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Abstract: In the article it is considered a gradient method for
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of measurements. The inverse problem is reduced to minimizing
the cost functional by the gradient method. A numerical algorithm
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1 Introduction

In this work we consider and implement numerical algorithms for solving
a three-dimensional coefficient inverse problem of ultrasound tomography of
human soft tissues. The development of methods and algorithms for solving
problems that allow the use of ultrasound sensing for the diagnosis of malignant
neoplasms in human soft tissues at an early stage has been actively conducted
recently [11, 13, 16, 22, 21, 23, 24, 25]. Such problems are formulated in the
form of inverse problems in which it is necessary to find the parameters of a
mathematical model based on measurement additional data at the boundary
of the domain [51].

The characteristic features of inverse problems are both their ill-posedness
and the large amount of computing resources needed to obtain an approximate
inverse problem solution. Therefore, the development of algorithms that
make the most effective use of available additional information is very impor-
tant.

Of the many mathematical models that can be used to solve ultrasound
tomography problems, models based on a second-order equation or on a
hyperbolic system of first-order equations are most often considered [27,
28, 31]. Models based on second-order equations [14, 18, 20, 48] are more
theoretically investigated. However, the assumptions necessary for the ap-
plication of second-order equations often do not allow us to guarantee the
reliability of solving the direct, and therefore the inverse problem from a
physical point of view [20]. The approach proposed in this paper is based
on the use of a system of first-order acoustic equations as the main process
model and, although it is more resource-intensive from the point of view
of a numerical solution, it has the advantage that the close connection of
the system of equations with conservation laws causes the proximity of the
numerical solution to real wave processes in the object under study, and also
allows you to model diagrams the directionality of acoustic wave sources
[35]. For the first time, a two-dimensional inverse problem for a hyperbolic
system of first-order equations for determining the two-dimensional density
of a medium was numerically investigated in [15], the inverse problem was
reduced to minimizing the target functional by gradient descent and the
gradient of the functional was obtained through solving the corresponding
conjugate problem, the Godunov scheme was applied to solve the direct and
conjugate problems. Further, in the work [19], a two-dimensional coefficient
inverse problem for a hyperbolic system for determining the wave propagation
velocity and density was also investigated. The inverse problem was reduced
to minimizing the Tikhonov functional with a TV-regularizing additive and
a gradient of the functional was obtained.

Note that coefficient inverse problems for hyperbolic systems were theoreti-
cally investigated in [1]. Numerical methods for solving inverse problems were
considered in the works [1, 28, 31].
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The uniqueness and stability of coefficient inverse problems for hyperbolic
equations with data given on a cylindrical boundary were in [7, 8, 50].

For the linear equation of acoustics, the ray formulation of the inverse
problem of determining three unknown variable coefficients in the equation
based on data measured at the boundary of the region where sources and
receivers located was investigated [41]. It was proved that such an assignment
of additional information allows us to uniquely find all three desired coefficients.
Algorithmically, the original problem splits into three sequentially solved
problems: the inverse kinematic problem of determining the speed of sound
and two problems of integral geometry on a family of geodesic lines determined
by the speed of sound.

A comparative analysis of five imaging and inversion methods was carried
out: time-of-flight tomography, the method of focusing with a synthesized
aperture, migration in reverse time, inversion in the Born approximation
and inversion of the contrast source |46] on synthetic data representing a
two-dimensional scan of a breast cancer tumor.

A three-dimensional computational model of the sensor [37] has been
developed, which allows use the reconstruction methods based on the 3D
waveform inversion in ultrasound tomography.

The inverse problem of recovering two coefficients in an acoustic equation
by internal measurement data [?] was investigated. Using Carleman estimates
it was proved the Lipschitz stability estimates and uniqueness of the inverse
problem solution.

The inverse tomographic wave problem of recovering the characteristics
of a diffuser in the form of spatial distributions of sound velocity, medium
density, absorption coefficient and power index of its frequency dependence,
as well as the flow velocity vector was investigated [32].

A numerical solution of the acoustic tomography problem was presented
using an iterative and functional analytical algorithm based on the approach
of R. Novikov [36].

