (
2τ

3
) + C

∫ t

2τ
3

(U
τ, 2τ

3
0 (η)U

τ, 2τ
3

0 (η − τ

3
)+

+U
τ, 2τ

3
2 (η − τ

3
) + U

τ, 2τ
3

2 (η − τ

3
)U

τ, 2τ
3

1 (η − τ

3
))dη.

(29)

Further, in the same way, di�erentiating equations (19) with respect to z
from one to 10 times, we get

U
τ, 2τ

3
k (t) ⩽ U

τ, 2τ
3

k (
2τ

3
) + C

∫ t

2τ
3

k∑
q=0

(U
τ, 2τ

3
k−q (η)U

τ, 2τ
3

q (η − τ

3
)+

+U
τ, 2τ

3
2 (η − τ

3
) + U

τ, 2τ
3

2 (η − τ

3
)U

τ, 2τ
3

1 (η − τ

3
))dη, k = 1, 10.

(30)
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Adding (29) and (30), by virtue of (21) we receive

U τ, 2τ
3 (t) ⩽ U τ, 2τ

3 (
2τ

3
) + C

∫ t

2τ
3

(U τ, 2τ
3 (η)U τ, 2τ

3 (
2τ

3
) + U τ, 2τ

3 (
2τ

3
)+

+ U τ, 2τ
3 (

2τ

3
)U τ, 2τ

3 (
2τ

3
))dη,

where C ⩾ 1-constant, independent of τ .
To the last inequality we apply the Gronwall lemma [14], then

U τ, 2τ
3 (t) ⩽ (U τ, 2τ

3 (
2τ

3
) + 1)e2Cτ(Uτ,

2τ
3 ( 2τ

3
)+1) − 1,

2τ

3
< t ⩽ τ.

Consequently, due to (28) and the last inequality at the zero whole step
the following estimate holds

U τ,0(t) ⩽ (U(0) + 1)e3Cτ(U(0)+1)20eCτ(1+U(0))20 − 1, 0 < t ⩽ τ.

Repeating similar arguments at the �rst whole step, we obtain

U τ,τ (t) ⩽ (U τ,τ (τ) + 1)e3Cτ(Uτ,τ (τ)+1)20eCτ(1+U
τ,τ (τ))20 − 1, τ < t ⩽ 2τ.

Assuming that τ is su�ciently small and the inequality

e60Cτ(U(0)+1)20eCτ(1+U(0))20

⩽ 2 holds, at the zero and �rst whole steps we get

U τ,0(t) ⩽ (U(0) + 1)e9Cτ(U(0)+1)20e2Cτ(1+U(0))20 − 1, 0 < t ⩽ 2τ.

Analogous reasoning, at the s−th whole step (s < N) we obtain

U τ,sτ (t) ⩽ (U τ,sτ (sτ) + 1)e3Cτ(Uτ,sτ (sτ)+1)20eCτ(U
τ,sτ (sτ)+1)20 − 1,

sτ < t ⩽ (s+ 1)τ.
Consequently, at s whole steps, we getting

U τ,0(t) ⩽ (U(0)+1)e3(2s+1)Cτ(U(0)+1)20eψ(s)Cτ(1+U(0))20 −1, 0 < t ⩽ (s+1)τ,

ψ(s) =

{
1, s = 0,

2, s = 1, 2, ..., N − 1.

Hence, the following estimate is true

U τ,0(t) ⩽ (U(0) + 1)e3Ct∗(U(0)+1)20et∗C(1+U(0))20 − 1, 0 < t ⩽ t∗,

where t∗ satis�es the inequality

e60Ct∗(U(0)+1)20eCt∗(1+U(0))20

⩽ 2. (31)

And, therefore, taking into account the notation (21), (22) uniformly with
respect to τ

| ∂
k

∂zk
uτ (t, x, z)| ⩽ C, k = 0, 10, (t, x, z) ∈ G[0,t∗]. (32)

After di�erentiating problem (17) � (20) with respect to xi, xj , xl and
xm, i, j, l,m = 1, n, we obtain equations that can be regarded as linear with
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coe�cients uniformly bounded in τ . Arguing by analogy, considering (32),
we obtain estimate

|Dγ
x

∂k

∂zk
uτ (t, x, z)| ⩽ C, k = 0, 10− 2|γ|, |γ| ⩽ 4, (t, x, z) ∈ G[0,t∗]. (33)

We obtain from (33) and (17) � (20) uniformly with respect to τ

|uτt (t, x, z)| ⩽ C, (t, x, z) ∈ G[0,t∗].

We di�erentiate equations (17) � (20) once with respect to z. By (33), the
right-hand side of the equations obtained is uniformly bounded in τ , and
consequently the left-hand side is also uniformly bounded in τ

|uτtz(t, x, z)| ⩽ C, (t, x, z) ∈ G[0,t∗].

