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Abstract: The first fully polynomial-time approximation algo-
rithm for solving the Job Shop problem in its most general form
with theoretically guaranteed a priori accuracy bounds was pub-
lished in (Sevast’yanov, 1984). The approach used in that paper
for solving the Job Shop problem, based on the method of compact
vector summation in d-dimensional space, was further developed
in (Sevast’yanov, 1986). For any fixed job shop, those algorithms
provided an asymptotic optimality of the solutions, under the un-
limited growth of size of the batch of jobs supplied at the prob-
lem input. Later on, two other approximation algorithms for this
problem with ratio performance guarantees appeared in (Shmoys
et al., 1994). The first algorithm provided (in polynomial time) a
poly-logarithmic approximation in terms of two parameters: the
number of machines (m) and the number of operations per job
(µ). The second algorithm guaranteed a (2+ ε)-approximation for
any fixed ε > 0 and was polynomial-time for any fixed values of m
and µ. Finally, in (Jansen et al., 2003), a PTAS was elaborated
for the Job Shop problem, which was polynomial-time under the
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assumption that m and µ are fixed. All three above mentioned al-
gorithms were heavily based on the algorithm from (Sevast’yanov,
1986) and were presented as an “improvement” of the latter. In
the present paper, a comparative analysis of the quality of four
known for today theoretical algorithms for approximate solution
of the Job Shop problem (namely, of the algorithms from (Sev-
ast’yanov, 1986), (Shmoys et al., 1994), and (Jansen et al., 2003))
is carried out. It is shown that on the set of instances of prac-
tical size, the best to date by the accuracy/efficiency criteria is
the algorithm from (Sevast’yanov, 1986), while the second algo-
rithm from (Shmoys et al., 1994) and the PTAS from (Jansen et
al., 2003) are not capable of obtaining a solution 10 times worse
than optimal in any physically observable time even for compara-
tively small instances of the problem (and even with the help of the
Super-Computer System of the whole Universe). The paper also
presents an improved scheme of the algorithm from (Sevast’yanov,
1986), which gives a better bound on the absolute error with the
same bound on the running time, which is the first positive result
in this direction since 1986. Detailed schemes of all procedures
used in the algorithm are given (in order to facilitate its program-
ming). In addition, the paper shows how both algorithms from
(Shmoys et al., 1994) can be transformed so that their running
time becomes linear in the main problem parameter, the number
of jobs n.

Keywords: scheduling, job shop problem, makespan, approxima-
tion, polynomial time algorithm.

1 Introduction

In the 1970 s, a tight connection was discovered between multistage sched-
uling problems of the Flow Shop type and geometric problems of finding an
order of summation for a given finite family of vectors from Rd within a ball
(of some norm defined in Rd) of minimum radius1. This connection enabled
one to find efficiently approximate solutions for scheduling problems with
a priori guaranteed accuracy bounds by reducing these problems (approx-
imately) to the corresponding vector summation problems, provided that
efficient methods with theoretical performance guarantees had already been
developed for the latter problems.

Later on, a similar connection between scheduling problems and vector
summation problems was found for many other multistage scheduling prob-
lems to the minimum makespan, such as: problems with several different
routes of jobs through machines [1, 2, 15, 16, 6, 11], problems with non-fixed

1For the first time, these results were mentioned by Sevastyanov in June of 1974, in
Proceedings of the 3rd All Union Conference on Problems in Theoretical Cybernetics [12].
The relationship between scheduling and vector summation problems was then indepen-
dently discovered by Belov and Stolin and published in December of 1974 in [4].
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routes [9, 22, 23, 24, 25], production line problems [3], flexible flow shop
problem [15, 20], a.o., which emphasized the importance of vector summa-
tion methods for scheduling theory.

As a result, a wide range of geometric problems on finding orders of vec-
tor summation within various (either fixed or optimized) domains of finite-
dimensional space appeared in the scope of our interests. So, developing
efficient methods for approximate solution of such problems became topical.
For a more detailed acquaintance with results in this area, we refer the reader
to two reviews [21, 25]. Now we only note that beyond the approximate
solution of scheduling problems, these geometric methods enable one to find
optimal solutions for wide polynomially solvable classes of instances
of the Open Shop problem [22, 23, 24, 25, 9].

By all accounts, one of the most difficult multistage scheduling problems
for (not only exact, but also approximate) solution is the Job Shop problem,
in which each job may have its own, individual route through machines of
an arbitrarily large length. The number of operations per job is a parameter
independent on the number of machines (each machine can be used multiple
times in the job route). This m-machine n-job problem with the minimum
makespan objective is normally denoted as ⟨J ||Cmax⟩. It can be formulated
as follows. (Here and then, [k] will denote the set of integers {1, 2, . . . , k},
where [k] = ∅ for k = 0.)

Job Shop problem. We are given a set of jobs {J1, . . . , Jn} that should
be processed on a given set of dedicated machines {M1, . . . ,Mm}. Each
job Jj (j ∈ [n]) consists of µj operations {O1,j , . . . , Oµj ,j} that must be
processed in this order. (This means that the next operation of a job can-
not start until the previous one has been completed.) Each operation Oη,j

should be processed on a certain machine M(Oη,j) within a time interval
of length pη,j , without interruption. The processing of different operations
on the same machine should not overlap in time. Among the set of feasible
schedules (which meet the above requirements), we wish to find a sched-
ule S = {sη,j |Oη,j ∈ O} (where sη,j is the starting time of operation Oη,j ,
and O denotes the set of all operations) that minimizes the maximum job
completion time Cmax(S)

.
= max{sη,j + pη,j |Oη,j ∈ O}.

As one can see, the above problem setting stipulates a certain route of
each job through machines. As was claimed in [5], such a route cannot be
an arbitrary one: “In literature of job shop scheduling, machine repetition
is usually not allowed, i.e., consecutive operations of the same job must
always be assigned to different machines. We follow this convention unless
stated otherwise.”

Apparently, accepting such a convention for the “norm” in the formulation
of the Job Shop problem could be explained by the difficulty of solving the
problem in the general case. Yet, we should note that such a restriction on
the problem setting can facilitate its exact solution in very special cases only
(such as the case of two machines) and is useless in more general cases. As
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for the approximate solution of this problem, as we will see it later, the most
significant positive results in this direction (due to Sevastyanov [17, 18],
Shmoys, Stein and Wein [26], and Jansen, Solis-Oba, and Sviridenko [8])
have been obtained for the Job Shop problem in the setting presented
above, i.e., without the artificial constraint on job routes accepted in Chen,
Potts, and Woeginger [5] for the “norm”.

Moreover, the problem without such a restriction enables us to consider
interesting models with controllable interruptions, in which interruptions of
each operation are allowed only at certain relative time moments specified by
certain (admitted) values of the volume of the already completed part of the
operation. To cope with such a problem, it suffices (1) for each operation to
cut down its processing time interval at given relative time moments (spec-
ifying “allowed interruptions” of the operation), thereby obtaining several
“smaller operations” to be sequentially executed on the same machine,
and (2) to solve the resulting Job Shop problem without interruptions and
without the above restriction on machine repetition. Such models
(with controllable interruptions) generalize both the models with preemp-
tion [(where interruptions of each operation are allowed only at relative
time moments from a given finite set specified for that operation)], and
the models without preemption.

Thus, we will consider the Job Shop problem without the artificial con-
straint on machine repetition in job routes (since the latter really limits the
generality of our problem) and will denote it as ⟨J ||Cmax⟩. For denoting
the special case of this problem with the “bun” on machine repetition in any
job route, we suggest to use notation “no rep”. Note also that this restric-
tion limits not the set of feasible solutions of the problem (related to the
problem output), but rather the set of its inputs, thereby determining
the problem we solve: either the problem in its general form or a certain
special case of it. That is why I propose to place such a definition of the
problem to be solved (listing the restrictions/extensions of the set of inputs)
in the first field of the three-field system we use, leaving the second field
for recording the restrictions (or, conversely, extensions) of the set of feasible
solutions of the problem. Thus, the above mentioned special case should be
denoted as ⟨J, no rep ||Cmax⟩.

The difficulty of the exact solution of the Job Shop problem is confirmed
by a number of results establishing that some very special cases of it (all
of which are “no rep”) turn out to be NP-hard. For example, these are
the problems ⟨J2, no rep, µj ≤ 3 ||Cmax⟩ and ⟨J3, no rep, µj ≤ 2 ||Cmax⟩ [10]
(i.e., the problem with two machines and at most three operations per job and
the problem with three machines and at most two operations per job), as well
as problem ⟨J3, no rep, n ≤ 3 ||Cmax⟩ [27] (with three machines and at most
three jobs). Meanwhile, such a special case of ⟨J3, no rep, µj ≤ 3 ||Cmax⟩
problem as ⟨F3 ||Cmax⟩ (when all jobs have the same route (1, 2, 3) through
machines) is strongly NP-hard [7].
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As far as an approximate solution of this problem is concerned, appar-
ently, the first efficient algorithms with theoretical performance guarantees
for solving the Job Shop problem in its most general form were presented
in (Sevast’yanov, 1984, 1986). The polynomial-time algorithms described in
those two papers guaranteed finding schedules satisfying a priori bounds on
the absolute error in the form:

Cmax(S) ≤ Lmax + φ(m,µ)pmax, (1)

where Lmax is the maximum machine load (which, clearly, is a lower bound
on the optimum), µ .

= maxj µj is the maximum number of operations per
job, φ(m,µ) is a polynomial on m and µ, and pmax

.
= maxη,j pη,j is the

maximum processing time of an operation.2 As one can see, the absolute
error Cmax(S) − Lmax ≤ φ(m,µ)pmax of the approximate solution does not
depend on the number of jobs. Under the assumption that the values of
parameters m, µ, and pmax are bounded by constants, while the number
of jobs n grows without limit (and so, pmax becomes arbitrarily small with
respect to amounts P .

=
∑

η,j pη,j and Lmax ≥ P/m), the solution found
becomes asymptotically optimal.

It should be noted that the assumption made in [17, 18] about the limited
growth of the quantities m,µ, and pmax in parallel with the growth of the
number of jobs n has got a practical meaning. Assuming that the range of
products manufactured in the job shop remains more or less constant over a
long period of time, we can calculate the maximum values of quantities µ and
pmax for this range of products and treat them as constants over time. The
maximum possible number of machines (m) placed in the job shop is also
limited by the size of the job shop (i.e., by a constant independent of time).
As for the number of jobs n, this parameter obviously grows proportionally
to the duration (T ) of the planning horizon3 of the shop activities. Under
these conditions, the algorithms described in [17, 18] provide good practical
solutions that become (theoretically) asymptotically optimal with unlimited
growth of T .

Based on the algorithm from (Sevast’yanov, 1986), Shmoys et al. (1994)
designed two approximation algorithms for the Job Shop problem with ratio
performance guarantees. One of them provided a poly-log approximation
in terms of variable parameters m and µ and was purely polynomial-
time. To construct an approximate schedule, they divide the entire set of
jobs into “small” jobs (all operations of which have a length not greater
than Lmax/(2mµ

3)) and the remaining “large” jobs, the number of which
(n′) does not exceed 2m2µ3. For “small” jobs, they use the algorithm from
(Sevast’yanov, 1986) (with running time O(m2µ2n2)) which constructs a
schedule SS with length that meets bound (1), where instead of the function

2The algorithms presented in those two papers differ in the orders of their polynomials
φ(m,µ) and in bounds on their running time.