The numerical method for restoring acoustic attenuation in a hyperbolic
system of acoustic equations was presented [57]. It was shown that the
recovery method was unstable.

It should also be mentioned that recently there have been many works
based on the application of machine learning technologies in ultrasound
tomography [39, 38, 42].

Nonlinear effects of ultrasound tomography have been investigated in the
works [52, 53, 17, 30, 40].

It should be noted that 3D formulations of ultrasound tomography problems
and numerical methods for their solution were considered, for example, in
[17, 18, 26, 45, 37, 44].

Since we use a mathematical model based on a system of acoustic equations,
in the course of solving the corresponding inverse problem, it is necessary to
recover all parameters of the model, which are the density of the medium
and the velocity of wave propagation. However, algorithms for finding several
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coefficients in partial differential equations with a finite number of observations
are even more time-consuming and have a number of features that must be
taken into account during the numerical solution of [34]. Therefore, in this
article, as a first step in the study of the three-dimensional inverse problem,
we consider the problem of determining only the density of the medium.

2 Direct problem

Formulation. Let us consider the following direct problem of acoustic wave
propagation in a three-dimensional medium in the region

Q={(z,y,2):x€(0,L),y € (0,L),z€ (0,L)}, t € (0,7):

Oou 10p ov 10p Oow 10p
_— _— = _— _— = —_— _— = 1
8t+p3:17 ’ 8t+p8y ’ 8t+p82 0 (1)
Op o (Ou Ov Ow
— _ _ — I . 2

Equations (1)—(2) are obtained from the laws of conservation of momentum
in the directions z, y and z, the law of conservation of mass. To finalize the
problem formulation, we add the initial conditions

U,’l),’w,p’t:() =0 (3)

and non-reflective boundary conditions. Functions v = u(z,y,z,t), v =
v(z,y,z,t), w =w(z,y, z,t) — components of the velocity vector in variables
x, y and z respectively, p = p(x,y, z,t) — function of the exceeding (acoustic)
pressure, p = p(x,y, z) — density of the medium, ¢ = ¢(x,y, z) — the velocity
of wave propagation in the medium. Since the values of acoustic models are
close to the values of the speed of sound and density of liquid media, we use
the (1)—(3) system, which often occurs when describing the propagation of
ultrasonic waves in liquid media. The function 6q(x,y, z) on the right hand
side of the equation (2) is a characteristic function of the source in terms
of spatial location, the time form of the source I(t) has the following form
(Riker pulse with dominant frequency vp) [19, 20]:

1 — _1
I(t) = sin <7r1/0(t — )> e WO(t ”0>. (4)
Vo
Well-posedness of the direct problems for linear hyperbolic systems were
investigated in [12].

Method for solving a direct problem. Here we provide a brief description
of the method used to numerically solve a direct problem in the numerical
experiments. The method is based on a counterflow scheme developed by
S.K. Godunov.

This approach is based on the use of the integral form of the problem in
combination with piecewise constant approximation of state variables inside
numerical cells, as well as solving the Riemann problem.
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To describe the method of numerical solution of the problem (1)—(3),
consider a generalization of the equations (1)—(2) in the following form:
ou OF(U) 0G(U) O0H(U)
i =0. )
o T Tor oy T o (5)
Here U = (u,v,w,p) is a vector of state variables, and the functions F(U),

G(U), H(U) respectively, the functions of the stream. After discretization
we obtain the following relations:

Ui-1/24-1/2k=1/2 _ Ui/t 2kt jo—

-
T (Fi,jfl/Q,k71/2 - Fifl,jfl/Q,k71/2) -
T

-
T (Gi71/2,j,k71/2 - Gi71/2,j71,k71/2) -
y

T

T (Hz’—l/Q,j—l/Q,k - Hi—1/2,j—1/2,k—1) . (6)