By analogy, uniformly with respect to τ

| ∂
k

∂zk
Dλ

xu
τ
t (t, x, z)| ⩽ C, k = 0, 4, |λ| ⩽ 2, (t, x, z) ∈ G[0,t∗].

Thus, the following estimate holds uniformly with respect to τ

| ∂
∂t

∂k

∂zk
Dλ

xu
τ (t, x, z)|+ | ∂

∂xi

∂k

∂zk
Dλ

xu
τ (t, x, z)|+

+| ∂
∂z

∂k

∂zk
Dλ

xu
τ (t, x, z)| ⩽ C, k = 0, 4, |λ| ⩽ 2, (t, x, z) ∈ G[0,t∗].

(34)

The estimate (33) implies the uniform boundedness in τ of the family{
Dγ

x
∂k

∂zk
uτ

}
in G[0,t∗], and from (33), (34) their equicontinuity with respect

to t, x and z is equicontinuous in G[0,t∗]. Therefore, for any �xed γ, k,

|γ| ≤ 2, k = 0, 4, by the Arzela theorem [15] the set
{
Dγ

x
∂k

∂zk
uτ

}
is compact

in C(GM
[0,t∗]

), M > 0 is an integer, GM
[0,t∗]

= {(t, x, z)|t ∈ [0, T ], |x| ⩽ M,

|z| ⩽ M}.
In a diagonal way, we choose a subsequence {uτ} (we do not change

the notation) converging together with the corresponding derivatives with
respect to x and z to some function u in G[0,t∗], and also uniformly in each

GM
[0,t∗]

. The function u is continuous, has derivatives of the corresponding

order with respect to x and z that are continuous in G[0,t∗], and satis�es the
initial data (2) and inequality∣∣∣∣Dβ

x

∂k

∂zk
u(t, x, z)

∣∣∣∣ ⩽ C, k = 0, 4, |β| ≤ 2, (t, x, z) ∈ G[0,t∗]. (35)

Since Dγ
α

∂k

∂zk
uτ ⇒ Dγ

x
∂k

∂zk
u on GM

[0,t∗]
∀M > 0, |γ| ≤ 2, k = 0, 4 and

the inequality (35), it can be proved (the proof is similar to the proof of
Theorem 1.4 of the weak approximation method [10]) that the function u is
a solution of the problem (16), (13) in GM

[0,t∗]
for any �xed M , and since M

is arbitrary, it is also in G[0,t∗].
The function u(t, x, z) belongs to the class (10) and the estimate (35) is

true.
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In order that to prove the existence of a solution of problem (12), (13),
it is necessary to remove the cuto� functions in equation (16). For this, we
prove that for (t, x, z) ∈ G[0,t∗],

N1(t, x)u(t, x, z) ⩾
δ1
2
, N2(t, x) ⩾

δ2
2
.

We di�erentiate N1(t, x)u(t, x, z) and N2(t, x) (N1(t, x), N2(t, x) from
(14)) with respect to t

M1(t, x) = (N1(t, x)u(t, x, z))
′
t = u(t, x, z)

(
P ′
tf(t, x, d2(t))+

+ P
(
f ′t(t, x, d2(t)) + f ′z(t, x, d2(t))d

′
2(t)

)
−Q′

tf(t, x, d1(t))−
−Q

(
f ′t(t, x, d1(t)) + f ′z(t, x, d1(t))d

′
1(t)

))
+

+
(
P (t, x)f(t, x, d2(t))−Q(t, x)f(t, x, d1(t))

)
ut(t, x, z),

M2(t, x) = (N2(t, x))
′
t =

(
uzzt(t, x, d1(t)) + uzzz(t, x, d1(t))d

′
1(t)

)
·

· f(t, x, d2(t))ϕ1(t, x) + uzz(t, x, d1(t))
(
f ′t(t, x, d2(t))+

+ f ′z(t, x, d2(t))d
′
2(t)

)
ϕ1(t, x) + uzz(t, x, d1(t))f(t, x, d2(t))·

· ϕ1t(t, x)−
(
f ′t(t, x, d1(t)) + f ′z(t, x, d1(t))d

′
1(t)

)
·

· uzz(t, x, d2(t))ϕ2(t, x)− f(t, x, d1(t))
(
uzzt(t, x, d2(t))+

+ uzzz(t, x, d2(t))d
′
2(t)

)
ϕ2(t, x)−

− uzz(t, x, d2(t))f(t, x, d1(t))ϕ2t(t, x),

(36)

where

P ′
t = ϕ1tt − Lxt(ϕ1(t, x))− (β1t(t, x) + d′′1(t))uz(t, x, d1(t))−
− β1(t, x)(uzt(t, x, d1(t)) + uz(t, x, d1(t))d

