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1 Introduction

The class of inverse problems, that is difficult to study, is coefficient
inverse problems, in which, along with the primary source, it is necessary
to determine some physical properties of the process (coeflicients).

Coeflicient inverse problems for quasilinear parabolic equations describe,
model and control nonlinear diffusion and filtration processes, are used to
identify (thermophysical) characteristics (with a large change in the tempere-
ture interval, the thermophysical characteristics of the medium depend on the
temperature distribution) of the processes in thermophysics and mechanics
of continuous media, etc.

Note that the definition of quasilinear parabolic equations is given in [1].

The problems of determining the coefficients of quasilinear parabolic equ-
ations were investigated by N.L. Gol’dman, K.T. Iskakov, A.D. Iskenderov,
S.I. Kabanikhin, I.V. Koptyug, A. Lorenzi, R.Z. Sagdeev, V.M. Volkov 2] -
[9] and others.

In [9], an inverse problem is considered for a quasilinear equation in a semi-
infinite strip in the case of one unknown coefficient for the second derivative
with respect to the variable x, depending on the solution of the equation.

In [2] - [6], [8] coefficient inverse problems for quasilinear parabolic equati-
ons in bounded domains are investigated.

The problem considered in [7] clearly demonstrates the practical applicati-
on of the solution of the inverse problem for a quasilinear parabolic equation.
Namely, mass transport of liquids which obeys the equation with liquid
concentration - dependent diffusivity is considered and water concentration
profiles measured experimeally in the course of drying of water-saturated
porous alumina pellets are shown to be successfully modelled assuming expo-
nential concentration dependence of diffusivity.

In the present paper, the problem of determining two unknown coefficients
depending on time and the independent variable x in a multidimensional
quasilinear parabolic equation is investigated for the unique solvability.

The study is conducted using the following method:

- on the basis of the overdetermination conditions, the initial inverse
problem is reduced to an auxiliary direct Cauchy problem for a nonlinear
loaded equation;

- solvability of the direct problem is proved using sufficiently smooth input
data and the weak approximation method [10];

- the solution of the inverse problem is written out explicitly through the
solution of the direct problem, on this basis the theorem of existence and
uniqueness of the classical solution of the inverse problem in the class of
smooth bounded functions for ¢ € [0,t*] is proved.

Previously, this method was used in the case of coefficient inverse problems
for linear and semilinear parabolic equations, see, for example, [11], [12].

Also in the present paper, the condition for the dependence of t* on the
constants limiting the input data was written out, in [11], [12] this condition
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was not written out. An example of input data satisfying the conditions of
the proved theorem of existence and uniqueness of the classical solution of
the inverse problem is given.

2 Problem statement

In G = {(t,2,2)|0 < t < T,z € En,z € E1} we have the Cauchy
problem

((;2: = L,(u) + a(t, x)uu., + Bi(t, x)u, + Bo(t, x)u? + b(t, ) f(t, z,2), (1)
U(O,.’E,Z) = uO(va)a (.’L’,Z) € Eny1. (2)
Here

n

La(u) = Z ij 81‘103}] Z
1,j=1 =1
functions f(t,z,z) and ug(z,2) are given in Gy 1) and E, 1 respectively,
coefficients o, a4, 1,5 = 1,n, B1(t, x), B2(t, x) are continuously differentiable,
real-valued functions of ¢, and ¢, x, respectively, 0 <t < T > 0, T — const,
FE,, is the n-dimensional Euclidian space, n > 1, n € N.
Let be a;;(t) = ;i(t) and the ratio

n

> auig; >0 VE€ E\0}, te(0.T],

ij=1

is satisfied.
We assume that overdetermination conditions on two different hyper-
surface z = di(t) and z = da(t) are hold:

u(t,r,di(t)) = ¢1(t,x), wu(t,r,d2(t)) = d2(t,x), (t,z)€lpg, (3)
where Il = {(t,7)[0 < t < T, 2 € En}, di(t) # da(t) and ¢1(t, z),
¢o(t, x) — are given functions, which satisfy matching conditions

$1(0,2) = uo(z,d1(0)), ¢2(0,2) = ug(x, d2(0)). (4)

The solution to the inverse problem (1) — (3) is a triple of functions
u(t,z, z), a(t,x), b(t,z), that belong to the class Z(t*), 0 < t* < T, see
(7), and satisfy relations (1) — (3).