The equation (6) corresponds to the cell (i —1/2,j —1/2,k —1/2), where
the subscript denotes the values of the state variables U at the current time
step, and the superscript - respectively at the next time step. hy, hy, h., 7
— grid steps in spatial and time coordinates, respectively. The values of the
flows F, G, H are considered at the cell boundary, and are solutions to the
Riemann problem (the problem of the decay of the gap) [47]. For example,
the approximation (6) of the first of the equations (1) has the following form:

i 1/2-1/2k=1/2

p = PUi—1/2,j-1/2,k—1/2T

-
+ hi(Pi,jfl/Q,kflﬂ —Pi_1j-1/2k-1/2)- (7)

Considering the fact that the value p = P, ;_1/3_1/2 is a solution to the
problem of the decay of the gap posed at the boundary {i,5 —1/2,k —1/2}
of the cell in question, we obtain the following relation:

_ Pi-1/2,j-1/2,k—1/2 + Dit1/2,5-1/2,k—1/2 B
N 2

Ui+1/2,j—1/2,k—1/2 — Wi—1/2,5-1/2,k—1/2
_POCOH_/]/ /21/]/ / (8)

The formula for calculating the velocity at the boundary u = U; ;4 /2,k—1/25
which is part of the approximation of the fourth equation in (1), takes the
following form:

 Ui-1/2,5-1/2,k—1/2 T Uig1/2,5-1/2,k—1/2
- 2

_ Piv1/2,j-1/2k=1/2 T Pi-1/2,j-1/2,k—1/2 (9)

2poco
The other three equations of the (1) system are considered in a similar way.
Adding the right hand side of the equations to the numerical solution scheme
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is carried out in the same way. We do not give the all formulas that make up
the numerical scheme. These relations, as well as the study of the stability
of the scheme, are given, for example, in [47].

3 The inverse problem of density recovering

As part of the formulation of the direct problem (1)—(3) we assumed
that the system parameters (density and velocity of sound in the medium)
are known. However, in many applications it is necessary to solve the inverse
problem and determine the parameters of the medium from additional measurements.
Let us assume that additional information is obtained by measuring the
acoustic pressure inside a certain number of receivers:

p(xayvzat):fk’(‘ray’zvt)a (:an?z> GQka k:]-aaN (10)

This condition corresponds to a system of N receivers located in the
corresponding area of 2. We suppose that the speed of sound in the medium
is known. Thus, the inverse problem arises — to determine the density of the
medium p(z,y, z) satisfying the relations (1)—(3), (10). The problem can be
classified as a class of inverse problems with data given on the part of the
boundary. The theoretical study of such statements in the case of receivers
spaced out in space is very difficult (even for statements based on a second-
order equation). Therefore we consider this problem only from the numerical
point of view.

The inverse problem (1)—(3), (10) can be rewritten in operator form as
follows:

Alp)=f,  plz,y,2) = fulw,y,2,t), k=1,...,N. (11)

In [6] it was shown that in the 2D coefficient inverse problem for a hyperbolic
equation, the operator A maps Lo to Lo.

Let’s reduce the inverse problem (1)—(3), (10) to minimizing the cost
functional:

J(p) = 1A(p) = fII2, =
N T
— Z/ / [p(a:,y,z,t; p) — fk(x,y,z,t)]dedydzdt — min. (12)
k=170 7% r
To minimize the functional (12) we apply the accelerated gradient method
(heavy ball method):

Here o € (0, ||A]|2) — descent parameter, J'(p(™) — gradient of the cost
functional. Note that we have [2]:

J'(p) =2[A'(p)]" (A(p) - f). (14)
Note that the heavy ball method can be rewritten as the conjugate gradient
method in the case of minimizing the quadratic functional [56].
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Here [A’(p)]* — the operator conjugate to the Frechet derivative of A. In
[2], a theorem on the convergence of an iterative process was proved in the
case when 5 =0 in (13). If the following conditions holds true

(D APl <p<1,
(2) [[A(p1) — A(p2) — A'(p2)(p1 — p2)|l < nllA(p1) — A(p2)|, 0 < n < 1/2,

then the Landweber iteration method is regularizing, and a strong convergence
estimate is obtained. The fulfillment of the conditions of the theorem for a
two-dimensional coefficient inverse problem for a hyperbolic equation was
shown and an estimate of the strong convergence of the gradient method
was obtained [6].

