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Abstract: This research focuses on the Cholesky decomposition of
symmetric positive de�nite matrices. While the Cholesky decompo-
sition is known for its computational e�ciency and numerical ro-
bustness, it may encounter decomposition failures when applied to
ill-conditioned matrices with large condition numbers. To address
these computational challenges, this paper proposes an improved
probabilistic rounding error analysis method. This method can
more accurately estimate the rounding errors and thereby guide
the selection of the optimal diagonal loading value. The main
contribution of this research is the determination of a diagonal
loading value applicable to all positive de�nite matrices, ensuring
the successful completion of Cholesky decomposition. In addition,
taking into account the binary representation of numbers in compu-
ters, the diagonal loading value is converted to exponential form,
allowing multiplication to be replaced by the �oating-point bitwise
operations. This approach is both practical and e�cient, e�ectively
solving the challenges posed by ill-conditioned matrices and limited
computational precision.
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1 Introduction

Wiener �lter-based algorithms are widely used in modern digital signal
processing, antenna combining techniques, receivers [1], MMSE channel esti-
mation algorithms [2], etc. A pivotal aspect of these algorithms is their
reliance on the accurate inversion of the covariance matrix, a process recog-
nized as a classic problem in digital signal processing. This is particularly
crucial when dealing with tasks like multidimensional parameter estimation
of a linear system. In such a context, the weight matrix W based on Wiener
�ltering is fundamentally dependent on the inverse of the covariance matrix.
Since the covariance matrix is a symmetric positive de�nite matrix, using the
Cholesky decomposition combined with the forward and backward substitu-
tion method for triangular matrices to �nd the inverse is a method with the
lowest computational complexity and the highest numerical stability.

Cholesky decomposition is favored for its computational e�ciency and
numerical robustness, but it encounters challenges when dealing with ill-
conditioned matrices with very large condition numbers [3]. The main issue is
that if the condition number is too large, the computational process becomes
unstable, which can lead to negative numbers or zeros on the diagonal
of the Cholesky factor during the Cholesky decomposition process, thus
causing the decomposition to fail. This instability is particularly evident
when computational precision is limited, such as when using 16-bit �oating-
point arithmetic and 32-bit �oating-point arithmetic. Several algorithms
have been proposed to overcome these computational challenges, among
which the improved Cholesky decomposition [4] stands out. Although, the
diagonal loading method is becoming increasingly popular in practical appli-
cations through its relatively easy implementation, determining the optimal
loading value for this method remains a signi�cant research challenge. Roun-
ding errors are a critical issue when considering low-bit-width computations.
Traditional deterministic rounding error analysis [5] often overestimates roun-
ding error and provides limited guidance for practical implementations.

In this paper, we introduce probabilistic rounding error analysis [6] as
the theoretical basis. This approach o�ers a more accurate estimate of the
rounding error, allowing for a more accurate assessment of algorithmic stabi-
lity and reliability, and provides a theoretical rationale for the selection of
diagonal loading values. The main contribution of this paper is to obtain a
diagonal loading value which ensures that any positive de�nite matrix can
successfully complete the Cholesky decomposition.

Throughout this paper we use the following notations to denote scalars,
vectors and matrices respectively: a,b,C. The condition number of the
matrix A is referred as k2(A) = ∥A∥2∥A−1∥2. As an element-by-element
comparison between the two matrices goes the expression |A| < |B| signi�es
that the absolute value of each element in the matrix A is less than the
absolute value of the corresponding element in the matrix B.
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2 Problem statement

The Cholesky decomposition, named after the French military o�cer and
mathematician Andre-Louis Cholesky (1875�1918), is an e�cient method
commonly used to compute the inverse of symmetric positive de�nite matri-
ces. Aforementioned type of factorization is backward stable. However, if the
computational precision is limited or the condition number of the matrix A
(whereA is a symmetric positive de�nite matrix) is too large, the decomposi-
tion fails due to rounding errors. A more intuitive explanation can be found
in the implementations of the Cholesky decomposition presented in [8]. Algo-
rithm 1 is the most common �oating-point implementation of Cholesky
decomposition, which is based on gaxpy computations and suitable for dep-
loyment on vector processors.