3 Main results

In the presented paper a following the existence and uniqueness theorem
of the solution of the original inverse problem is proved:
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Theorem. Let conditions (4),

N1 (0, z)ugp(z, 2) = (P(0,z)f(0,x,d2(0))—
— Q(O,Z‘) (0 x, d1 0)))’&0( (517
Na(0,) = 61(0, )M)%”ZW £(0,,d2(0))~ ©)
- ¢2(0,$)Mf(0,$,d1(0)) > by,

0z2

where 01, d9 > 0, 61, do= const,

P(0,2) = ¢16(0, ) — La(¢1(0,2)) — (B1(0, %) + d}(0)) 02| :—g (0)—
—B2(0,2)¢7 (0, z),
Q(0,2) = ¢21(0, ) — La(¢2(0,2)) — (B1(0, ) + d5(0))tt0z] .=y (0)—
—B2(0,2)¢3(0, z),

be fulfilled. It is assumed that the input data are smooth enough, have all
continuous derivatives included in the following relation

ol 99 09
2 —
DY 5y o {2 2)| + DY o

L (g, (L, 2)) |+

al
+|D

09
: atgﬂgl (t %)+ (6)

09
matgqbgl(t o)+ 15

(z,2)|+ |D]

+Dz

(0] < C,

here (t,z,2) € Goy, I = 0,10 = 2|v|, |[v| < 4, g = 0 L1 =1,2, 51 =1,2,

alvl

Y = (V15 s Vo) -mudti-index, Dy = EISE Ok vl = Z’Yu 2 1 - constant.

It should be noted that here and below C are dzﬁerent constants Then there
exists a unique solution u(t,x,z), a(t,x), b(t,x) of the problem (1) - (3) in

Z(t*) ={ult,z, 2),a(t, z),b(t,x)|u € C’t (G[O 1)

(7)
a(t,x),b( ) € C (H[O t*])}
satisfies inequalities
4 8k
Z Z‘Dgﬁu(t,x,z)‘ < C, (t,.I,Z) € G[()’t*}, (8)
|81<2 k=0
> |Diatt,@)| + Y- | Plbta)| <€ (ta) € Mgy, (9)

1812 1812
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t,x,z

G = {fi(t e

t,x,2 [O,t*]) = {fi( ’w’z)|6t9f1 € C( [O,t*]))a
0"
aca k

where the class C% (G[O ¢=]) 1s defined as follows

f1 € C(Gpe) 1Bl <2,k=0,4,9=0,1},
and
Cr(Mp ) = {a1(t, )| Diar (t, x) € C(Ij ), |B] < 2}

The constant is t* = min (t*, 25711, 2‘%), where constants Ky, Ko depends on

C, 61, 92, from relations (5), (6), t. satisfies the inequality

20,Cts (1+U(0))20
£60Ct(U(0)+1)*e <2,

here U(0) from (21) with t = 0, the constant C depend on C, d2, from (5), (6).

The proof of this theorem is given in section 4.
An example of input data satisfying the conditions of theorem is given in
section b.

4 Proof of the theorem

By means of overdetermination conditions (3) and equation (1) we receive
the system of linear algebraic equations by solving which we get form of the
coefficients

ot z) = P(t,z)f(t, 2, do(t) — Q(t, @) f(t, 2, di (1))
1 (t, ) Uzz|s—a, (1) flo=do(t) — P2(E )2zl o—do (1) F l2=dr (1)
Q(t, )1 (t, T)Usz =gy (1) — Pt 2)P2(t, 2)0zz] o—ay (1)
D1(t, ) Uzzomay (1) f Lo=da ) — D2(ts T Uzl omdn () Fla=an t)

Substituting (11) into (1), we arrive at the auxiliary direct problem:

i

(11)

b(t,z) =

N N-
Ut = Lx(u) + iuuzz + Bl (t7 x)uz + BQ(ta m)uQ + st(ta Z, Z), (12)
2

Ny
u(0,z, 2) = ug(z, 2), (13)
here
N1 = Ni(t,z) = P(t,2) f(t, 2, d2(t) — Q(t, ) f(t, 2, d1 (1)),
No = Nao(t,2) = ¢1(t, @)Uzl =g, (1) flo=do(t)
— ¢a(t, x)uzz|z=d2(t)f’z=d1(t)a
N3 = N3(t,x) = Q(t, 2)p1(t, ¥)uzz| =g, (1) —
— P(t,x)p2(t, )Uzz]2=dy (1) (14)
P = P(t,) = ¢1e(t,x) — Ly(d1(t, x)) — (Br(t, 2) + dy () us]z=a, (1)~