′
1(t))−

− β2t(t, x)ϕ
2
1(t, x)− 2β2(t, x)ϕ1(t, x)ϕ1t(t, x)−

− (uzt(t, x, d1(t)) + uz(t, x, d1(t))d
′
1(t))d

′
1(t),

Q′
t = ϕ2tt − Lxt(ϕ2(t, x))− (β1t(t, x) + d′′2(t))uz(t, x, d2(t))−
− β1(t, x)(uzt(t, x, d2(t)) + uz(t, x, d2(t))d

′
2(t))−

− β2t(t, x)ϕ
2
2(t, x)− 2β2(t, x)ϕ2(t, x)ϕ2t(t, x)−

− (uzt(t, x, d2(t)) + uz(t, x, d2(t))d
′
2(t))d

′
2(t),

Lxt(ϕ1(t, x)) =

n∑
i,j=1

(
(αij)

′ ∂
2ϕ1

∂xi∂xj
+ αij

∂ϕ1
∂xi∂xj∂t

)
+

+
n∑

i=1

(
(αi)

′∂ϕ1
∂xi

+ αi
∂2ϕ1
∂xi∂t

)
,
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Lxt(ϕ2(t, x)) =

n∑
i,j=1

(
(αij)

′ ∂
2ϕ2

∂xi∂xj
+ αij

∂ϕ2
∂xi∂xj∂t

)
+

+

n∑
i=1

(
(αi)

′∂ϕ2
∂xi

+ αi
∂2ϕ2
∂xi∂t

)
.

By virtue of (6), (35)

|M1(t, x)| ⩽ K1, |M2(t, x)| ⩽ K2, (37)

here K1, K2 - are constants depending on δ1, δ2, C.
We integrate expressions (36) with respect to t in the range from 0 to t,

we obtain

N1(t, x)u(t, x, z) = N1(0, x)u(0, x, z) +

∫ t

0
M1(η, x)dη,

N2(t, x) = N2(0, x) +

∫ t

0
M2(η, x)dη.

By virtue of (5), (37) N1(t, x)u(t, x, z) ⩾ δ1 −K1t, N2(t, x) ⩾ δ2 −K2t

N1(t, x)u(t, x, z) ⩾
δ1
2
, N2(t, x) ⩾

δ2
2
, t ∈ [0, t∗]. (38)

By the de�nition of the cuto� function (15) and (38), we obtain
Sδ1(N1(t, x)u(t, x, z)) = N1(t, x)u(t, x, z), and Sδ2(N2(t, x)) = N2(t, x) with

t ∈ [0, t∗], t∗ = min
(
t∗,

δ1
2K1

, δ2
2K2

)
, t∗ see in (31).

Thus, in the equation (16), the cuto�s are removed. The function u(t, x, z)
satis�es the equation (12).

The coe�cients a(t, x) and b(t, x) can be written in the form (11).
Thus, we have proved the existence of a solution u(t, x, z) of the direct

problem (12), (13) in the class C1,2,4
t,x,z (G[0,t∗]).

Let us prove that the triple of functions u(t, x, z), a(t, x), b(t, x) is the
solution of the inverse problem (1) � (3), where a(t, x) and b(t, x) are de�ned
in (11). Since u(t, x, z) is the solution of the direct problem (12), (13),
substituting u(t, x, z), a(t, x), b(t, x) in (1), we obtain the correct identity.

According to (6), (35) from (11), (12), we obtain that the triple of functions
u(t, x, z), a(t, x), b(t, x) belongs to the class (7) and satis�es the inequalities
(8), (9).

Using conditions (4) and equation (1), we can prove that the overdetermi-
nation conditions (3) are satis�ed.

The existence in the class Z(t∗) of the solution u(t, x, z), a(t, x), b(t, x) of
problem (1) � (3) satisfying relations (1) � (3) is proved.

The uniqueness of the solution is proved in the standard way. It is assumed
that there are two solutions to the original problem (1) � (3) that satisfy
conditions (8), (9), and it is proved that the di�erence of these solutions is
zero.

Thus the theorem is proved.
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5 Example

In G[0,1] = {(t, x, z)
∣∣ 0 ⩽ t ⩽ 1, x ∈ E1, z ∈ E1} we have the Cashy

problem

∂u

∂t
= (t2+1)uxx+(t+1)ux+a(t, x)uuzz+sin(t+x)uz+(3+cos(x+t))u2+

+ b(t, x)(−10 sin(t+ z) + sin(t+ x+ z)), (39)

u(0, x, z) = u0(x, z) = cosx+ cos z + 4, (x, z) ∈ E2, (40)

f(t, x, z) = (−10 sin(t+ z) + sin(t+ x+ z)), α11(t) = t2 + 1, α1(t) = t+ 1,

u0(x, z) = cosx+ cos z + 4, β1(t, x) = sin(t+ x), β2(t, x) = 3 + cos(t+ x).