The initial guess for gradient descent is often chosen based on a priors
information about the inverse problem solution. In the case of sufficiently
accurate a priori information, and therefore a good initial guess, the number
of iterations required to achieve a given accuracy can be significantly reduced
[9, 43]. A modification of the gradient calculation method was presented in
order to use as much data of the inverse problem as possible at each iteration
[29]. In [33] it was presented a method of simultaneously calculating of the
gradient and the conjugate problem, it reduces the amount of stored data
in RAM memory by almost two times and reduces the calculation time by
up to 25%. In [55], an algorithm based on a modification of the conjugate
gradient method was proposed, and which takes into account rounding errors
accumulated during calculations using the gradient descent method.

The gradient of the functional J'(p) can be formally calculated by the
formula [3, 28|:
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Baecs ¥j, j = 1,2,3 — pemenue caeayiomeil CONPAKEHHONR 3a/1aun ¢ HEOT-
PazKalIMUMU I'PAaHUYHBIMU yCHOBI/IHMI/II

0¥, 109y
ot + p Ox 0 (16)
0¥y 10W¥y
o 5oy 0; (17)
o¥3 10¥y
[ Tt S 1
ot + p 0z 0 (18)
OV, (00 Oy O\
ot C<8m+8y+az>_
N
=2pc® Y 0o, (2,9, 2)[p(z,y,2,1) — falz,y, 2,1)]; (19)
k=1
Ui(z,y,2,T) =0, 1=1,2,3, (20)

with nonreflected boundary conditions.

Thus, each iteration of gradient descent implies the solution of the direct
problem (1)-(3), using the current approximation p, of the environment
parameters, the subsequent solution of the conjugate problem (16)—(20)
and simultaneous calculation of the gradient of the cost functional for the
current time step using solutions of direct and conjugate problems (15). Since
the conjugate problem (16)—(20) is a hyperbolic system of equations for its
numerical solution, the Godunov scheme is used also.

4 Numerical results

The numerical calculations used synthetic data corresponding to a physical
model, the acoustic parameters of which are close to the parameters of the
human body [4, 5, 10].

The calculations used the following physical model: the object of study
is placed in water, in which the source and receivers are located at the
boundary. The cross section of the object is circles with a radius of 0.07
m, the distance from the center of the object to the sources and receivers
in each slice is fixed and equal to 0.115 m. The acoustic parameters of the
object (density and speed of sound in tissues) are selected in accordance
with the parameters of human soft tissues (p = 0.9 kg/m3, ¢ = 1.2 km/s).
Inclusions are also located inside the object, their shape, number and values
of acoustic parameters are assumed to be unknown. Within the framework
of the model, the values of the acoustic parameters of these inclusions were
selected, exceeding the values in the ‘healthy”fabrics. (the density was chosen
in the range from p = 1.1kg/m? to p = 1.3 kg/m? in various inclusions,
and the speed of sound varied from ¢ = 1.45 km/s to ¢ = 1.6 km/s).
There was no information about inclusions in the initial approximation. The
number of grid nodes was chosen to be equal for each of the spatial variables:
Ny = Ny = N, = 120. The dominant frequency of the probing signal during
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the experiment was taken to be vy = 20 kHz. The descent parameter is a =,
B8 =0.28.

For the initial experiments, the model shown in the figure 1 was chosen. It
consists of two cylindrical inclusions inside the object. There are 16 receivers
on each slice around the object. The cylindrical shape of the presented model
was chosen in order to test the algorithm for solving 3D direct, conjugate and
inverse problems, and it is not a necessary condition for the applicability of
the algorithm. In further work, we plan to present the results of calculations
for more complex geometry of inclusions, as well as the location of receivers.