@) = gt x) = La($a(t, ) — (Br(t, x) + di(8))uz] o—y )~
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In order for the coefficient of the highest derivative to be positive and the
denominators in the coefficients do not equal zero, we introduce the cutoff
function Ss(y) € C1°(E}), with the following properties

Y, Yy =

>0, S5(y) = ¢ x(), <y <3, (15)

[ é
gayggv

9

Wl >

Ss(y) =

where y € Ey, 0 = const, x(y) € C1O(Ey).
So we get following direct problem (16), (13)

Ss, (N1(t, x)u)

we= Ll g Nalt )

Uzz + ﬁl (ta x)uz"i_
(16)

Ns(t, 2) f(t,z, 2).

+Bo(t, z)u? + S.(Na(t. )

Let us prove the existence of a solution to the direct problem (16), (13). We
apply the weak approximation method [10]. We split the problem (16), (13)

o
and linearize it by a time shift by 3 in the nonlinear terms

uj =3Ly(u"),sT <t < (s+ é)T, (17)
L Sa V(L= 3)
= 3( Séz(Ng(tﬂf)) et (18)
+ Bi(t, x)ul), (s + é)T <t< (s+ %)7‘,
ul = 3(Ba(t, m)u " (t — §)+
Ni(t, ) 2 (19)
mf(t,x,Z)), (8 + g)T <t < (3 + 1)7',
u (0,x,2) =uo(x,2), =€ Ey z€F, (20)

here s =0,1,... N—=1,7TN=T,N >0,N € Z, u" =u"(t) = u"(t,z, 2),

N{ =Nj(t,z) = PT(tv x)f(t,x,dg(t)) - QT(t7$)f(t7x7d1(t))v

-
Ny = N3 (t,2) = ¢1(t w)uz.(t — 552, di (b)) flazaz (o)~

.
_¢2(t7 x)u;z(t - gv T, d2(t))f’z:d1(t)a
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N§ = Nj (@) = Q" (t,2)n (b, 2l (¢ — T2, da (1) -
—PT(t,2)da(t, )ul.(t - 5w, da(t)),
PT = P7(t,2) = du(t,2) = Lo(61(t,2)) = (Bi (1) + di (1))
Wt = goa,di(1) = Ba(t, )6 (1, ),
Q" = Q7 (t,2) = du(t, 7) = Lu(62(t, ) — (Br(t,) + dy(1))
Wt = @, do(1) = Ba(t, )93 (1, ).

We introduce the notation

Un to Z UT tO (21)
T,to ak

[jlg7 (t) = Ssup sup (571.72) )
to<é<tz€En,2€F 82 99
e (22)

U O — su ZT,z)|,

+(0) ern,EeEl 92k ol 2)
T,t 8k p
Uy, (to) = sup | u'(to,z,2)|, t € (to, (n+ )7,

z€FE,,z€F aZ 3 (23)

to € [0, (n+§)7), t>to,p=1,2,3

The functions U (t), U7 (to), Ux(0) are nonnegative and non-decreasing
on each half-interval (s, (s + 1)7].

Let us prove the a priori estimates guaranteeing the compactness of a set
of solutions {u” (¢, x, z)} of the problem (17) — (20).

Let the half-interval (s7, (s + 1)7| be s-th time step, where s = 0, N — 1.

We consider the zero integer step (s = 0).