3Planning horizon is the time interval [0, T ] during which it is required/wanted/planned
to perform a specified list of jobs.
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φ(m,µ) the authors of (Shmoys et al., 1994) use its upper bound 2mµ3. As
a result, from (1) and from the upper bound on the lengths of operations
of “small” jobs, we obtain the bound Cmax(SS) ≤ 2Lmax. For “large” jobs,
Shmoys et al. first transform the durations of their operations (by switching
to a new time unit equal to δ .

= pmax/|O′|, where O′ is the set of operations
of “large” jobs), and then rounding them down to the nearest integer. Thus,
the new durations (p ′

η,j
.
= ⌊pη,j |O

′|
pmax

⌋) of operations are integers and do not
exceed |O′| ≤ n′µ. After that, for the instance consisting of all large jobs
with transformed processing times, a randomized polynomial-time algorithm
is applied, which, with high probability, yields its schedule S′

2 of length

Cmax(S
′
2) ≤ O

(
(L′

max + P ′
max)

log(n′µ)

log log(n′µ)
log p ′

max

)
, (2)

where p ′
max

.
= max{η,j} p

′
η,j is bounded from above by n′µ, while L′

max and
P ′
max

.
= maxj

∑
η∈[µj ]

p ′
η,j are the maximum machine load and the maximum

job length measured in the new time units. Keeping in mind that functions
x/ log x and log x are monotonically increasing, we may replace p ′

max and n′
in (2) by their upper bounds (polynomial in m and µ) and obtain the bound:

Cmax(S
′
2) ≤ O

(
(L′

max + P ′
max)

log2(mµ)

log log(mµ)

)
.

This inequality, clearly, remains valid after returning to the original time
units, because all time-dependent parameters (such as processing times p ′

η,j ,
schedule length Cmax(S

′
2) and amounts L′

max, P
′
max) are multiplied by the

same number δ, providing (in new terms) the inequality

Cmax(S
′′
2 ) ≤ O

(
(L′′

max + P ′′
max)

log2(mµ)

log log(mµ)

)
. (3)

Next, returning to the original instance of large jobs (with operation lengths
pη,j ≥ p ′′

η,j) lengthens each operation by at most δ and increases the length
of each path in the precedence graph of operations in schedule S′′

2 by no more
than δ · |O′| = pmax, while L′′

max and P ′′
max in the right part of (3) grow up

to at most Lmax and Pmax. As a result, the authors obtain a schedule S2 for
large jobs which, with high probability, meets the bound:

Cmax(S2) ≤ Cmax(S
′′
2 ) + pmax ≤ O

(
(Lmax + Pmax)

log2(mµ)

log log(mµ)

)
. (4)

A subsequent derandomization of this schedule yields (in polynomial time)
a deterministic schedule SL for large jobs with bound

Cmax(SL) ≤ O(log2(mµ)C∗
max).

Finally, consecutively connecting schedules SS and SL for small and large
jobs, they obtain schedule S with the relative accuracy bound

Cmax(S)/C
∗
max ≤ O(log2(mµ)). (5)
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Since the algorithm for large jobs is polynomial-time, and the number of
large jobs (n′) is bounded above by 2m2µ3, the overall running time of their
algorithm can be estimated as O(n2m2µ2 + P (m,µ)), where P (m,µ) is a
polynomial of m and µ.

The second approximation algorithm from (Shmoys et al., 1994)
provided a (2 + ε)-approximation for any fixed ε > 0 in polynomial (O(n2))
time under assumption that parameters m and µ are fixed. Again, they use
the idea of dividing the whole set of jobs into two subsets of “small” and
“large” jobs, yet with the “watershed” for lengths of operations at a different
value εLmax

2mµ3 . The application of the algorithm by (Sevast’yanov, 1986) to
small jobs yields a schedule SS that meets bound (1) with φ(m,µ) = 2mµ3

and pmax = εLmax
2mµ3 , which yields the bound Cmax(SS) ≤ Lmax + εLmax ≤

(1 + ε)C∗
max. For “large” jobs (the number of which is not greater than

2m2µ3/ε, and for fixed m,µ, and ε is fixed), they find (by any way) an
optimal schedule SL of length Cmax(SL) ≤ C∗

max, which yields the desired
accuracy bound for the concatenation of two schedules:

Cmax(SS ⊕ SL) ≤ (2 + ε)C∗
max. (6)

The PTAS presented by (Jansen et al., 2003) for the general Job
Shop problem ⟨J ||Cmax⟩ in the case of any fixed m and µ is a development
of the above result (i.e., of the O(n2)-time (2 + ε)-approximation algorithm
for problem ⟨J ||Cmax⟩ with any fixed m,µ, and ε > 0). They described an
O(n)-time (1 + ε)-approximation algorithm for any fixed ε ∈ (0, 1) and any
fixed m and µ. This time, the authors divided the set of all jobs into three
subsets: of “big”, “small”, and “tiny” jobs. At that, “small” jobs (whose total
length is δ-small with respect to Lmax and C∗

max) are scheduled separately
and independently of other jobs, while for the “big” jobs the authors organize
a full enumeration of all their “rounded schedules” within a time interval that
obviously exceeds the length of the optimal schedule. Each chosen “rounded
schedule” for “big” jobs defines time intervals of the “second type”, for each
of which a subset of machines available for processing the remaining (“tiny”)
jobs is fixed and known. The target of the linear program then applied
is determining suitable lengths of those time intervals and distributing the
fragments of “tiny” jobs among those intervals. Finally, the algorithm by
(Sevast’yanov, 1986) is separately applied in each “second type” interval to
the fragments of “tiny” jobs distributed to it.

As the reader could be convinced from the presented above short descrip-
tion of the approximation algorithms from (Shmoys et al., 1994) and (Jansen
et al., 2003), all these algorithms for the Job Shop problem are heavily based
on the approximation algorithm by (Sevast’yanov, 1986) and essentially use
its bound (1) on the absolute error of the solutions obtained. Meanwhile,
no progress can be observed with respect to that absolute accuracy bound
since the distant 1986. In the present paper, we make the first step towards
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a further enhancement of that basic result by improving the absolute accu-
racy bound guaranteed for the solution obtained by our algorithm. While
(Shmoys et al., 1994) roughly estimated the polynomial φ(m,µ) (introduced
in (1)) from above in terms of its major term as 2mµ3, we now show that
it can be bounded by mµ2(µ− 1). To improve the bound, we used two new
ideas. One of them is an implementation of the property of the Steinitz
family of vectors defined for the original instance of the Job Shop problem
to lie within a ball of an asymmetric norm (but with an internal central sym-
metry), which enables us to apply to these vectors a summation algorithm
with a smaller bound on the radius (compared to the algorithms used in
(Sevastyanov, 1984, 1986)).

Another idea is to use a large number of additional (“dummy”) jobs with
zero vector of operation durations. Yet, since an uncontrollable increase
in the total number of vectors leads to an increase in the running time of
the vector summation algorithm, we have to introduce an upper limit on
the number of additional jobs. Thus, the resulting accuracy bound and
the bound on the running time of the new algorithm are a kind of a “deal”
between two goals: minimum error and minimum running time.

The rest of the paper is structured as follows. Section 2 introduces some
necessary notions and notation and presents some known results used in
the paper. Section 3 describes the new version of the algorithm for solving
the Job Shop problem. At the same time (in order to avoid referring the
reader to inaccessible sources and to provide a self-contained description of
our algorithm), a sufficiently detailed description of the procedures dealing
with families of vectors (and essentially used in our algorithm) is given in
Appendices A and B. (This can considerably help the readers interested in
an experimental verification of the practical applicability of our method for
solving the Job Shop problem with real size instances.) Section 4 presents
the proof of the main result of this paper, Theorem 2, where the quality of
the new algorithm is estimated.

In addition, Section 5 will demonstrate a simple technique for linearization
of the complexity of both algorithms from (Shmoys et al., 1994) with respect
to the number of jobs. In terms of the parameters m,µ, ε, and n, the new
bounds on their running time will be O(µn+f(m,µ)) and O(µn+g(m,µ, ε)),
respectively, where f(m,µ) is a polynomial ofm and µ (which is of theoretical
interest from the view point of parametric analysis of the complexity of
approximate solution of the Job Shop problem), while function g(m,µ, ε)
exponentially depends on the parameters m,µ, and 1/ε. In Section 6, we
perform a comparative analysis of four (currently known) approximation
algorithms for solving the Job Shop problem with theoretical performance
guaranties subject to their applicability for solving practical instances of the
problem. The analysis shows an undeniable advantage of our algorithm over
other competitors. Moreover, a small instance clearly demonstrates that the
second algorithm from (Shmoys et al., 1994) and the PTAS from (Jansen et
al., 2003) are absolutely inoperable, neither now nor in any distant future.
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(We hope that the methodology of assessing the practical applicability of
algorithms, presented here, can also be successfully applied for testing the
practical applicability of other algorithms of solving discrete problems for
which there are theoretically guaranteed bounds on their running time.)
Finally, Section 7 contains a brief discussion of the results obtained and
formulates further possible research directions.

2 Preliminary results

The notion of a schedule is one of the basic notions in our paper. Each
schedule defined or constructed in this paper by one of our algorithms repre-
sents a certain solution of the problem under consideration. (Although,
some schedules constructed here may be infeasible.) Concerning the defini-
tion of schedule, it should be noted that there may be many ways to define
this notion (depending on the complexity of the problem setting). But in our
case it will be sufficient to define it as a family of non-negative starting
times of all operations.

Definition 1. A feasible schedule for a given set of jobs is called an active
schedule, if the starting time of no operation can be decreased without either
violating the feasibility of the schedule or without increasing the starting time
of some other operation.

It is rather evident that in scheduling problems with the minimum makespan
objective (as is in our case) we can always restrict the set of the solutions
(to be considered) by the set of active schedules only.

It is well known that when for a given scheduling problem, the feasibility of
a schedule is determined only by some precedence constraints (specified
by a directed network G = (V,E) of type “nodes — tasks”), and network
G contains no positive-length cycles, then there is a single active schedule
(which is, thereby, the optimal one), and this schedule can be found very
efficiently, in O(|V | · |E|) time. (When G contains no cycles at all, this
can be done even faster, in O(|E|) time.) Alternatively, when G contains
positive-length cycles (which can be established also in O(|V | · |E|) time),
the given problem instance has no feasible solutions.

When, beyond precedence constraints, the problem under consideration
has got also renewable resource constraints, the problem normally becomes
NP-hard, and the set of all active schedules may have an exponential size.
Such a situation takes place for the Job Shop problem (because each machine
can be treated as a resource of renewable type), and that is why the problem
is so hard for its optimal solution. In this paper, we overcome this obstacle by
choosing (at Stage 7 of our algorithm) for each machine a certain processing
order of its operations. (We thereby eliminate all resource constraints in
the problem and come to the “favorable” situation, when there are only
precedence constraints.) Our only concern in this case is to check that the
precedence constraints we added (and embedded in network G) together with
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the original arcs of network G do not form cycles of positive length. And
this is done at Stage 7.