0.3
1.6 0.3
0.25 1.5 1.3
0.25
1.4
0.2 1.2
1.3 0.2
> 0.15 12 11
> 0.15
0.1 1.1
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0 0.8

0 0.05 0.1 015 0.2 0.25 0.3 0 0.8
x 0 005 0.1 0.15 0.2 0.25 0.3

Distribution of the wave
propagation velocity in a medium
on an arbitrary slice along the z
coordinate

Distribution of the density of the
medium on an arbitrary slice along
the z coordinate

F1G. 1. The structure of the true model

0 0.05 0.1 0.15 0.2 0.25 0.3

X

3D model illustrating the locations
of inclusions, sources, receivers and
the object

A slice of the model at an arbitrary
coordinate z

Fia. 2. The area of calculation is the cylinder. The sources
are green, the receivers are purple, the object is blue, and the
inclusions are yellow.
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Fig. 3. Inverse problem solution after 70 iterations. The
relative error is 0.0568

The results of solving the inverse problem by the gradient method after
500 iterations are shown in Figures 3—5. The parameter k corresponds to the
coordinate of the variable z. Due to the cylindrical structure of our model,
the values of the recoverable density of the medium must match on all slices,
and this coincidence is shown in figures 3—5 both in three-dimensional form
and in two-dimensional slices.

At each iteration of the algorithm, we calculate the relative error of the
numerical solution:

RelError — Hpezact - Pnumeric”
Hpea:act”

The convergence of the iterative method in terms of functionality is illustrated
by the figure 6. In this experiment, it can be observed that in the case of a
fairly simple structure of the desired solution, the selected initial approximation
turns out to be quite close to the solution, which demonstrates a decrease in
the relative error during the numerical experiment (see Fig. 6).

To study the stability of the algorithm in question, we conducted an
experiment with noisy data. A model with two cylindrical inclusions corresponding
to the previous experiment was considered. Evenly distributed random noise
was added to each of the receivers, corresponding to an error level of 15%.
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FiGg. 4. Inverse problem solution after 250 iterations. The
relative error is 0.0479

The calculation results are shown in Figure 7. A characteristic difference
of this experiment is the difference in the obtained slices. It is caused by
the accumulation of errors associated with random noise in the receivers of
the corresponding layers. As a result, the parameters are updated at each
step of the iterative process in different ways on each slice, which indicates
the correctness of the algorithms for solving three-dimensional direct and
conjugate problems.

Note also that, although inclusions are clearly visible on each slice in the
figure 7, various artifacts that do not correspond to the original model can
also be observed in the above illustration. This is due to the fact that the
incorrectness of the problem under consideration can lead to various features
during the transition to optimization of the functional (12), for example, the
presence of multiple local minima of the functional, resulting in a decrease
in the discrepancy (12) may not mean convergence of the solution to the
original one. In practice, there are various ways to overcome such effects, for
example, the introduction of stabilizers in the formulation of the functional
(12) or using the number of iterations as a regularization parameter (see,
in particular, [34]). In addition, a priori information about the solution
can be included in the initial approximation, which, in the case of reliable
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information, makes it possible to overcome the instability of the problem to
measurement errors.

Baksouenue In this paper, we considered a 3D coefficient inverse problem
for a hyperbolic system of first-order acoustic equations. The inverse problem
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is reduced to minimizing the cost functional by the gradient method. The
gradient of the functional is calculated by solving a conjugate problem, which
also has a hyperbolic type and for its solution we apply the same method as
for a direct problem based on the Godunov type method. The advantages
of the proposed approach, as noted in the introduction, is the possibility of
direct and reverse modeling of acoustic tomography processes taking into
account conservation laws. The results of the numerical experiment show
the general applicability of the approach. However, the numerical complexity
associated with the 3D of the formulation increases even more due to the
iterative structure of the method and requires a large amount of computational
resources to use the method even for relatively coarse grids. In future work,
we will plan to consider ways to reduce the complexity of the method. The
two main ways to do this are to reduce the computational cost of each
iteration or reduce the total number of iterations. When considering the first
method, various higher-order schemes can be considered. The total number
of iterations required to obtain an acceptable accuracy of the solution can
be reduced by using other methods (for example, data-based approaches
related to deep learning algorithms) to obtain a better initial approximation
or by considering various schemes for minimizing the residual functional. In
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addition, it is planned to consider a more complex computational model in
the future, when the geometry of the region and/or inclusions depends on
the third dimension, use data with noise, and restore density and velocity
simultaneously.

The authors are sincerely grateful to the anonymous reviewers for their
valuable comments and advice, which significantly improved the content of
the article.
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