At the first fractional step (p = 1), we obtain the following estimate for the
solution u” of problem (17), (20), due to (6) and the maximum principle [13]

-
W€ n ) < sup Juo(@,2), 0<E< . (24)
zeby,,z€F 3

We obtain the following estimates using differentiating equations (17),
(20) with respect to z from one to ten times, respectively, due to (6) and the
maximum principle [13]
ak
@’UJO(,I,Z) )

< sup

k=T,10, 0<¢< 2. (25)
z€En,zeE 3

ok
‘82’“” (& x,2)

We obtain the following estimate from (24), (25) through (21), (22)

U1t <U0), 0<t< (26)

00\\1
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At the second fractional step (p = 2), we obtain the following estimate for
the solution of equation (18) with initial data u”(%,x,2) due to (15), (6),
(21) - (23) and the maximum principle [13]

UE(1) < (14 UBF (50T E 1 T o < 2T

'3 5 (@7

Collectively, due to (26), (27) on the first and second fractional steps, we
get
2
UT,O(t) < (1 + U(O))€CT(1+U(U))20 _ 1’0 <t< ?T (28)

At the third fractional step (p = 3), integrating the equation (19) with
te (5,€, & < ¢ <1, we receive the equality

T

3
)43 [ (ol o))" (0 o2

N3 (n, z)
562 (N2T(777 JJ))

The last relation implies the inequality

(@)=

+ f(n,z,2))dn.

2T

WO < (5

¢ T
3 [ (Bl )l (n = I+

N, 2)|
‘562(N27'<777x>)"f(777 ) )|)d’l7,

Where%<§<t<7~
Since this inequality holds for all x,z we replace the functions of the
integral terms by their exact upper bounds with respect to x € E,, 2z € Fq,
and then replace the function |u”|, on the left-hand side of the inequality by
sup |u"|, using notations (23), we obtain

r€Fk,z€F
T,?i T,Q—T 2T t 7'72—7 7,2—7 T
Uy () <Uy () +C [ (Uy? (mUy * (n— )+
3 27 3
3 (29)
7,2—7 T 7,2.—T T T,?—T T
+Uy % (n — g) + Uy * (n— g)U1 S (n— g))dn-

Further, in the same way, differentiating equations (19) with respect to z
from one to 10 times, we get

7,2—7 7',2—" 2T t i 7',2—7 T,Q—T T
UAIORHEICORRCl D WU TUUARIUEEIR
3 27 q 3
3 g=0 (30)
T,Q—T T 7'72—7 T 7'72—" T
+U, 3(77—§)+U2 S(n—g)[ﬁ S(W—g))dna k= 1,10.
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Adding (29) and (30), by virtue of (21) we receive

2 2 r 2
UT’23() UT’J T JrC'/ UT’d UT’S(f;)+UT’%(f;)+
2T 27 27—
7-7 7-7:7 d
U 5 ( 3 )U 3 ( 3 )) 777

where C' > 1-constant, independent of .

To the last inequality we apply the Gronwall lemma [14], then
T 72 T
UnE (1) < (UT*(237) +1) 20T U F 4 g %T ct<r

Consequently, due to (28) and the last inequality at the zero whole step
the following estimate holds

20,CT(14+U(0))20

U™ (t) < (U(0) 4 1)e3CTWO+1)Te —1, 0<t<T
Repeating similar arguments at the first whole step, we obtain
U™ () < (U7 (r) + 1)SCTWTT @200 0y o
Assuming that 7 is sufficiently small and the inequality

- 20
00CT (U (0)+1)0eCT0+T(O) < 2 holds, at the zero and first whole steps we get

U™0(t) < (U(0) + 1)e2CTWOF)2eor v g g
Analogous reasoning, at the s—th whole step (s < V) we obtain

20, CT(UT57 (s7)+1)20

UT,ST(t) < (UT,ST(ST) + 1)63CT(UT’ST(37—)+1) e ~1

sT<t< (s+1)rT.
Consequently, at s whole steps, we getting

)

>20

Ur,o(t) < (U(O)+1)63(28+1)CT(U(0)+1)2Oe¢(5)07(1+U(0) 1, 0<t< (s+1)7,

1, s =0,
Wls) = {2, s=1,2, .. N—1.