In what follows, we will assume that the input jobs of the Job Shop prob-
lem are specified by a list (in arbitrary order), and the information about
the operations of each job Jj (the duration pη,j of each operation Oη,j ∈ Oj

and machine M(Oη,j) on which it should be processed) is also specified in a
list, according to the processing order of job operations. In these conditions,
two simple approximation results (formulated below in Lemma 1) are valid
for the Job Shop problem.

Let A01 be the algorithm that schedules jobs sequentially, one after an-
other (in an arbitrary order), without delay. Clearly, such a schedule S01
can be computed in O(|O|) ≤ O(nµ) time.

Let A02 be another algorithm that schedules all operations level-by-level
(for levels η ∈ [µ]). To that end, it scans the list of jobs µ times, and at
the η-th time (at Stage η ∈ [µ]), schedules all operations of the η-th level as
follows. We define amounts C̄i

η (η = 0, 1, . . . , µ; i ∈ [m]) which mean the
maximum completion time over all operations of the η-th level on machine
Mi (where C̄i

0 ← 0, ∀ i ∈ [m]). At the beginning of Stage η we first put
C̄i
η ← C̄η−1

.
= maxi∈[m] C̄

i
η−1. Then, while considering operation Oη,j , we

put sη,j ← C̄i
η (for machine Mi = M(Oη,j)) and C̄i

η ← C̄i
η + pη,j . Thus, the

resulting schedule S02 consists of µ layers, and in each layer η ∈ [µ] (where
all operations of the η-th level are processed), at least one machine works
without idle time. The running time of this algorithm can be estimated as
O(|O|+mµ) ≤ O((n+m)µ).

Lemma 1. Algorithm A01 finds an m-approximate schedule S01 in time
O(nµ). Algorithm A02 finds a min{m,µ}-approximate schedule S02 in time
O(nµ+mµ).

Proof. First, it should be observed that both schedules S01 and S02 meet the
property: at each time moment during the makespan, at least one operation
is being processed. This implies that the lengths of both schedules meet
the bound: Cmax(Sx) ≤ P ≤ mLmax. Furthermore, since in each layer of
schedule S02 at least one machine is idles, the length of each layer is not
greater than Lmax, which yields the bound: Cmax(S02) ≤ µLmax. Recalling
that Lmax is the lower bound on the optimum, we get what is required in
the lemma. □

The following theorem was proved in [19].

Theorem 1 ([19]). Let X = {xi | i ∈ [N ]} be a given family of N vec-
tors in Rd, s.t.

∑
xi∈X xi = 0, and let H(X)

.
= conv{X} be its con-

vex hull, a ∈ Rd be an arbitrarily chosen vector in Rd, and Ha(X)
.
=

conv{0, a − H(X)/d}. Then a permutation π = (π1, . . . , πN ) of indices
{1, . . . , N} defining an order of summing the vectors of family X can be
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found by algorithm A1(d, a,N,X;π) in O(N2d 2) time, such that∑
i∈[k]

xπi ∈ (d− 1)H(X) +Ha(X), ∀ k ∈ [N ]. (7)

(For the description of algorithm A1, we refer the reader to Appendix B.)

3 Approximation algorithm A(γ) for the Job Shop problem

Algorithm A(γ) consists of a Preliminary Stage and 7 basic stages. The
first three basic stages are destined to transform the given problem instance
to a more suitable form. The other four stages are targeted to construct the
desired schedule. First, we will clarify the destination of each stage. Then
we start studying the operation of the algorithm stage by stage.

At the Preliminary Stage, we compute the maximum processing time
of an operation (pmax

.
= maxη,j pη,j), the total workload Li .=

∑
Oη,j∈Oi pη,j

of each machine Mi (where Oi is the set of all operations to be processed on
machine Mi (i ∈ [m])), and the maximum machine load Lmax

.
= maxi∈[m] L

i

(being, clearly, a lower bound on the optimum of the Job Shop problem).

At Stage 1, a unification of job routes through machines is performed,
thereby eliminating the main obstacle of the Job Shop problem — the differ-
ences in routes of different jobs! To that end, we make two job transforma-
tions.

(1) We equalize the number of operations of all jobs j ∈ [n] up to the
maximal one (µj ← µ

.
= maxj µj) by adding to each job j ∈ [n] dummy

operations of levels η ∈ (µj , µ]. Now, each job has got an operation of each
level η ∈ [µ].

(2) For each job j ∈ [n], we expand the set of its operations of each level
η ∈ [µ] from a single operation (to be processed on a certain machine) to m
operations, to be processed (independently of each other and even, maybe,
simultaneously) on m different machines. Thus, each such wide job consists
of mµ operations. All m operations of level η of any job j have to follow
all operations of the same job of smaller levels. Still, we do remember that
each wide job at each level η has at most one real operation. All other
its operations are “dummy” ones, and initially receive zero processing times.

At Stage 2, we equalize the workloads {Li} of all machines {Mi} by
increasing the lengths of some operations (both real and dummy ones) up to
at most pmax, while keeping the values of pmax and Lmax unchanged.

At Stage 3, the set of n wide jobs is extended by N additional zero-length
jobs. All Ñ .

= n+N resulting jobs and their operations will then be called
extended ones.

As will be seen from bound (19) on the length of the schedule constructed
by algorithm A(γ) (see page 1650), increasing the parameter Ñ (present in
the additive term 2(µ− 1)Lmax/Ñ in the bound on schedule length) reduces
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this bound. At the same time, the running time of the algorithm increases
proportionally to the square of Ñ . Thus, the choice of a certain value of this
parameter while implementing the algorithm is the result of a “deal” between
two incomparable goals: the minimum of schedule length and the minimum
of running time.

In the former version of the algorithm, when no new jobs were added
to the original family of n jobs (i.e., we used the minimum possible value
Ñ = n of this parameter), the additive term in the bound on schedule length
depending on Ñ was about 2µ2pmax. In the present paper, we set Ñ = 3n
(tripling the number of jobs) and obtain a value of this term about 1/3 of
its maximum size. In principle, we could make this term arbitrarily close to
zero by letting Ñ tend to infinity. But this, clearly, would require too high
cost (in terms of the running time).

The reasons for the influence of parameter Ñ on the bound on schedule
length may become clearer to the reader after heaving read the explanation
of Stage 6 and the derivation of bound (19) in the proof of Lemma 3.

At Stage 4, the Job Shop problem is approximately reduced to the prob-
lem of finding such an order of summing the vectors from a given family
X ∈ Rmµ (such that |X| = Ñ , and their sum is equal to zero) which satisfies
inclusions (7) (and exists due to Theorem 1). Each vector xj ∈ X corre-
sponds to a certain extended job j ∈ [Ñ ], and the order (of vectors {xj})
found at this stage is used in schedules defined at the subsequent stages of
our algorithm as the order of job processing.

At Stage 5, we define a preliminary (infeasible) table-based schedule S(T̃ ),
where T̃ is a µ × Ñ table of integers. Its jth column corresponds to job
j ∈ [Ñ ], and the order of columns is that found at Stage 4. Due to inclusions
(7), schedule S(T̃ ) meets the property that for each job j all its operations
of the same level η ∈ [µ] are started at “about the same time”. However, for
some η and some job j, the pair of its consequent operations of levels (η−1)
and η may violate the order of their processing prescribed in job j (thereby
providing an infeasible schedule). This shortcoming of schedule S(T̃ ) will be
corrected in the next stage.

At Stage 6, we first observe a sharper property of schedule S(T̃ ) (es-
tablished in (14)): the completion time of an arbitrary operation O i

η,k(T̃ ) in
this schedule “nearly linearly” depends on the number k of the column
in which this operation is located in table T̃ . More precisely, the comple-
tion time of any operation consists of three additive terms such that each
incrementing of the parameter k by 1 increases the first term by a fixed
amount Lmax/Ñ , while the amounts of the other two terms are bounded
from above by values independent of k. (This property of schedule will be
further called a k̂-property.) Thus, the idea arises that in order to eliminate
the infeasibility of schedule S(T̃ ), table T̃ should be transformed into a new
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table T̂γ (still maintaining the k̂-property), so as for each η ∈ [µ − 1] each
operation Õ i′′

η+1,j (i.e., an operation of the (η + 1)-th level of an extended
job j) was localized (in the new table) by γ columns farther (for a large
enough γ) than any operation Õ i′

η,j (of the same job and of the η-th level).
To perform this relative shift (of extended operations of level (η+1) with

respect to the same job operations of level η), we add to the beginning
of each row η ∈ [µ] of table T̃ exactly γ(η − 1) extra cells containing
zeros (corresponding to dummy operations, further called S-dummy ones).
At that, the k̂-property remains valid due to the choice of the length of each
S-dummy operation Ô i

η to be equal to the average length over all extended
operations of machine Mi and of level η.

As was said, the value of γ should be large enough (to guarantee that
the amount γLmax/Ñ outperforms the maximum possible value of the two
other terms (in total) in the right part of formula (14)). Ideally, it would be
great if the amount γLmax/Ñ was exactly equal to that maximum, because
the increasing of γ leads to increasing the length of schedule S(T̂γ). Yet
the matter is that γ may take only integral values. As a consequence,
the amount γLmax/Ñ turns out to be greater than needed to guarantee
the feasibility of schedule S(T̂γ). In other words, we can observe here the
familiar phenomenon of increasing the bound on some real-valued amount
(in our case, of the k-independent part of terms in formula (14)) calculated
in terms of an integral number of some fixed units (in our case, of units equal
to Lmax/Ñ) by an amount comparable with the chosen unit (Lmax/Ñ).

Yet, once we cannot avoid the above phenomenon (forced by the integral
nature of the parameter γ), could we at least minimize its effect by decreasing
the values of the units chosen for measuring? Trying to answer this question,
we observe that it is possible to decrease our “rounding error” (in the bound
on schedule length) by increasing the value of the parameter Ñ . This
explains the introduction of this parameter at Stage 3 of our algorithm.

At Stage 7, we construct an active schedule Sact(γ) (see the definition of
this notion on page 1634) for the set of original operations only. To that
end, we define a directed network G(γ) specifying precedence constraints on
the set of original operations (treated as nodes of the network). Since these
constraints meet the order of these operations defined in the table-based
schedule S(T̂γ) (constructed at Stage 6 and feasible for certain values of γ),
this guarantees (for the same values of γ) the existence of a feasible solution
for the task scheduling problem P(γ) with precedence constraints specified
by network G(γ), and so, the existence and uniqueness of an active schedule
for this problem. Moreover, we can prove that network G(γ) is acyclic, which
implies that for finding such an active schedule can be achieved by a simple
algorithm in O(|E|) time. Clearly, the length of the schedule found will
meet the theoretical bounds derived on the length of schedule S(T̂γ) (while
its practical values should be, hopefully, much less).
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We next proceed with a detailed description of our algorithm at stages.

Stage 1 (unification of job routes through machines). While solving of
the Flow Shop problem approximately by the compact vector summation
method [13, 22], we limited ourselves by constructing permutation sched-
ules only (specified by a single permutation of jobs), which made it possible
to interpret the vector summation sequence found for the Compact Vector
Summation problem (the CVS-problem) as a sequence of executing the corre-
sponding jobs by each machine. At the same time, in the Job Shop problem
we observe a radically different situation: instead of a unified “job flow by
machines” (which in the Flow Shop problem is dictated by the technology
of job execution on a flow line) we observe here a family of individual job
routes by machines (all of which may be different). And thus, it would
seem that there can be no talk of any “unified job flow”.