If this algorithm is applied to an ill-conditioned matrix, due to the accumu-
lation of rounding errors, the computer may attempt to take the square
root of a negative number v[j] while processing line 8, causing to the the
decomposition to fail. Alternatively, it may result in L[j, j] = 0, in which case
v[j : n] will be divided by zero on the next iteration. Even for positive de�nite
matrices the algorithm may fail due to these issues when using �oating-point
arithmetic.

Algorithm 1 Cholesky Decomposition [8]

Input: Symmetric positive de�nite matrix A ∈ Rn×n

1: n← length(A)
2: L← 0n×n {Initialize L as an n× n zero matrix}
3: for j = 1 to n do

4: for i = 1 to j do
5: L[j, i]← A[i, j]− L[i, 1 : i]× L[j, 1 : i]T

6: L[j, i]← L[j, i]/L[i, i]
7: end for

8: L[j, j]←
√
A[j, j]− L[j, 1 : j]L[j, 1 : j]T

9: end for

Output: Lower triangular matrix L ∈ Rn×n such that A = LLT

Wilkinson [9] conducted a comprehensive analysis of the computational
conditions for Cholesky decomposition. He pointed out that the Cholesky
decomposition can be guaranteed to be complete if qnuk2(A) ≤ 1, where
qn is a small constant, and u is the unit rounding error (which depends
on machine precision). To ensure the completion of the factorization, the
paper [10] proposes a small o�set parameter s to the matrix A, keeping
the condition number of A within an acceptable range. However, to obtain
the o�set parameter s, it is necessary to �rst compute the Frobenius norm
of the A matrix, which adds unnecessary complexity. Modi�ed Cholesky
decomposition [4] is also a solution, where the authors compute diagonal
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loading values during the Cholesky decomposition process to minimize per-
turbations. However, this method is more complex and disrupts the compu-
tational pipeline of the Cholesky decomposition, leading to increased com-
plexity in hardware implementation.

We suggest a method similar to that of Fukaya [10], which involves adding
a small o�set δ to the diagonal of the matrix A as follows:

Â = A+ δD, (1)

where D ∈ Rn×n is a diagonal matrix with elements identical to those on
the diagonal of the matrix A.

This method can protect the smallest eigenvalue of A from falling below
a certain threshold, thus ensuring that the condition number of the matrix
does not become too large. The δ here is an exponent with a base of 2,
and its exponent is a negative integer. Computing δD does not require any
multiplication operations, just a shift in �oating-point arithmetic. Therefore,
this method hardly adds any complexity, requiring only n addition operations
to ensure completion of the Cholesky decomposition.

3 Diagonal loading for the Cholesky decomposition

This section analyzes the rounding errors in the Cholesky decomposition
based on the probabilistic rounding error model. Subsequently, as we investi-
gate the relationship between the error in Cholesky decomposition and the
diagonal elements of matrix A, we derive a formula to calculate the optimal
diagonal loading value δ, based on the theoretical foundation available to the
date.

3.1. Error analysis of Cholesky decomposition. In numerical linear
algebra, traditional rounding error analysis provides deterministic backward
error bounds that depend on γn = nu/(1 − nu), where n is the size of
the matrix, and u is the unit rounding error. This type of rounding error
analysis o�ers an important framework for understanding and assessing the
accumulation of errors in computations.

However, as for low-precision computations, these deterministic backward
error bounds cannot provide useful information. Higham [6] has developed
a new probabilistic rounding error analysis method. It uses concentration
inequalities [11] and makes probabilistic estimates of rounding errors. The
research has shown that the inner product error is approximately

√
nu, which

aligns with simulation results.
A pioneering contribution by Higham [6] was the introduction of two

critical expressions in the �eld of probabilistic rounding error analysis. The
�rst expression, formulated as

γ̃n(λ) = exp

(
λ
√
nu+

nu2

1− u

)
≤ λ
√
nu+O(u2) ≈ λ

√
nu (2)
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is used to determine the probabilistic bounds of backward rounding errors.
The second expression, formulated as

Q(λ, n) = 1− 2n exp

(
−λ2(1− u)2

2

)
(3)

quanti�es the probability with that rounding errors will exceed a speci�ed
threshold in computations. In these expressions, λ acts as a tuning parameter,
often referred as a relaxation constant, which adjusts the probability bounds.