Hence, the following estimate is true

Um0(t) < (U(0) + 1)63%(U(o>+1)206t*c<1+v<o>>20 _1 0<t<t,
where t, satisfies the inequality

20
eGOCt*(U(0)+1)QO€Ct*(1+U(0)) <9 (31)

~
And, therefore, taking into account the notation (21), (22) uniformly with
respect to 7
ak
e
After differentiating problem (17) — (20) with respect to z;, xj, ; and
Tm, 1, 4,1, m =1, n, we obtain equations that can be regarded as linear with

u'(t,x,2)| <O, k=0,10, (t,z,2) € Gpy,)- (32)
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coefficients uniformly bounded in 7. Arguing by analogy, considering (32),
we obtain estimate

ok _
DY u (b2, 2)| < C, k=0,10 -2, [y| <4, (t2,2) € Glo,. (33)
We obtain from (33) and (17) — (20) uniformly with respect to 7
\u{(t,x,z)] <G, (t,x,z) € G[O,t*}'

We differentiate equations (17) — (20) once with respect to z. By (33), the
right-hand side of the equations obtained is uniformly bounded in 7, and
consequently the left-hand side is also uniformly bounded in 7

’uz-z(t7wvz)| <G, (t,JZ‘,Z) € G[O,t*]'

By analogy, uniformly with respect to 7

oF -
|a kD)\ut(taxaz” <C, k=04, |)‘| < 2, (t,l’,Z) EG[OJ*]‘
Thus, the following estimate holds uniformly with respect to 7
o o o oF
Dy’ (t, @, 2)| + | 5=~ Dou (t, 2, 2) |+
ot §zF Ox; 0z (34)
0 8'“

] D)‘ T(ta,2)| S C k=0,4, |\ <2,(t,z,2) € Gy

The estlmate (33) implies the uniform boundedness in 7 of the family
{D;’a U } in Goy,), and from (33), (34) their equicontinuity with respect
to ¢, z and z is equicontinuous in Gjgy,). Therefore, for any fixed v, k,
|v] <2, k =0,4, by the Arzela theorem [15] the set {D}d ) } is compact
in C(Gfg{t }) M > 0 is an integer, G[Ot | = {(t,z,2)[t € [0,T],|z| < M
|z2| < M}.

In a diagonal way, we choose a subsequence {u”} (we do not change
the notation) converging together with the corresponding derivatives with
respect to x and z to some function u in Gjo4,}, and also uniformly in each
Gf‘é[ e The function u is continuous, has derivatives of the corresponding
order with respect to x and z that are continuous in Gg4,], and satisfies the
initial data (2) and inequality

8k
D2t

Since Dgaaku = Dxaku on G[ 1y VM >0, lv] < 2, k = 0,4 and
the inequality (35), it can be proved (the proof is similar to the proof of
Theorem 1.4 of the weak approximation method [10]) that the function w is
a solution of the problem (16), (13) in Gf‘gt*} for any fixed M, and since M
is arbitrary, it is also in Gg,]-

The function u(t, z, z) belongs to the class (10) and the estimate (35) is
true.

<C k=0,4,18 <2, (t,z,2) € Gpy,]- (35)
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In order that to prove the existence of a solution of problem (12), (13),
it is necessary to remove the cutoff functions in equation (16). For this, we
prove that for (¢,z,2) € G,

IS

Niltoyultz,2) > 2 Na(t,a) >

/\l\')

We differentiate Ni(t,z)u(t,z,z) and Na(t,z) (Ni(t,

x), Na(t,x) from
(14)) with respect to ¢

M (t,z) = (N1(t, z)u(t,z, 2)); = u(t,z z)(Pf (t,z, dg (t)+
+ P(f(tx, d2(t) + fo(t, 2, d2(t)d5(t) — Quf (t,x,da(t)—
= Q(fi(t,, di () + fi(t, 2, du(t ))d’l(t)))
+ (P(t, ) f(t, 2, do(t) — Q(t, ) f(t, 2, d ()))ut(txz),
Ma(t,z) = (No(t,2)), = (wase(t, @, d1 () + wans(t, x, di (£))dy (1))
ftx,da(t)d1(t, ) + uas(t, @, di (1)) (fi(t @ d2( )) (36)
+ fL(t m, da(t))dy(t ))¢1(t ) + Uz (t, @, di (1)) f(t, 2, da(t))-
“1e(t, x) — (fi(tz, di(t) + fo(t, 2, di(t))dy (1))
Uz (t, @, d2(t))da(t, @) — f(t,2,di(t)) (went(t, @, da(t))+
+ Uszs (t, @, (1)) d5 (1)) da(t, ) —
— Uz (b, 2, do(1)) f(t, 2, di (1)) P2e(t, @),

where

Pl = ¢1u — Lat(91(t, ) — (Bu(t, z) + dY (t))us(t, =, dr(t))—
= Bu(t, @) (ua(t, 2, d1 (1)) + ua(t, 2, du(8))di () -
— Bog(t, )3 (t, ) — 2Ba(t, )1 (t, )14 (L, ) —
— (un(t, @, di () + us(t, x, di (t))dy () d) (t),