However, we will refute these doubts by unifying the routes of all jobs
through machines in the Job Shop problem, which is the target of Stage 1.
To do that, we extend the notion of a “job” by adding extra operations to
each job.
Definition 2. Let µ .

= maxj∈[n] µj . We define a wide job J̃j as a job con-
sisting of mµ operations {O i

η,j | i ∈ [m], η ∈ [µ]}, where each operation O i
η,j

(called a wide operation of the η-th level) is to be processed on machine Mi

for p i
η,j time units. We impose precedence constraints on the operations of

job J̃j :
O i′

η,j → O i′′
η+1,j , ∀ i′, i′′ ∈ [m], η ∈ [µ− 1], j ∈ [n]. (8)

Meanwhile, no restrictions are imposed on the order of processing the op-
erations from Oη,j

.
= {O i

η,j | i ∈ [m]} (i.e., on the operations of the same
level). Moreover, they can be processed in parallel (i.e., independently
and, maybe, simultaneously, ignoring the fact of their belonging to the same
wide job J̃j). In this sense, the problem to be solved extends the Job
Shop problem.

The original problem instance with n jobs is embedded into the model
with n wide jobs in an obvious way. Each real operation Oη,j (η ∈ [µj ]) of
job Jj coincides with the operation O i

η,j such that Mi =M(Oη,j) and has the
same duration: p i

η,j = pη,j , while the durations of all other (new) operations
of job J̃j are set to zero. (At Stage 2 these durations will be transformed.)

The feasibility of precedence constraints Oη,j → Oη+1,j for the original
operations of job Jj follows from (8). Meanwhile, it can be seen that con-
straints (8), while being sufficient for constructing a feasible schedule for
each original job Jj , are obviously redundant. This gives hope that the a pos-
teriori accuracy bound computed for the solution obtained by our algorithm
for each given instance of the Job Shop problem may appear to be much
better than its theoretical a priori bound. (This conclusion becomes even
more obvious after analyzing our actions being performed in the subsequent
stages of this algorithm.)
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Stage 2 (equalization of machine workloads). We compute the amounts
pmax

.
= max{i,η,j} p

i
η,j , L

i
η
.
=

∑
j∈[n] p

i
η,j , and the workload L i .

=
∑

η∈[µ] L
i
η

of each machine Mi. Since each machine now performs the same number
of operations (µn), we can equalize the workloads of all machines up to the
amount Lmax

.
= maxi∈[m] L

i by increasing arbitrarily the durations of some
operationsO i

η,j up to some amounts p̃ i
η,j ≤ pmax. As a result of this alignment

of the machine workloads, vectors p̃j
.
= {p̃ i

η,j | i ∈ [m], η ∈ [µ]} ∈ Rmµ (j ∈
[n]) of operation durations will be obtained for all wide jobs {J̃j | j ∈ [n]},
with a total vector

∑
j∈[n] p̃j = L̃

.
= {L̃ i

η | i ∈ [m], η ∈ [µ]} ∈ Rmµ such that
L̃ i
η
.
=

∑
j∈[n] p̃

i
η,j and

L̃ i .=
∑
η∈[µ]

L̃ i
η = Lmax, ∀ i ∈ [m], (9)

L̃ i
η ≤ npmax, i ∈ [m], η ∈ [µ]. (10)

Stage 3 (extending the set of wide jobs). We extend the set of n wide
jobs by adding N new wide jobs of zero length. (The corresponding vectors
p̃j for all new jobs are set to zero, which leaves the values of all quantities
{L̃ i

η, L̃
i}, Lmax, and pmax unchanged.) Denote by J̃ the resulting (“ex-

tended”) set of jobs; Ñ .
= n+N = |J̃ |. All jobs from J̃ and their operations

will be referred to as “extended jobs” and “extended operations”, and denoted
as J̃j and Õ i

η,j , respectively. (At that, the last N jobs J̃j ∈ J̃ have vectors
p̃j = 0.)

As will be seen later, increasing the number Ñ leads to reducing the
upper bound on schedule length. On the other hand, this naturally increases
the running time of the vector summation procedure (used at Stage 4 of
algorithm A(γ)) and of the algorithm A(γ) at its subsequent stages (while
constructing a feasible schedule). This, however, can be treated as a fair price
for improving its accuracy bound. We could leave the final decision on the
choice of the value of Ñ to each particular user of our algorithm. However,
we will make a definite choice of this value in this paper, in order to obtain
definite bounds on the accuracy and the running time of our algorithm,
formulated in Theorem 2 (page 1651).

Stage 4 (reducing the Job Shop problem to the vector summation problem
and applying Theorem 1). Let d = mµ, B .

= [0, pmax]
d be a d-dimensional

cube in Rd
+. Then

∑
j∈[Ñ ]

p̃j = L̃ and p̃j ∈ B for all j ∈ [Ñ ]. If to compute

the average vector p̄ave
.
= L̃/Ñ of family {p̃j | j ∈ [Ñ ]}, we can define vectors

p′j
.
= p̃j − p̄ave forming a so called Steinitz family of vectors, i.e., a vector

family X = {p′j ∈ Rd | j ∈ [Ñ ]} satisfying the properties:∑
j∈[Ñ ]

p′j = 0,

p′j ∈ B′ .= B − p̄ave.
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This enables us to apply Theorem 1 to vector family X and find a permuta-
tion π∗ = (π∗1, . . . , π

∗
Ñ
) of indices {1, . . . , Ñ} satisfying the inclusions:∑

j∈[k] p
′
π∗
j
∈ (d− 1)H(X) +Ha(X) ⊆ (d− 1)B′ +B′

a, ∀ k ∈ [Ñ ],

whereB′
a
.
= conv{0, a−B′/d}. Since−B = B−b for vector b .

= (pmax, . . . , pmax)
∈ Rd, we have a−B′/d = a−B/d+ p̄ave/d = a+(B−b+ p̄ave)/d. Choosing
a = (b − p̄ave)/d, we obtain a − B′/d = B/d ∋ 0, implying the equality
B′

a = B/d and the inclusion∑
j∈[k] p̃π∗

j
− kp̄ave ∈ (d− 1)(B − p̄ave) +B/d = α(d)B − (d− 1)p̄ave

for α(d) .= d− 1 + 1/d. Thus, we obtain the following

Corollary 1. Algorithm A1 from Theorem 1 finds in O(m2µ2Ñ2) time a
permutation π∗ = (π∗1, . . . , π

∗
Ñ
) of indices {1, . . . , Ñ} such that∑

j∈[k]

p̃π∗
j
= (k − d+ 1)p̄ave + α(d) δk, ∀ k ∈ [Ñ ],

where d = mµ, δk = {δ iη,k ∈ [0, pmax] | i ∈ [m], η ∈ [µ]} ∈ B.

In the coordinate form, these relations look like:∑
j∈[k]

p̃ i
η,π∗

j
=
k − d+ 1

Ñ
L̃ i
η + α(d) δ iη,k, ∀ i ∈ [m], η ∈ [µ], k ∈ [Ñ ]. (11)

Stage 5 (defining a preliminary infeasible schedule S(T̃ )).

Definition 3. Let a set O′ of mµN ′ operations (including all extended op-
erations, defined at Stage 3, and S-dummy operations, to be presented at
Stage 6) has to be processed on m machines (µN ′ operations per machine).
To define a table-based schedule S(T ′) for processing the operations from O′,
we first define a two-dimensional table T ′ with µ rows and N ′ ≥ Ñ columns.
Each cell T ′(η, j) (η ∈ [µ], j ∈ [N ′]) of table T ′ contains an integer value,
which is either the index k ∈ [Ñ ] of an extended job J̃k, or zero (correspond-
ing to an S-dummy operation). In both cases, row number η specifies level
η of the operation. Each row η ∈ [µ] contains all job indices from 1 to Ñ ,
where each job index k ∈ [Ñ ] is presented exactly once. Thus, each row
η of T ′ represents a sequence of (N ′ − Ñ) zeros and Ñ pair-wise different
indices from 1 to Ñ , and thereby, specifies an order of processing the ex-
tended operations of the η-th level on every machine (because for each
row η ∈ [µ], these orders will be identical in schedule S(T ′) for all machines
Mi, i ∈ [m]). For each machine Mi, all S-dummy operations “of the η-th
level” (if any) will have identical durations (equal to the average duration
over all extended operations of the η-th level on machine Mi) and will not
be distinguished from each other in schedule S(T ′).
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Next, we define the full sequence P(T ′) of elements (η, j) of table T ′.
In this sequence, the elements follow column-by-column (in the order j =
1, . . . , N ′), and for each column, in the increasing order of row indices (η =
1, . . . , µ). So,

P(T ′) : (1, 1), (2, 1), . . . , (µ, 1), (1, 2), . . . , (µ, 2), . . . , (1, N ′), . . . , (µ,N ′).
(12)

Let O i
η,j(T

′) denote the operation from O′ processed by machine Mi and
specified by cell T ′(η, j) of table T ′. Then the operations on each machine
Mi should be processed in schedule S(T ′) from time zero and on, without
an idle time, in the universal order specified by sequence P(T ′):

O i
1,1(T

′), . . . , O i
µ,1(T

′), O i
1,2(T

′), . . . , O i
µ,2(T

′), . . . , O i
1,N ′(T ′), . . . , O i

µ,N ′(T ′).

Denoting for each operation O i
ν,j(T

′) ∈ O′ its duration by p̂ i
ν,j(T

′), and its
completion time in schedule S(T ′) by ĉ iν,j(T

′), we can derive the equalities:

ĉ iη,k(T
′) =

η∑
ν=1

∑
j∈[k]

p̂ i
ν,j(T

′)+

µ∑
ν=η+1

∑
j∈[k−1]

p̂ i
ν,j(T

′), η ∈ [µ], k ∈ [N ′]. (13)

Now let the set Õ of extended operations introduced at Stage 3 be taken
for the set of operations O′. For table T ′, we take the µ × Ñ table T̃ in
which all extended operations of the ν-th level (ν ∈ [µ]) are presented by
the ν-th row and are ordered according to permutation π∗ = (π∗1, . . . , π

∗
Ñ
)

of job indices found at Stage 4, while the operations of column j represent
the operations of the extended job J̃π∗

j
on any machine Mi. Thus, no zeros

(corresponding to S-dummy operations) are in table T̃ , because each cell
T̃ (η, j) of table T̃ contains the value π∗j ∈ [Ñ ]. Then, for the table-based
schedule S(T̃ ) (see Definition 3 above), by means of (13), (11), and (9) (with
L̃ i
ν =

∑
j∈[Ñ ]

p̃ i
ν,j), we can derive the following relations:

ĉ iη,k(T̃ ) =
k − d+ 1

Ñ

η∑
ν=1

L̃ i
ν +

k − d
Ñ

µ∑
ν=η+1

L̃ i
ν + α(d)

µ∑
ν=1

δ iν,k′(k,ν,η)

=
k − d
Ñ

Lmax +
1

Ñ

η∑
ν=1

L̃ i
ν + α(d)

µ∑
ν=1

δ iν,k′(k,ν,η) (14)

which hold for all i ∈ [m], η ∈ [µ], k ∈ [Ñ ] (with k′(k, ν, η) = k for ν ≤ η,
and k′(k, ν, η) = k−1 for ν > η). As one can see, each schedule Si(T̃ ) for the
operations from Õi

.
= {Õ i

η,j | η ∈ [µ], j ∈ [Ñ ]} is feasible, since all operations
of each extended job J̃π∗

j
(j ∈ [Ñ ]) on machine Mi are localized in column

j of table T̃ , and so, are processed in the increasing order of their levels.
Yet for the feasibility of the overall schedule S(T̃ ), we also need fulfilling the
requirements (8) for all pairs (Õ i′

η,π∗
j
, Õ i′′

η+1,π∗
j
) of extended operations of job
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J̃π∗
j

that are to be processed on different machines. Since operation Õ i′
η,π∗

j

is localized in the j-th column of T̃ , its completion time c i′η,π∗
j

coincides with

ĉ i
′

η,j(T̃ ), while the starting time s i′′η+1,π∗
j

of operation Õ i′′
η+1,π∗

j
coincides with

ĉ i
′′

η,j(T̃ ). Thus, all precedence constraints (8) may be satisfied, if and only if
the relations

0 ≤ s i′′η+1,j − c i
′

η,j = ĉ i
′′

η,j(T̃ )− ĉ i
′

η,j(T̃ )

hold for all i′, i′′ ∈ [m], η ∈ [µ− 1], j ∈ [Ñ ]. Clearly, this is possible only in
the ideal (unlikely) case, when for each η ∈ [µ−1] and j ∈ [Ñ ], all completion
times {ĉ iη,j(T̃ ) | i ∈ [m]} coincide in schedule S(T̃ ).