Furthermore, Higham extended this probabilistic rounding error frame-
work to analyze the backward error in Cholesky decomposition, demonstra-
ting its applicability in a broader range of computational contexts.

Theorem 1 (Cholesky decomposition error analysis). If Cholesky decompo-
sition applied to the symmetric positive de�nite matrix A ∈ Rn×n runs to
completion then the computed factor L̃ satis�es

A+∆A = L̃L̃T, |∆A| ≤ γ̃n+1(λ)|L̃||L̃|T, (4)

where ∆A is a perturbation matrix of A, with probability at least Q(λ, n3/6+
n2/2 + n/3).

Proof. See Theorem 3.8 in [6]. □

Aforementioned probability model may not be perfect in some cases, as
it may yield negative results, which is unreasonable in probability theory.
Nonetheless, for su�ciently large values of λ, Q(λ, n) remains within the
range of [0, 1], making the model e�ective in these cases.

Òàáëèöà 1. Values of Q(λ, n) in (3) for half precision and
single precision arithmetic with n = 32.

λ half single

4.5 0.5157 0.5205
5 0.9548 0.9554
5.5 0.9967 0.9968
6 0.9998 0.9998

As the value of λ increases, the Q(λ, n) rapidly approaches 1, as shown
in the Table 1. This indicates that the higher the relaxation constant λ, the
lower the probability with that the error in the computation will exceed the
threshold.
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Fig. 1. Backward error and its bounds in Cholesky
decomposition in single precision. Here, Ntest = 100 and λ = 2.

We generate matrices X ∈ Rn×n randomly from the normal distribution
using the 'randn' function in Matlab. Subsequently, we perform matrix multi-
plication to obtain A = XXT. Although the condition number of these
matrices could be any value greater than zero, it is bounded by the Marchen-
ko-Pastur law [7].

For each matrix size n, the Cholesky decomposition is applied to A,
yielding the lower triangular matrix L̃. We conduct Ntest numerical experi-
ments to calculate the backward rounding error as follows:

ε =
|∆A|
|L̃||L̃|T

. (5)

Afterwards, we estimate the maximum backward error observed across
these experiments.

As can be seen from Figure 1, the probability Q(λ, f(n)) is actually
quite conservative. In practical simulations, smaller values of λ are already
su�cient to meet the error bound requirements. This indicates that although
the probabilistic error analysis method is better than the deterministic error
analysis method, it is still quite discreet. Therefore, this approach ensures
the reliability of the error bounds even in the worst-case scenario.

Theorem 2 (Diagonal-Dependent Stability of Cholesky Decomposition).
Let A ∈ Rn×n be a symmetric positive de�nite matrix. If the Cholesky
decomposition is applied to A and reaches completion, then the computed
factor L̃ satis�es the following condition:

A+∆A = L̃L̃T, |∆A| ≤ (1− γ̃n+1)
−1γ̃n+1dd

T, (6)

where ∆A is a perturbation matrix of A, di is the square root of the diagonal
elements of A, with probability at least Q(λ, n3/6 + n2/2 + n/3).