Qt = P2t — Lat(¢2(t, @) — (Bre(t, 2) + di(t))u=(t, z, da(t)) —
= Bi(t, x) (e (t, z, d2(t) + us(t, @, do(t))d5(t)) —
— Boy(t, x)p3(t, ) — 2Bo(t, ) o (t, ) oy (t, ) —
= (uze(t, @, da(t)) + ua(t, z, do(t))dy(t))dy(t),

n

H? 0
La(@1(t.2) = 3 () 5 2 +a ”axg;l]m)+
i,7=1 ’ ‘

+ Z ( a¢1 gar%t)
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n 9% O
_ oy Y92 L Tre
Loi(pa(t,z)) = Z ((a,]) 01,01 + i 6mi8xj3t)+

i,7=1

3l o)

By virtue of (6), (35)
|My(t, z)| < Ky, [Ma(t, )| < Ko, (37)

here K, Ko - are constants depending on 41, ds, C.
We integrate expressions (36) with respect to ¢ in the range from 0 to t,
we obtain

t
Ni(t,2)ult, 2, 2) = Ny(0, 2)u(0, 2, 2) + / Mi(n, 2)dn,
0

No(t,x) = N2(0,2) + /Ot My (n, z)dn.

By virtue of (5), (37) Nl(t, x)u(t,x,z) > 01 — Kit, Ng(t,x) > 09 — Kot

) )
Ni(t,oult,x,2) > 5, No(t,o) > o te 0,17 (38)
By the definition of the cutoff function (15) and (38), we obtain
Ss, (N1(t, x)u(t,z,z)) = Ni(t,x)u(t,x, z), and Ss,(Na(t,z)) = Na(t,z) with

te0,t], ¢ = mm(t*, 2§§1,55722), t, see in (31).

Thus, in the equation (16), the cutoffs are removed. The function u(t, z, 2)
satisfies the equation (12).

The coefficients a(t, z) and b(¢,z) can be written in the form (11).

Thus, we have proved the existence of a solution u(t,z, z) of the direct
problem (12), (13) in the class C}22 P (G[O ])-

Let us prove that the triple of functions u(t,x, z),a(t,x),b(t,z) is the
solution of the inverse problem (1) — (3), where a(¢,x) and b(t, ) are defined
n (11). Since u(t,x,z) is the solution of the direct problem (12), (13),
substituting u(t, x, z), a(t, x), b(t,z) in (1), we obtain the correct identity.

According to (6), (35) from (11), (12), we obtain that the triple of functions
u(t,x, z), a(t, z), b(t,z) belongs to the class (7) and satisfies the inequalities
(8), (9).

Using conditions (4) and equation (1), we can prove that the overdetermi-
nation conditions (3) are satisfied.

The existence in the class Z(t*) of the solution u(t, z, 2), a(t, x), b(t,x) of
problem (1) — (3) satisfying relations (1) — (3) is proved.

The uniqueness of the solution is proved in the standard way. It is assumed
that there are two solutions to the original problem (1) — (3) that satisfy
conditions (8), (9), and it is proved that the difference of these solutions is
zero.

Thus the theorem is proved.
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5 Example

In Gy = {(t,#,2)|0 <t < 1,2 € Ei, z € E1} we have the Cashy
problem

ou .
— = (P Duge + (t+Dug +a(t, 2)uu, +sin(t+x)u, + (3+cos(z+t) ju’+

ot
+b(t,x)(—10sin(t + 2) +sin(t + = + 2)), (39)
u(0,z,2) = up(x,z) =cosx +cosz+4, (x,2)€ Eo, (40)
f(t,z,2) = (—10sin(t + 2) +sin(t + z + 2)), a1 (t) = 2 + 1,4 (t) = t + 1,

up(x, z) = cosx + cos z + 4, 51 (t, z) = sin(t + x), Ba(t, ) = 3 + cos(t + z).
We assume, that overdeterminition conditions are hold on two different

hyperspace z = dy(t) = —t? and z = da(t) = —t> + 1:
u(t; z; —t%) = ¢1(t, x) = cos(t + x) + cos(t — t*) + 4,

e 42 _ _ 2 (41)
u(t;z; —t 4+ 1) = ¢a2(t,x) = cos(t + x) + cos(t — t“ + 1) + 4,

where (t,x) € Ijg 1), 1) = {(t,2)|0 <t < 1, x € E1} and ¢1(t, ), ¢2(t, v)
— satysfied of