Stage 6 (defining a feasible table-based schedule S(T̂ )). The solution
of the above problem is facilitated by the following Observation about
the dependence of quantities ĉ iη,k(T̃ ) on parameter k according to formula
(14) (i.e., the dependence of the completion time of an arbitrary operation
O i

η,k(T̃ ) in schedule S(T̃ ) on the number k of the column in which this
operation is located in table T̃ ): each incrementing the parameter k by
1 is accompanied by an increase in the first term on the right-hand side of
(14) by a fixed amount Lmax/Ñ , while the other two terms are bounded
from above by values independent of k. This property of schedule S(T̃ )
(i.e., the “almost linear” growth of the completion time of operation O i

η,k(T̃ )

depending on the column number k) will be briefly called a k̂-property.
This Observation provides the following idea of defining a feasible table-

based schedule: table T ′ = T̃ should be transformed into a new table T̂γ ,
so as for each η ∈ [µ − 1] each operation Õ i′′

η+1,j (i.e., an operation of the
(η + 1)-th level of an extended job J̃j) would be localized in the new table
by γ columns farther (for a large enough γ) than any operation Õ i′

η,j (of
the same job) of the η-th level. To provide this relative shifting of extended
operations of the (η+1)-th level with respect to the corresponding operations
of the η-th level, we add to the beginning of each row η ∈ [µ] of table
T̃γ exactly γ(η− 1) extra cells containing zeros. For each i ∈ [m], they will
correspond to that many shifting dummy (or S-dummy, for short) operations
{Ô i

η} of length p̂ i
η
.
= L̃ i

η/Ñ to be processed in schedule S(T̂γ) on machine
Mi (as described in Definition 3). Furthermore, to keep the balance of the
number of operations in all rows of table T̂γ , we also add γ(µ−η) extra cells
with zeros to the end of each row η ∈ [µ] (see Fig. 1). Thus, each row
η ∈ [µ] of table T̂γ contains N̂(γ)

.
= Ñ + γ(µ − 1) cells corresponding to

operations {O i
η,j(T̂γ) | j ∈ [N̂(γ)], η ∈ [µ]} for any i ∈ [m].

To summarize the above said about the structure of Table T̂γ , we would
like to highlight the following its properties.
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/Levels
Rows

Columns

O i′
η,k O i′′

η+1,k

1 . . . Ñ . . . j (j+γ) . . . N̂(γ)

1

2

...
η

η + 1

...
µ

︸︷︷︸
γ

︸ ︷︷ ︸
γη

Fig. 1. The construction of Table T̂γ

(a∗) Each cell (η, j) of Table T̂γ corresponds either to m extended opera-
tions (of the same extended job J̃π∗

ℓ
, with ℓ .= j − γ(η − 1), in case ℓ ∈ [Ñ ],

when we deal with an e-cell), or to m S-dummy operations (related to no
jobs, in case ℓ ̸∈ [Ñ ]).

(b∗) Not every e-cell (η, j) corresponds to original operations (being a part
of the input instance of the Job Shop problem). The necessary and sufficient
conditions for such a correspondence are:

(0∗) ℓ .= j − γ(η − 1) ∈ [Ñ ] (this means, we deal with an extended job);
(1∗) k .

= T̂γ(η, j) ∈ [n] (which means that we deal with an original job Jk);
(2∗) η ≤ µk (means that we deal with a true level of operations of job Jk).

(c∗) If a cell meets all above conditions, then it corresponds to the unique
original operation, namely, O î(η,k)

η,j (T̂γ) = Oη,k (the η-th level operation of
job Jk to be processed on machine Mî(η,k)

.
=M(Oη,k)).

(d∗) Every original operation is represented in Table T̂γ exactly once.

(e∗) For each i ∈ [m], the sub-sequence of sequence P(T̂γ) composed of all
cells representing the original operations of machine Mi specifies the order
of processing these operations in schedule S(T̂γ).

This completes the description of Table T̂γ . As will be shown in the proof
of Lemma 2 (Sect. 4), assigning to each copy of the S-dummy operation Ô i

η

the same length p̂ i
η = L̃ i

η/Ñ preserves the k̂-property for the table-based
schedule S(T̂γ), while a proper choice of the value of γ ensures the feasibility
of schedule S(T̂γ).
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Stage 7 (computing the feasible active schedule Sact(γ)). We define a
precedence graph G(γ) on the set O = {Oη,k} of original operations (“o-
os”, for short) treated as nodes of the graph. The precedence on the set
of operations is defined according to the order of operations of each job
(provided by the input data) and to the order of operations on each machine
in schedule S(T̂γ). More precisely, for each o-o Oη,k we specify at most two
outgoing arcs: a job-based arc directed to o-o Oη+1,k (if η < µk) and a
machine-based arc directed to the o-o Oη′,k′ , directly succeeding operation
Oη,k on machine M(Oη,k) in schedule S(T̂γ) (if such an o-o Oη′,k′ exists).
For the weights of nodes Oη,k ∈ G(γ) we take the original durations of these
operations (valid before performing Stage 2).

Next, we present the most efficient algorithm for implementing this stage
in O(|O|) time. To do this, we load all the initial information about the set
O = {Oη,k} of o-os into an array A[1..µ; 1..n], so that for any job number
k ∈ [n] and any level η ∈ [µk] of its operation we could add and extract
all necessary information on operation Oη,k in O(1) time. (Such a transfor-
mation of the input data can be performed in time linear in the number of
o-os.) In addition to the original duration p[η, k] = pη,k of operation Oη,k

and the number î[η, k] of the machine executing it, the cell A[η, k] will con-
tain: (a) indices (η′[η, k], k′[η, k]) of the o-o Oη′[η,k],k′[η,k] directly succeeding
operation Oη,k on machine Mî[η,k], and (b) the number ent[η, k] of arcs en-
tering operation-node Oη,k in graph G(γ). Clearly, ent[η, k] ≤ 2 for any node
Oη,k, where at most one of two entering arcs may be job-based (it can be
obtained from the input data) and at most one may be machine-based (can
be obtained from table T̂γ).

All job-based arcs are of the form (Oη,k, Oη+1,k), and so, provide a straight-
forward information for graph G(γ). In particular, these arcs contribute
1 point to parameters ent[η, k] for each node Oη,k with η ∈ {2, . . . , µk}
(so that we can put at once: ent[1, k] ← 0 and ent[η, k] ← 1 for all
η ∈ {2, . . . , µk}, k ∈ [n]).

Meanwhile, to get the information on the machine-based arcs, we have
to scan the elements of table T̂γ according to their full sequence P(T̂γ) de-
fined in (12) (i.e., column-by-column, and for each column, in the increasing
order of row indices). At that, we would like to skip scanning the cells corre-
sponding to S-dummy operations. In other words, we would like to scan the
sub-sequence P ′(T̂γ) of sequence P(T̂γ) containing only e-cells (the cells
corresponding to extended operations).

This can be done due to two things:
(1) to the special structure of table T̂γ , where in each row η ∈ [µ] its e-cells

follow as a solid segment of length Ñ (further referred to as an e-segment),
and for each η ∈ [µ − 1], e-segment of row (η + 1) is shifted by γ positions
to the right relative to the e-segment of row η (see Fig. 1);

(2) to the choice of the value γ = γ∗ (defined in Lemma 3, page 1648).
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The following observation can be directly deduced from these two points.

Observation 1. (a) cells (1, 1) and (µ, N̂(γ)) of table T̂γ are e-cells;
(b) if (η, k) is an e-cell and (η, k) ̸= (µ, N̂(γ)), then at least one of three cells
(η + 1, k), (η, k + 1), (η + 1, k + 1) is an e-cell.

(Here (a) follows from the construction of table T̂γ , and (b) holds due to
the inequality γ∗ ≤ Ñ , where Ñ is the length of each e-segment of table T̂γ .)

These properties of table T̂γ enable us to design the following efficient
procedure for scanning all e-cells of table T̂γ in O(µÑ) time (receiving in
parallel the missing information on graph G(γ)).

Procedure Scanning (integer: γ; array of integers: π∗[1..Ñ ],
η′[1..µ;1..n], k′[1..µ;1..n]);

% Although the procedure is dedicated to scanning the cells of table T̂γ ,
% the latter is not presented at the input of the procedure in an explicit
% form (for example, as an array T̂γ [1..µ;1..N̂(γ)]). Instead, at the INPUT,
% we are given an integer γ and the array of integers π∗[1..Ñ ] specifying the
% permutation π∗ of indices j ∈ [Ñ ] of the extended jobs, found at Stage 4
% of algorithm A(γ). These two parameters, along with µ, provide the
% complete information on table T̂γ , which enables us to do without a direct
% operating with table T̂γ when performing the procedure. (We will just
% “keep it in mind”.) Formal parameters η′[η,k], k′[η,k] accumulate the in-
dices
% of the o-o directly succeeding Oη,k on machine Mî[η,k]. They represent the
% OUTPUT of the procedure. In the body of procedure Scanning it is
% assumed that parameters m,n, µ, N̂(γ), µk (k ∈ [n]), î[η,k], pη,k (k ∈ [n],
% η ∈ [µk]) are global ones.

% Local parameters:
integer: i, j, k, η, η∗, η#, j#;
array of integers: ηc[1..m], kc[1..m];
% for each i ∈ [m], they keep the indices (η, k) of the last found o-o Oη,k of
% machine Mi among currently scanned e-cells of table T̂γ .

By η∗ and j#, we will denote the indices of the base row and the current
column of table T̂γ , such that in all rows η < η∗ and all columns j < j#,
all e-cells have been already scanned; (η#, j#) will denote the e-cell being
currently scanned.