A76 Z. ZHANG, V. LYASHEV

Proof. Theorem 1 states that with probability at least Q(λ, n3/6 + n2/2 +

n/3), the bound of |∆A| is given by γ̃n+1(λ)|L̃||L̃T|. Let l̃i denote the i-th

row of L̃.
Then, we have

∥̃li∥22 = l̃ĩl
T
i = aii +∆aii ≤ aii + γ̃n+1 |̃li||̃li|T, (7)

which implies that ∥̃li∥22 ≤ (1 − γ̃n+1)
−1aii. Applying the Cauchy-Schwarz

inequality, we obtain

|̃lj l̃Ti | ≤ ∥̃li∥2∥̃lj∥2 ≤ (1− γ̃n+1)
−1(aiiajj)

1/2, (8)

leading to

|L̃||L̃|T ≤ (1− γ̃n+1)
−1ddT, (9)

which provides the necessary bound for ∆A. □

This theorem was originally outlined and proved by Demmel [12]. However,
since he used the traditional deterministic error analysis method, the roun-
ding error bounds given are relatively broad. In contrast, applying the proba-
bilistic rounding error analysis method can yield more compact error bounds.
The probabilistic method takes into account the statistical characteristics of
rounding errors, o�ering more precise and realistic error bounds.

In the following subsection, we will apply this theorem to derive the
expression for calculating the optimal diagonal loading value. By analyzing
the size of the matrixA and the rounding errors, we will be able to determine
an optimal value for diagonal loading.

3.2. Optimal diagonal loading value.

Theorem 3 (Regularization For Cholesky Decomposition Completion). Let
A be Rn×n symmetric and positive de�nite. If the diagonal loading values
satisfy the condition

δ > nγ̃n+1/(1− γ̃n+1), (10)

then the Cholesky decomposition applied to Â = A + δD, where D is the
diagonal matrix composed of the diagonal elements of A, can be completed
(excluding under�ow and over�ow issues), with probability at least
Q(λ, n3/6 + n2/2 + n/3).

Proof. Assume that the algorithm has successfully completed k − 1 stages,
yielding a nonsingular L̃k−1. At the k-th step, we consider the partitioned
matrix:

Âk =

[
Âk−1 a
aT b

]
=

[
L̃k−1 0

lT
√
b− lTl

] [
L̃T
k−1 l

0
√
b− lTl

]
= L̃kL̃

T
k , (11)

where Âk, Âk−1 are the leading principal submatrices of Â and l ∈ Rk−1 is
the k-th row of L up to column k-1.

During the calculation, we may encounter the case where b− lTl < 0.
This step would result in an attempt to compute the square root of a
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negative number, yielding an imaginary value and causing the Cholesky
decomposition to fail.

However, even in this case, the error analysis presented in Theorem 2
remains valid. The error bounds derived in Theorem 2 are independent of
the successful completion of the Cholesky decomposition. They provide a
perturbation ∆Âk such that:

Âk +∆Âk = L̃kL̃
T
k , |∆Âk| ≤ (1− γ̃k+1)

−1γ̃k+1

√
dk

√
dk

T
, (12)

where dk = [a11, . . . , akk]
T. Now, let Dk = diag(dk), it follows that

λmin(D
− 1

2
k (Âk +∆Âk)D

− 1
2

k ) = λmin(D
− 1

2
k (Ak + δDk +∆Âk)D

− 1
2

k )

= λmin(Hk + δ +D
− 1

2
k ∆AkD

− 1
2

k )

≥ λmin(Hk) + δ − ∥D− 1
2

k ∆AkD
− 1

2
k ∥2

≥ λmin(Hk) + δ − γ̃k+1

1− γ̃k+1
∥1k∥2

≥ λmin(Hk) + δ − kγ̃k+1

1− γ̃k+1
> 0.

(13)

In this context, Hk is de�ned as Hk = D
− 1

2
k AkD

− 1
2

k and 1k represents a
k × k matrix with all elements equal to 1.

Given this de�nition, it follows that the matrix D−1
k (Âk + ∆Âk)D

−1
k is

positive de�nite. Thus, the congruent matrix Âk + ∆Âk is also positive
de�nite. This result is signi�cant because it implies that L̃k is necessarily
real and non-singular.

The theorem is proven based on the principle of induction. □

Theorem 2 naturally links the diagonal loading value to the diagonal
elements of the matrix A. Higham [6] and Demmel [12] had similar theorems
proven previously. Our diagonal loading variant of these theorems presented
above integrates the probabilistic rounding error analysis.