01(0,2) = up(x,0) = cosx + 5, p2(0, z) = ug(z, 1) = cosx + cos 1 + 4,

where x € Ej.
The sought coefficients are

Ny(t,x)
No(t,x)’

Ns(t,x)
No(t,x)’

a(t,z) =

here
Ni(t,z) = (—sin(t + z) — sin(t — t2)(1 — 2t) + (t* + 1) cos(t + z) + (t + 1)-
-sin(t 4 2) + (sin(t + x) — 2t) sin(t — t2) — (3 + cos(t + z))-
- (cos(t + x) 4 cos(t — t?) + 4)?)(—10sin(t — t* + 1)+
+sin(t+z —t?+1)) — (—sin(t + z) —sin(t — > + 1)(1 — 2t)+
+ (t2 + 1) cos(t + x) + (t + 1) sin(t + x) + (sin(t + z) — 2t)-
-sin(t — % 4+ 1) — (3 + cos(t + z))(cos(t + x) + cos(t — t? + 1)+
+ 4)?)(—10sin(t — t?) + sin(t — t* + x)),

Ny(t,z) = —(cos(t + x) + cos(t — t%) + 4) cos(t — t2)(—10sin(t — t* + 1)+
+sin(t +x — 2 + 1)) + (cos(t 4+ z) + cos(t — t2 + 1) + 4)-
-cos(t — t? + 1)(—=10sin(t — t?) + sin(t + = — t?)),
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N3(t,z) = (—cos(t + x) — cos(t — t?) — 4) cos(t — t?)(—sin(t + z)—
—sin(t —t2 +1)(1 — 2t) + (> + 1) cos(t + z) + (t + 1) sin(t + z)+
+ (sin(t 4 z) — 2t)sin(t — £ + 1) — (3 + cos(t + :U))(cos (t+z)+
+ cos(t —t2 + 1) +4)?) + (cos(t + z) + cos(t — t* + 1) + 4)-
-cos(t — t* 4+ 1)(—sin(t + x) — sin(t — t*)(1 — 2t)+
+ (t2 + 1) cos(t + ) + (t + 1) sin(t + x) + (sin(t + ) — 2t)-
-sin(t — %) — (3 4 cos(x + t))(cos(t + z) + cos(t — t2) + 4)?).
The input data are fairly smooth, have all continuous derivatives from (6).

Functions N1(0, z)u(0, z, z), N2(0 x) from (5) in Ilj ;) have the following
form

N1(0,2)u(0, z, 2) =((cos(x) — (3 + cos(x))(cos(x) + 5)%)(—10sin(1)+
+sin(z + 1)) — (—sin(1) + cos(z) + sin(x) sin(1)—
— (3 + cos(z))(cos(x) + cos(1) + 4)?) sin(x))-
- (cosx + cosz +4) = 01 ~ 600,
N3(0,2) = —(cos(z) + 5)(—10sin(1) + sin(x + 1)) + (cos(z)+
+ cos(1) +4) cos(1) sin(z) > d2 ~ 37.
Therefore, the conditions (6), (5) are fulfilled.
The solution of (39) — (41) is a triple of functions u(t, z, z), a(t, x), b(t, z),
which have the form
Ni(t, x) Ns(t, z)
No(t,x)’ No(t,z)’

u(t,z, z) = cos(t + ) + cos(t + z) + 4.

a(t,z) = b(t,z) =

6 Conclusion

In the presented article, a theorem of existence and uniqueness of the
classical solution in the class of smooth bounded functions of the problem
of determining the source function and the coefficient in the product of an
unknown function and its second derivative with respect to a spatial variable
in a multidimensional quasilinear parabolic equation is proved.

An example of input data satisfying the conditions of the proved theorem
of existence and uniqueness of the classical solution of the posed inverse
problem is given.

The obtained results are new, have theoretical value and can be used in
the construction of a general theory of inverse problems.
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