BEGIN
kc[i]← 0, ∀ i ∈ [m]; (η′, k′)[η, k]← (0, 0), ∀ k ∈ [n], η ∈ [µk];
η∗ ← 1; η# ← 1; j# ← 1;
repeat % scanning the current e-cell (η#, j#) of table T̂γ

j ← j# − γ(η# − 1); k ← π∗j ;
if (k ≤ n) & (η# ≤ µk) then begin % an o-o Oη#,k is found
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i← î(η#, k); if kc[i] > 0 then
{η′[ηc[i], kc[i]]← η#; k′[ηc[i], kc[i]]← k; ent[η#, k]← ent[η#, k]+1};

ηc[i]← η#; kc[i]← k
end; % “if k ≤ n”
% Next, we search for the next e-cell in sequence P(T̂γ)
if (η# < µ) & (j > γ) then η# ← η# + 1 % (η#, j#) is the next e-cell

else if (j# < N̂(γ)) then begin % the next e-cell is in the next column
j# ← j# + 1;
if j# > Ñ + γ(η∗ − 1) % (η∗, j#) is not an e-cell
then η∗ ← η∗+1; % The base row number should be increased by 1
η# ← η∗

end; % “else”
until (η#, j#) = (µ, N̂(γ));
% Next, we deal with case (η#, j#) = (µ, N̂(γ))
k ← π∗

Ñ
;

if (k ≤ n) & (µk = µ) then begin % an o-o Oµ,k is found
i← î(µ, k); if kc[i] > 0 then
{η′[ηc[i], kc[i]]← µ; k′[ηc[i], kc[i]]← k; ent[µ, k]← ent[µ, k] + 1};

end; % “if k ≤ n”
END

Now we are able to form the complete information specifying graphG(γ) =
(X,U). The set X of its nodes coincides with the set {Oη,k | k ∈ [n], η ∈ [µk]}
of o-os. The set U of arcs is the union of two sets: U = U ′ ∪ U ′′, where
U ′ .= {((η, k), (η′[η,k], k′[η,k])) | (η,k) ∈ X ′} is the set of machine-based arcs,
U ′′ .= {((η,k), (η + 1,k)) | k ∈ [n], η ∈ [µk − 1]} is the set of job-based arcs,
and X ′ .

= {(η, k) | k ∈ [n], η ∈ [µk], k
′[η,k] > 0} is the subset of such o-os

Oη,k ∈ X for which there are subsequent o-os processed in schedule S(T̂γ)
on the same machine Mî[η,k].

Next, after scanning (in any order) the set U of arcs of graph G(γ), we
can find for each node Oη,k ∈ O the list Uη,k of outgoing arcs and the
number ent[η, k] of entering arcs. This information is sufficient to start the
classical algorithm that in O(|U |) ≤ O(|O|) ≤ O(µn) time computes the
active schedule Sact(γ) which meets precedence constraints specified on the
set of o-os by graph G(γ). Thus, Stage 7 can be performed in time O(µÑ)

needed for scanning all e-cells of table T̂γ . This completes the description of
Stage 7 and of the whole algorithm A(γ). ■

4 Analysis of algorithm A(γ) and formulation of the main
result

Lemma 2. For any γ ∈ N, schedule Sact(γ) is feasible. If for some γ ∈ N
schedule S(T̂γ) is also feasible, then Cmax(Sact(γ)) ≤ Cmax(S(T̂γ)).
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Proof. The feasibility of schedule Sact(γ) consists of the feasibility of sub-
schedules for each machine and each job. For each job, this schedule is
feasible, because graph G(γ) specifies the linear order of execution of its
operations based on the input information of the Job Shop problem. At the
same time, the linear order of execution of the original operations of each
machine Mi in graph G(γ) is inherited from the linear order of execution
of these operations in table-based schedule S(T̂γ), which ultimately ensures
the feasibility of the active schedule Sact(γ).

Let us prove the relation Cmax(Sact(γ)) ≤ Cmax(S(T̂γ)) under the assump-
tion that schedule S(T̂γ) is feasible. As was observed above, schedule S(T̂γ)
meets the linear precedence constraints specified by graph G(γ) for the set of
all original operations on each machine Mi. Furthermore, due to the feasibil-
ity of schedule S(T̂γ), it meets the linear precedence constraints imposed on
the set of all operations of each original job. Thus, S(T̂γ) meets all precedence
constraints specified by graph G(γ). Furthermore, schedule S(T̂γ) meets all
precedence constraints specified by table T̂ (γ∗) on the set of all operations
(including extended and S-dummy ones) of each machine Mi. Let Ĝ(T̂γ)
be the graph with the set of nodes representing all operations of schedule
S(T̂γ), and with the set of arcs including all transitive closures of precedence
constraints specified by table T̂γ and graph G(γ). Then, due to the inclusion
G(γ) ⊆ Ĝ(T̂γ), the critical path in graph Ĝ(T̂γ) cannot be shorter than that
of graph G(γ), which implies the relation Cmax(Sact(γ)) ≤ Cmax(S(T̂γ)). □

Lemma 3. For any γ ≥ γ∗ .
=

⌈
α(d)µÑ pmax

Lmax

⌉
+1, schedule S(T̂γ) is feasible.

For any instance of the Job Shop problem with m ≥ 2 and µ ≥ 2, the length
of schedule S(T̂γ∗) meets the bound:

Cmax(S(T̂γ∗)) < Lmax +mµ2(µ− 1)pmax. (15)

Proof. Let us first prove that the k̂-property holds for table T̂γ with any
γ ∈ N and for any i ∈ [m]. More precisely, we are to prove that the equalities

ĉ iη,k(T̂γ) =
k − d
Ñ

Lmax +
1

Ñ

η∑
ν=1

L̃ i
ν + α(d)

µ∑
ν=1

δ̂ iν,k′(k,ν,η)(γ) (16)

hold for all i ∈ [m], η ∈ [µ], k ∈ [N̂(γ)] for some values δ̂ iν,k′(k,ν,η)(γ) ∈
[0, pmax].

Indeed, as a result of adding S-dummy operations (each of length L̃ i
ν/Ñ

for machine Mi) to the beginning and to the end of each row ν of table T̃ ,
formulas (11) transform into the equalities∑
j∈[k]

p̂ i
ν,j(T̂γ) =

k − d+ 1

Ñ
L̃ i
ν + α(d) δ̂ iν,k(γ), ∀ i ∈ [m], ν ∈ [µ], k ∈ [N̂(γ)],

(17)
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with

δ̂ iν,k(γ)
.
=

 δ iν,k−γ(ν−1), for k − γ(ν − 1) ∈ [Ñ ]

(d−1)
α (d) L̃

i
ν/Ñ, for k ≤ γ(ν − 1) and k > γ(ν − 1) + Ñ .

(18)

The second case of equalities (18) follows from relations
∑

j∈[k] p̂
i
ν,j(T̂γ) =

k L̃ i
ν

Ñ
which hold for k ≤ γ(ν − 1) and k ≥ γ(ν − 1) + Ñ . Thus, in all cases,

δ̂ iν,k(γ) ∈ [0, pmax], because in the first case of (18) this is true for values
δ iν,j (j ∈ [Ñ ]), while in the second case this follows from (d− 1) < α(d) and
L̃ i
ν ≤ npmax ≤ Ñpmax.
Starting from (13) (with T ′ = T̂γ) and implementing (17) and (9), we

obtain for all i ∈ [m], η ∈ [µ], k ∈ [N̂(γ)]:

ĉ iη,k(T̂γ) =
k − d+ 1

Ñ

η∑
ν=1

L̃ i
ν +

k − d
Ñ

µ∑
ν=η+1

L̃ i
ν + α(d)

µ∑
ν=1

δ̂ iν,k′(k,ν,η)(γ)

=
k − d
Ñ

Lmax +
1

Ñ

η∑
ν=1

L̃ i
ν + α(d)

µ∑
ν=1

δ̂ iν,k′(k,ν,η)(γ),

as required in (16). Now, to prove the feasibility of schedule S(T̂γ) for
any γ ≥ γ∗, we should prove that all precedence constraints (8) are met.
To that end, it suffices to ensure the relations 0 ≤ s i

′′
η+1,k − c i

′
η,k for all

i′, i′′ ∈ [m], η ∈ [µ − 1], k ∈ [Ñ ] (i.e., for all extended jobs). As was ob-
served at Stage 6 of the algorithm, operation Õ i′′

η+1,k coincides with operation
Ô i′′

η+1,k+γη(T̂γ), and so, s i′′η+1,k = ŝ i
′′

η+1,k+γη(T̂γ) = ĉ i
′′

η,k+γη(T̂γ). Similarly, we
obtain: c i′η,k = ĉ i

′

η,k+γ(η−1)(T̂γ). This together with (16) yields the following

sufficient conditions for the feasibility of schedule S(T̂γ):

0 ≤ s i
′′

η+1,k − c i
′

η,k = ĉ i
′′

η,k+γη(T̂γ)− ĉ i
′

η,k+γ(η−1)(T̂γ) =
γ

Ñ
Lmax +

1

Ñ

η∑
ν=1

L̃ i′′
ν

+ α(d)

µ∑
ν=1

δ̂ i
′′

ν,k′(k+γη,ν,η)(γ)− α(d)
µ∑

ν=1

δ̂ i
′

ν,k′(k+γ(η−1),ν,η)(γ)−
1

Ñ

η∑
ν=1

L̃ i′
ν .

To ensure all these inequalities, it suffices to take γ such that

γ

Ñ
Lmax ≥ α(d)

µ∑
ν=1

δ̂ i
′

ν,k′(k+γ(η−1),ν,η)(γ) +
1

Ñ

η∑
ν=1

L̃ i′
ν

holds for any i′ ∈ [m], η ∈ [µ− 1], k ∈ [Ñ ]. E.g., S(T̂γ) is feasible for any
γ ≥ γ∗ .

= min{γ ∈ N | γLmax

Ñ
≥ α(d)µpmax +

Lmax

Ñ
} =

⌈
α(d)µÑ pmax

Lmax

⌉
+ 1.

Lastly, once schedule Si(T̂γ∗) (for any i ∈ [m]) has no idle time, its length
is equal to Lmax plus the total length of all S-dummy operations on machine
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Mi. Since each machine Mi has γ∗(µ− 1) S-dummy operations at each level
η ∈ [µ] (each of length L̃ i

η/Ñ), their total length over all levels is equal to
γ∗(µ− 1)Lmax/Ñ , and we can estimate the length of schedule S(T̂γ∗) as:

Cmax(S(T̂γ∗)) = Lmax + γ∗(µ− 1)Lmax

Ñ
< Lmax +

(
α(d)µÑ pmax

Lmax
+ 2

)
·

·(µ− 1)
Lmax

Ñ
=

(
1 +

2µ− 2

Ñ

)
Lmax + µ(µ− 1)(mµ− 1 + 1/mµ)pmax (19)

Now, choosing the value Ñ ← 3n, we can estimate 2µ−2

Ñ
Lmax ≤ 2(µ−1)

3n µnpmax,
which yields the bound:
Cmax(S(T̂γ∗)) ≤ Lmax+

(
mµ2(µ− 1) +

(
2
3µ(µ− 1)− µ(µ− 1) + µ−1

m

))
pmax.