According to equation (10), we have derived a diagonal loading value
that depends only on the unit rounding error precision and the size of
the matrix. This value is very small and does not require any additional
computation of the norm of the matrix A. By transforming this value with
the logarithmic function log2, we make it easier to handle and adapt to
the binary representation of numbers in computers. Finally, we use the '�x'
function to adjust the resulting value to an exponent with a base of 2.
This adjustment ensures that the �nal diagonal loading value is a small
decimal with a base of 2 and a negative integer exponent. This allows all
related multiplications to be performed e�ciently using bit-wise �oating-
point operations, improving computational e�ciency.



A78 Z. ZHANG, V. LYASHEV

From this, we have obtained the following equation for calculating the
optimal diagonal loading:

δ(λ, n, u) = �x

(
log2

(
n
√
nuλ

1−
√
nuλ

))
. (14)

It can be seen that this expression perfectly incorporates both the matrix
size and the rounding errors. We believe that this is a su�ciently simple yet
e�ective diagonal loader.

Although the probabilistic error analysis is elegant, it tends to provide
overly pessimistic probability lower bounds, as can be seen in Figure 1.
Its most signi�cant contribution is the demonstration that rounding errors
do not increase linearly with the growth of the size of a matrix. Through
extensive numerical analysis and simulations, we have set the parameter λ
to a value of 2. When λ = 2, there are no events that exceed the error
bounds.

Furthermore, based on equation (14), we calculated diagonal loading values
for matrices varying their size, as shown in Table 2. These values were
compared with the diagonal loading values from the deterministic rounding
error analysis. The comparison reveals that our diagonal loading values are
smaller, thereby minimizing the bias in the computational results while still
ensuring the smooth execution of the Cholesky decomposition.

Òàáëèöà 2. Diagonal Loading Values: Probabilistic vs.
Deterministic Analysis in Single Precision Arithmetic

n Probabilistic Deterministic

32 -14 -12
64 -12 -10
128 -11 -8
256 -9 -6
512 -8 -4
1024 -6 -2

4 Numerical experiments

We consider linear systems Ax = b, where A is a symmetric positive
de�nite matrix, to conduct numerical experiments. The matrixA is construc-
ted as A = UΛUT, where U is an orthogonal matrix and Λ is a diagonal
matrix containing the eigenvalues ofA. The orthogonal matrixU is obtained
by orthogonalizing a randomly generated matrix that follows a normal distri-
bution.

To systematically control the condition number of A, we manipulate its
eigenvalues. Speci�cally, the smallest eigenvalue is set to 1, and the largest
eigenvalue is set equal to the desired condition number. The remaining



REGULARIZED CHOLESKY DECOMPOSITION METHOD A79

eigenvalues are spaced linearly between these bounds, with the spacing calcu-
lated as:

λi = 1 +
(i− 1)× (cond− 1)

n− 1
,

where n is the size of the matrix, and 'cond' denote the target condition
number.

After constructing A, we apply diagonal loading, modifying it as Â =
A + δD, where δ is a scalar and D is a diagonal matrix. The Cholesky
decomposition is then applied to Â to obtain the lower triangular matrix L̃,
and the estimated value x̂ is then calculated using the forward and backward
substitution method for triangular matrices. The aim of these experiments
is to compare the e�ects of two types of the diagonal loading values on
the residuals ∥x̂ − x∥2, achieved by incrementally increasing the condition
number of the matrix A.

Fig. 2. Residual value comparison. Here, Ntest = 100, λ = 2
and the size of A is 64.

In Figure 2 it can be seen that the utilization of the diagonal loading values
determined by probabilistic rounding error analysis leads to a signi�cantly
reduced residual in the linear system. This residual is smaller than that
observed when using the diagonal loading values derived from the determinis-
tic rounding error analysis.