We assume, that overdeterminition conditions are hold on two di�erent
hyperspace z = d1(t) = −t2 and z = d2(t) = −t2 + 1:

u(t;x;−t2) = ϕ1(t, x) = cos(t+ x) + cos(t− t2) + 4,

u(t;x;−t2 + 1) = ϕ2(t, x) = cos(t+ x) + cos(t− t2 + 1) + 4,
(41)

where (t, x) ∈ Π[0,1], Π[0,1] = {(t, x)| 0 ⩽ t ⩽ 1, x ∈ E1} and ϕ1(t, x), ϕ2(t, x)
� satys�ed of

ϕ1(0, x) = u0(x, 0) = cosx+ 5, ϕ2(0, x) = u0(x, 1) = cosx+ cos 1 + 4,

where x ∈ E1.
The sought coe�cients are

a(t, x) =
N1(t, x)

N2(t, x)
, b(t, x) =

N3(t, x)

N2(t, x)
,

here

N1(t, x) = (− sin(t+ x)− sin(t− t2)(1− 2t) + (t2 + 1) cos(t+ x) + (t+ 1)·
· sin(t+ x) + (sin(t+ x)− 2t) sin(t− t2)− (3 + cos(t+ x))·
· (cos(t+ x) + cos(t− t2) + 4)2)(−10 sin(t− t2 + 1)+

+ sin(t+ x− t2 + 1))− (− sin(t+ x)− sin(t− t2 + 1)(1− 2t)+

+ (t2 + 1) cos(t+ x) + (t+ 1) sin(t+ x) + (sin(t+ x)− 2t)·
· sin(t− t2 + 1)− (3 + cos(t+ x))(cos(t+ x) + cos(t− t2 + 1)+

+ 4)2)(−10 sin(t− t2) + sin(t− t2 + x)),

N2(t, x) = −(cos(t+ x) + cos(t− t2) + 4) cos(t− t2)(−10 sin(t− t2 + 1)+

+ sin(t+ x− t2 + 1)) + (cos(t+ x) + cos(t− t2 + 1) + 4)·
· cos(t− t2 + 1)(−10 sin(t− t2) + sin(t+ x− t2)),
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N3(t, x) = (− cos(t+ x)− cos(t− t2)− 4) cos(t− t2)(− sin(t+ x)−
− sin(t− t2 + 1)(1− 2t) + (t2 + 1) cos(t+ x) + (t+ 1) sin(t+ x)+

+ (sin(t+ x)− 2t) sin(t− t2 + 1)− (3 + cos(t+ x))(cos(t+ x)+

+ cos(t− t2 + 1) + 4)2) + (cos(t+ x) + cos(t− t2 + 1) + 4)·
· cos(t− t2 + 1)(− sin(t+ x)− sin(t− t2)(1− 2t)+

+ (t2 + 1) cos(t+ x) + (t+ 1) sin(t+ x) + (sin(t+ x)− 2t)·
· sin(t− t2)− (3 + cos(x+ t))(cos(t+ x) + cos(t− t2) + 4)2).

The input data are fairly smooth, have all continuous derivatives from (6).
Functions N1(0, x)u(0, x, z), N2(0, x) from (5) in Π[0,1] have the following

form

N1(0, x)u(0, x, z) =((cos(x)− (3 + cos(x))(cos(x) + 5)2)(−10 sin(1)+

+ sin(x+ 1))− (− sin(1) + cos(x) + sin(x) sin(1)−
− (3 + cos(x))(cos(x) + cos(1) + 4)2) sin(x))·
· (cosx+ cos z + 4) ⩾ δ1 ≈ 600,

N2(0, x) = −( cos(x) + 5)(−10 sin(1) + sin(x+ 1)) + (cos(x)+

+ cos(1) + 4) cos(1) sin(x) ⩾ δ2 ≈ 37.

Therefore, the conditions (6), (5) are ful�lled.
The solution of (39) � (41) is a triple of functions u(t, x, z), a(t, x), b(t, x),

which have the form

a(t, x) =
N1(t, x)

N2(t, x)
, b(t, x) =

N3(t, x)

N2(t, x)
,

u(t, x, z) = cos(t+ x) + cos(t+ z) + 4.

6 Conclusion

In the presented article, a theorem of existence and uniqueness of the
classical solution in the class of smooth bounded functions of the problem
of determining the source function and the coe�cient in the product of an
unknown function and its second derivative with respect to a spatial variable
in a multidimensional quasilinear parabolic equation is proved.

An example of input data satisfying the conditions of the proved theorem
of existence and uniqueness of the classical solution of the posed inverse
problem is given.

The obtained results are new, have theoretical value and can be used in
the construction of a general theory of inverse problems.
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