Since m ≥ 2 and µ ≥ 2, the summand
(
µ−1
m − µ(µ−1)

3

)
in the above

bound is always negative, which enables us to derive bound (15). Lemma 3
is proved. □

Lemma 4. For any γ ≥ Ñ , schedule S(T̂γ) is feasible. For any instance of
the Job Shop problem, schedule S(T̂

Ñ
) has length Cmax(S(T̂Ñ )) = µLmax.

Proof. Let SOi(γ) denote the sequence of operations executed on machine
Mi according to schedule S(T̂γ). Then by construction of a table-based
schedule (see its definition on page 1641) and by the choice of γ ≥ Ñ , the
initial segment of SOi(γ) consisting of γµ operations contains all Ñ extended
operations of the first level on that machine (and only such extended op-
erations), γ − Ñ S-dummy operations of the first level, and γ S-dummy
operations of each level from 2 to µ. Thus, the total duration of this initial
segment of operations on each machine Mi is equal to

L̃ i
1 + (γ − Ñ)

L̃ i
1

Ñ
+

µ∑
η=2

γL̃ i
η

Ñ
=

µ∑
η=1

γL̃ i
η

Ñ
=
γLmax

Ñ
.

Similarly, we ensure that the next segment of SOi(γ) (i ∈ [m]) consisting of
the same (γµ) number of operations occupies in schedule S(T̂γ) a time inter-
val of the same length (γLmax/Ñ) and contains all Ñ extended operations
(of machine Mi) of level 2, and so on, until the µ-th segment. This last seg-
ment is shorter: it contains only µÑ operations, with total length Lmax; still,
it contains all Ñ extended operations of the µ-th level on that machine.
Thus, all operations of the η-th level on each machine Mi are concentrated
in the η-th segment of the sequence of operations on that machine, while the
η-th segments of all machines are synchronized in time. This provides the
property that all extended operations of the (η + 1)-th level are processed
in this schedule after all operations of the η-th level, which provides the
feasibility of schedule S(T̂γ).
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The length of schedule S(T̂
Ñ
) coincides with the total duration of µ seg-

ments of sequence SOi(γ) on each machine Mi, while the duration of each
segment (in the case of γ = Ñ) is equal to Lmax. So, we have Cmax(S(T̂Ñ )) =
µLmax. □

Theorem 2. Algorithm A(γ) with γ = γ#
.
= min{γ∗, Ñ} runs in time

O(m2µ2n2) and finds a feasible schedule Sact(γ#) of length

Cmax(Sact(γ
#)) ≤ min{mLmax, µLmax, Lmax +mµ2(µ− 1)pmax}. (20)

Proof. Since in the case with either m = 1 or µ = 1 the Job Shop problem
can be solved to the optimum in O(|O|) time, we can further assume that the
conditions m ≥ 2 and µ ≥ 2 of Lemma 3 hold. This implies that algorithm
A(γ∗) finds a feasible schedule S(T̂γ∗) that meets bound (15). Next, we have
relations

Cmax(Sact(γ
#)) ≤ Cmax(S(T̂γ#)) ≤ min{µLmax, Lmax +mµ2(µ− 1)pmax},

(21)
where the first inequality is valid by Lemma 2 (since schedule S(T̂ (γ#)) is
feasible in both cases of γ# ∈ {Ñ , γ∗} due to Lemmas 4 and 3). The second
inequality is valid due to the monotonic increase of the function Cmax(S(T̂γ))

on γ and due to Lemmas 4 and 3. Lastly, bound Cmax(Sact(γ
#)) ≤ mLmax is

valid, because schedule Sact(γ#) is feasible (by Lemma 2) and active. Along
with (21), this yields bound (20).

To complete the proof of the theorem, it remains to justify the bound on
the running time claimed above. Clearly, Stages 1 to 3 of algorithm A(γ)
can be performed in time O(mµn). The algorithm of vector summation
performed at Stage 4 for the extended set of Ñ = 3n jobs requires time
O(m2µ2Ñ2) ≤ O(m2µ2n2). Next, as we could see from the description of
Stage 7, neither table T̃ , nor table T̂ (γ#) defined at Stages 5 and 6 were used
for constructing the active schedule Sact(γ#), which means that Stages 5 and
6 of algorithm A(γ) are “imaginary” parts of it — they contribute nothing to
the running time of the algorithm. (However, the structure of the table-based
schedule S(T̂ (γ#)) was essentially used while deriving our upper bound on
the length of schedule Sact(γ

#).) Finally, Stage 7 (of finding the active
schedule Sact(γ#)) can be performed in time O(µÑ) ≤ O(µn). Totally, this
all takes time O(m2µ2n2). □

5 Linearization of algorithms from (Shmoys et al., 1994)
with respect to the number of jobs (n)

Two algorithms published in (Shmoys et al., 1994) were briefly described
in the Introduction (with mentioning the role that our algorithm from (Sev-
ast’yanov, 1986) plays in both of them, see pages 1631–1632).
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In both those algorithms, the set of all jobs J is first separated into two
subsets (JL and JS) of “large” and “small” jobs, after which different algo-
rithms are applied to them, constructing two schedules independent of each
other. (In particular, to construct a schedule for “small” jobs, our algorithm
from (Sevast’yanov, 1986), based on the compact vector summation tech-
nique, was used.) The “watershed” between two sets of jobs is established
at the input of the Algorithm of job separation by specifying a threshold
value p# of the parameter β(pj) (where pj is the vector of operation dura-
tions of job Jj , and β(x) is the maximum component of vector x): jobs with
β(pj) ≤ p# fall into JS , the rest ones — into JL. Thus, the value of pmax

over all small jobs is not greater than the value of the “watershed” p#.
This value is taken differently in the two algorithms: p# = Lmax

2mµ3 in the
first algorithm and p# = εLmax

2mµ3 in the second one. As a result, the first
algorithm from (Shmoys et al., 1994) provides a relative error bounded by
O(log2(mµ)), while the second algorithm yields a (2 + ε)-approximation for
any fixed ε > 0. At that, the bounds on the running times of both algorithms
(O(n2m2µ2 + P (m,µ)), where P (m,µ) is a polynomial of m and µ, and
O(n2), under assumption that parameters m and µ are fixed, respectively)
show that they heavily depend on the algorithm from (Sevast’yanov, 1986).
We are now to show that the bounds on the running times of both these
algorithms can be made linear in n.

Linearization of both algorithms from (Shmoys et al., 1994) in the pa-
rameter number of jobs can be achieved (after the separation of the set of
jobs into “large” and “small”) by a preliminary gluing together “small” jobs
to “aggregated small jobs”, the number of which (due to the choice of the
threshold value p#) is bounded from above by an amount independent of the
initial number of jobs (n). This value is a polynomial in m and µ in the case
of the first algorithm from (Shmoys et al., 1994) and a polynomial in m, µ,
and 1/ε in the case of their second algorithm. Since the “aggregated small
jobs” also meet the threshold value p#, applying to them our algorithm from
(Sevast’yanov, 1986) or algorithm A(γ) from Sect. 3, we obtain a feasible
schedule for the aggregated (and hence for the original) small jobs, which
has exactly the same upper bound on its length as we would have
obtained for small jobs without gluing them together. The only difference is
that the complexity of this algorithm will no longer depend on n, but will be
a polynomial in m and µ (and of 1/ε in the case of the second algorithm).
Thus, the dependence on parameter n is preserved only for the complexity of
the gluing procedure itself, which can be performed in time O(

∑
j∈[n] µj) ≤

O(µn) (i.e., in time needed to look through the input information) by means
of the procedure Job_Separation_Gluing_Unification (further — JSGU, for
short) described below.

In this procedure, three different processes are combined in a natural way
within a single loop of scanning the list of original jobs: (1) Stage 1
of algorithm A(γ) (where the unification of job routes through machines is
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performed), (2) job separation (into “large” and “small” ones), and (3) the
gluing the small jobs.

Prior to the description of the procedure, we should make two remarks.
First, we note that after the status of a job (being large or small) is defined,
large jobs have not be subjected to processes of unification and gluing, as
well as to the subsequent stages of algorithm A(γ), since other algorithms
(not based on the compact vector summation) are used in (Shmoys et al.,
1994) for constructing the schedules for large jobs. Thus, since the JSGU -
procedure includes the job unification, it is intended to replace Stage 1 of
algorithm A(γ) applied to small jobs.

Second, it can be observed that the procedure of gluing the small jobs and
the unification of their routes can be performed simultaneously. Indeed, at
Stage 1 we define wide jobs ({J̃j}), each consisting of mµ “wide operations”
{O i

η,j | i ∈ [m], η ∈ [µ]}. The duration p i
η,j of each such operation is first set

to zero. Then, for each job Jj ∈ J , we plunge its o-os {Oη,j | η ∈ [µj ]} into

“wide operations” by setting pî(η,j)η,j ← p
î(η,j)
η,j + p η,j , where Mî(η,j) =M(Oη,j).

But in fact, several original small jobs Jj (all together) could be loaded
into the same wide job J̃k so as the total duration p̌ i

η,k of their operations
within each wide operation O i

η,k would not exceed the given threshold p#.
(This process can be viewed as a packing of vectors {pj} into an (mµ)-
dimensional bin J̃k.) So, the jobs placed into the same wide job J̃k could be
glued together, thereby forming an “aggregated small” wide job.

We next observe that the process of packing the original jobs into a fixed
wide job J̃k can be continued until the attempt to place the next in turn
vector pj′ of a small job Jj′ into the current bin J̃k yields an overload of some
cell of that (mµ)-dimensional bin. In this case, we proceed quite simply: we
treat bin J̃k as “filled” and add the “aggregated small” wide job J̃k (with a
total vector p̌k ∈ Rmµ of operation durations) to set JS . After that, we start
filling the next bin (J̃k+1) by placing vector pj′ into it. Finally, if job Jj′ is
“large”, we add it to set JL. (These jobs will not be further involved in our
algorithm.)

Thus, our procedure (combining the three processes mentioned above)
represents a loop of scanning the list J of the original jobs (in any order),
where, while scanning some job Jj ∈ J , we clarify two questions:

(A) Does the job fit into the current bin J̃k? (Does p̌ î(η,j)
η,k +pη,j ≤ p# hold

for all η ∈ [µj ]?)
(B) Is it “small” or “large”? (Does pη,j ≤ p# hold for all η ∈ [µj ]?)
Clearly, 2µj comparisons are sufficient to answer both questions. Yet, this

can be done faster: by performing at most (µj+1) (at best, two) comparisons.
This can be done as follows (see the description of the procedure below for
details).

So, while considering some job Jj ∈ J , we start the loop on its operations
{Oη,j | η = 1, 2, . . . , µj}. For each value of η, we first try to answer only
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the first question: does operation Oη,j fit into the current “aggregated wide

operation” Oî(η,j)
η,k ? (If it fits, then it is small.) If for all values of η we have the

positive answer to this question, we get positive answers to both questions
((A) and (B)) on job Jj : it is small and it fits into the bin.

In case that a value η = η∗ is encountered such that p̌ î(η∗,j)
η∗,k + pη∗,j > p#

(and so, we have got the negative answer to question (A), while it still
remains unclear, if job Jj is small or large), we start (for values η = η∗ and
on) getting answers to question (B): is operation Oη,j small or large? (Or:
does pη,j ≤ p# hold?) If for all η the answers are positive, job Jj is small.
Otherwise, it is large. (It should be included in list JL and taken out of the
operation of our algorithm.)