5 Conclusion

This paper delves into the Cholesky decomposition of symmetric positive
de�nite matrices and its widespread application in modern digital signal
processing. It analyzes the challenges that the Cholesky decomposition faces
when dealing with ill-conditioned matrices and large matrix sizes in �nite-
precision computing environments.
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By introducing probabilistic rounding error analysis, this study successful-
ly identi�es a diagonal loading value applicable to any positive de�nite
matrix, ensuring the e�ective execution of the Cholesky decomposition. This
discovery highlights the advantages of probabilistic methods in overcoming
the limitations of traditional rounding error analysis and provides a new
perspective on error handling in �nite-bit-width computations.

The work also explores the transformation of the diagonal loading value
into an exponent. This enables all related multiplication operations to be
performed e�ciently through the �oating-point bitwise operations, thereby
enhancing computational e�ciency.

In summary, this paper combines theoretical analysis with practical appli-
cations, providing new methods and gaining insights into the handling of the
key algorithms in digital signal processing.

References

[1] Z. Bai et al., On the equivalence of MMSE and IRC receiver in MU-MIMO systems,

IEEE Commun. Lett., 15:12 (2011), 1288�1290.
[2] V. Savaux, Y. Lou�et, LMMSE channel estimation in OFDM context: a review, IET

Signal Processing, 11:2 (2017), 123�134.
[3] A. Osinsky, R. Bychkov, M. Tre�lov, V. Lyashev, A. Ivanov, Regularization for

Cholesky decomposition in massive MIMO detection, IEEE Wireless Communications
Letters, 12:9 (2023), 1603�1607.

[4] S.H. Cheng, N.J. Higham, A modi�ed Cholesky algorithm based on a symmetric

inde�nite factorization, SIAM J. Matrix Anal. Appl., 19:4 (1998), 1097�1110.
Zbl 0949.65022

[5] N.J. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadelphia,
2002. Zbl 1011.65010

[6] N.J. Higham, T. Mary, A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput., 41:5 (2019), A2815�A2835. Zbl 7123205

[7] I. Kolesnikov, V. Lyashev, M. Kirichenko, Fast algorithm for estimating singular

values of Hermitian matrix, in 31st Telecommunications Forum (TELFOR), Belgrade,
Serbia, 2023, 1�4,

[8] G.H. Golub, C.F. Van Loan, Matrix computations, The Johns Hopkins University
Press, Baltimore, 2013.

[9] J.H. Wilkinson, A priori error analysis of algebraic processes, in Tr. Mezhdunarod.
Kongr. Mat., Moskva 1966, 629�639. Zbl 0197.13301

[10] Fukaya T, Kannan R, Nakatsukasa Y, Yamamoto Y, Yanagisawa Y., Performance

evaluation of the shifted Cholesky QR algorithm for ill-conditioned matrices, SC18
Supercomputing, Proceedings, Poster No 69.

[11] W. Hoe�ding, Probability inequalities for sums of bounded random variables, J. Amer.
Stat. Assoc., 58 (1963), 13�30. Zbl 0127.10602

[12] Z. Bai, J. Demmel, A. McKenney, On �oating point errors in Cholesky, Technical
Report CS-89-87, Department of Computer Science, University of Tennessee,
Knoxville, TN, USA, October 1989, LAPACK Working Note 14.

https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post193s2-file3.pdf
https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post193s2-file3.pdf


REGULARIZED CHOLESKY DECOMPOSITION METHOD A81

Zhibin Zhang

Moscow Institute of Physics and Technology,

9 Institutskiy Lane

Dolgoprudny City

Moskovskaya oblast

141700, Moscow, Russia

Email address: zhibin@phystech.edu

Vladimir Lyashev

Moscow Institute of Physics and Technology,

9 Institutskiy Lane

Dolgoprudny City

Moskovskaya oblast

141700, Moscow, Russia

Email address: lyashev.va@mipt.ru


	Introduction
	Problem statement
	Diagonal loading for the Cholesky decomposition
	Error analysis of Cholesky decomposition
	Optimal diagonal loading value

	Numerical experiments
	Conclusion