Procedure JSGU (described below) uses the following global variables:
integer K is the number of “aggregated small” wide jobs;
p̌k (k ∈ [K]) is an (mµ)-dimensional vector of integers accumulating

the resulting operation durations of the k-th “aggregated small” wide job;
IL and IS(k) (k ∈ [K]) are sets of integers accumulating the sets of

the original indices of large jobs and of small jobs plunged into the k-th
aggregated small wide job, respectively. All other information on the original
jobs is also global.

Procedure JSGU (integer: n, p#);
% Formal input parameters:
% n is the number of original jobs in J ;
% p# is the upper bound on the length of any operation of a “small” job

% Local parameters:
integer: i, j, k, η,D;
Boolean: unfit, large;

Procedure Load(integer: j, k); % load job j into bin k
integer: η;
begin
IS(k)← IS(k) ∪ {j};
for η ← 1, . . . , µj do p̌ î(η,j)

η,k ← p̌
î(η,j)
η,k + pη,j

end % Procedure Load

BEGIN
IL ← ∅; k ← 1; IS(k)← ∅; p̌k ← 0;
for j ← 1, . . . , n do begin

unfit ← FALSE; large ← FALSE; η ← 1;
% Initially we assume that job Jj is small and fits into the current bin.
% Next, we run the loop on its operations (indexed by η):
repeat if (p̌ î(η,j)

η,k + pη,j ≤ p#) then η ← η + 1 else unfit ← TRUE
until (η > µj) ∨ unfit;
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if unfit then repeat
if (pη,j ≤ p#) then η ← η + 1 else (large ← TRUE)

until (η > µj) ∨ large;
if not unfit % which means that Jj is small and fits into the current bin
then Load(j, k)

else if not large then {k ← k+1; IS(k)← ∅; p̌k ← 0; Load(j, k)}
else IL ← IL ∪ {j};

end % for j
K ← k;
if k > 2 then begin
D ← 0; for i← 1, . . . ,m do for η ← 1, . . . , µ do D ← D+ p̌ i

η,1 + p̌ i
η,k;

if D ≤ p# then {p̌1 ← p̌1 + p̌k; IS(1)← IS(1) ∪ IS(k); K ← k − 1}
% If the total length (D) of aggregated small jobs J̃1 and J̃k meets
% D ≤ p#, we combine them; if D > p#, we do nothing (thus retaining
% K = k; in particular, D > p# holds in case k = 2).

end % if k > 2
END;

Lemma 5. Procedure JSGU (n, p#) runs in time O(µn). The resulting num-
ber K of aggregated small jobs and the number nL of large jobs meet the
relation

K/2 + nL < mLmax/p
#. (22)

Proof. The procedure requires a single scanning of the set of original jobs,
while the information on each job j ∈ [n] is bounded by O(µj). This yields
the bound on the running time of the procedure.

Let d(x) denote the sum of components of vector x, ⟨p̌′ℓ,K ′⟩ and ⟨p̌′′ℓ ,K ′′⟩
denote the values of vector p̌ℓ (of operation durations of the aggregated small
wide job J̃ℓ) and of parameter K (the resulting number of aggregated small
wide jobs) right before and after performing the “if k > 2” block, respectively.
According to the JSGU -procedure, at least one component of each vector
p̌′ℓ + p̌′ℓ+1 (ℓ ∈ [k − 1]) is greater than p# (while other components are non-
negative), which implies

d(p̌′ℓ) + d(p̌′ℓ+1) = d(p̌′ℓ + p̌′ℓ+1) > p#, ∀ ℓ ∈ [k − 1]. (23)

After performing the block “if k > 2”, we have one of two cases: either (a)
K ′′ = k, or (b) K ′′ = k − 1 (when we combine the aggregated jobs J̃1 and
J̃k, and vector p̌1 receives the value p̌′′1

.
= p̌′1 + p̌′k). Thus, in case (b), we

have:

d(p̌′′1) + d(p̌′′K′′) = d(p̌′1 + p̌′k) + d(p̌′k−1) = d(p̌′1) + d(p̌′k−1 + p̌′k) > d(p̌′1) + p#,
(24)

while (23) in terms of vectors {p̌′′ℓ} transforms into

d(p̌′′1) + d(p̌′′2) = d(p̌′1 + p̌′k + p̌′2) = d(p̌′1 + p̌′2) + d(p̌′k) > p# + d(p̌′k); (25)

d(p̌′′ℓ ) + d(p̌′′ℓ+1) > p#, ℓ ∈ {2, . . . , k − 1}. (26)
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Summing up inequalities (24)–(26), we obtain:

2
∑

ℓ∈[K′′]

d(p̌′′ℓ ) > K ′′p# + d(p̌′1 + p̌′k).

Since in case (a), we have K ′′ = K ′ = k and p̌′′ℓ = p̌′ℓ, ∀ ℓ, we obtain:

d(p̌′′1) + d(p̌′′K′′) = d(p̌′1) + d(p̌′k) > p#, and, using (23):

d(p̌′′ℓ ) + d(p̌′′ℓ+1) = d(p̌′ℓ) + d(p̌′ℓ+1) > p#, ∀ ℓ ∈ [K ′′ − 1].

Similarly summing up these inequalities, we obtain the inequality:

2
∑

ℓ∈[K′′]

d(p̌′′ℓ ) > K ′′p#, (27)

which holds in both cases ((a) and (b)). Similarly, for “large” job, we have:∑
j∈IL

d(pj) > nLp
#. (28)

Using these two bounds on the total durations of “aggregated small” and of
“large” jobs, and recalling that their total duration is at most mLmax, we
obtain:

mLmax ≥
∑

ℓ∈[K′′]

d(p̌ℓ) +
∑
j∈IL

d(pj) >
K ′′

2
p# + nLp

#,

which implies (22). Lemma 5 is proved. □

Corollary 2. Executing the JSGU(n, p#) procedure instead of Stage 1 of
algorithm A(γ) applied for constructing a schedule for “aggregated small”
jobs in the first and second algorithms from (Shmoys et al., 1994) (with
values Lmax

mµ2(µ−1)
and εLmax

mµ2(µ−1)
of parameter p#, respectively) provides the

number nS of “small” jobs which meets upper bounds: nS < 2m2µ2(µ−1) and
nS < 2m2µ2(µ−1)/ε, respectively. This provides an approximate solution for
the original instance of the Job Shop problem with a running time esimated
as O(µn + f(m,µ)) and O(µn + g(m,µ, ε)), respectively, where f(m,µ) is
a polynomial of m and µ, while function g(m,µ, ε) exponentially depends on
parameters m,µ, and 1/ε.

6 Comparative analysis of four theoretical approximation
algorithms for the Job Shop problem

When there are several alternative ways to solve a problem, the question of
comparing these ways naturally arises. We want to find out in which cases
we should give preference to one solution method and in which cases to
another ones. For that purpose, it is desirable to have tools that enable one
to conduct an objective analysis of the quality of methods and to compare
the methods with each other.

As for “tools”, in recent decades the methods of “experimental analy-
sis” and “experimental comparison” of algorithms have become widespread.
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These methods are based on programming algorithms and on subsequent
running of those programs on some finite sets of instances of the prob-
lem under consideration. The results of these calculations for different pro-
grams/algorithms are compared with each other, and from this (usually am-
biguous) comparison a conclusion is drawn most suitable to the author of
such a comparison. However, the results of this kind pertain to another sci-
ence, called “experimental mathematics”, and have no relation to the science
(mathematics) to which this article is dedicated.

It seems that an objective comparison of algorithms is possible only in
those cases when theoretically justified guarantees of their quality (such as
accuracy bounds and bounds on their running time) have been obtained.
However, such results are encountered in scheduling literature several orders
rarer than those mentioned above. For example, for the Job Shop problem in
its general form (i.e., for one of the most difficult-to-solve representatives of
the area of multistage scheduling problems), only four (as far as I know, over
the more than 70-year history of this field) such polynomial-time approxi-
mation algorithms with guaranteed a priori accuracy bounds valid for all
instances of this problem have been developed. (Either detailed or brief
descriptions of these four algorithms were given in the previous sections
and in the Introduction.)

However, even the presence of such bounds does not always provide the
opportunity for comparing different algorithms with each other, since those
bounds may turn out to be incomparable. This may happen for different
reasons. For example, they may be formulated in different terms that are
not comparable with each other. In addition, a typical situation is when
different methods may have their advantages in different sub-domains of the
problem definition domain, but no method dominates absolutely in the entire
domain. Finally, there may be no “absolute winner” for that simple reason
that the problem of comparison is multi-criterion.

In our case, when we limited ourselves to evaluating the quality of algo-
rithms by only two criteria: the accuracy of the solutions obtained and the
complexity of the algorithm, the objective of a theoretical identification of a
“winner” among the algorithms is difficult already due to the multi-criteria
nature of the compared objects. Yet, even when comparing only by one cri-
terion (for example, by complexity), certain difficulties may arise in those
cases when the bounds on the running times of candidate algorithms depend
on several independent parameters (as is in the case of the Job Shop prob-
lem). Alternatively, if we are talking about accuracy bounds (even without
comparing algorithms by their complexity), then, in my opinion, the bounds
on absolute and relative errors have different physical dimensions, and
for this reason are incomparable. Comparing such bounds is the same as
trying to answer the question: “Who jumps better: a long jumper or a high
jumper?”

To tell the truth, it is not difficult to transform the absolute bound (15)
into a relative one: it suffices to divide both parts of the inequality by Lmax
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and recall that Lmax is a lower bound on the optimum. Right such a relative
bound

Cmax(S)

C∗
max

≤ Cmax(S)

Lmax
≤ 1 +

mµ3pmax

Lmax
(29)

implies the asymptotic optimality of our solutions under the condition that
n→∞.

Ok! We now have a priori relative accuracy bounds for all four al-
gorithms. At that, all of them are parametric and all of them estimate the
worst case (for given values of the parameters in terms of which they are
expressed). Let us try to compare them. And before starting this process,
let us collect in one table the information we have about the four algorithms
mentioned above, according to two criteria: (1) the accuracy of the solutions
obtained and (2) the running time of the algorithm. We will number the
algorithms in chronological order: 1 — (Sevast’yanov, 1986), 2 — (Shmoys
et al., 1994) (1st), 3 — (Shmoys et al., 1994) (2nd), 4 — (Jansen et al., 2003).

Alg. Accuracy bound Run-time Parameters Applicability

1 (29) O(m2µ2n2) Any m,µ, n Yes

2 Cmax(S)
OPT ≤ O(log2(mµ)) O(m2µ2n2) Any m,µ, n poor accuracy

3 Cmax(S)
OPT ≤ 2 + ε O(n2) Fixed m,µ, ε No

4 Cmax(S)
OPT ≤ 1 + ε O(n) Fixed m,µ, ε No

Table 1. Comparison of the four algorithms

Can we start comparing these four algorithms now?
No, they still remain incomparable in accuracy (except for the two

algorithms heaving bounds depending only on ε; they can be compared),
since they depend on different sets of parameters. Namely, bound (5) de-
pends on parameters m and µ, bound (6) by (Shmoys et al., 1994) and bound
(1 + ε) for each algorithm Aε by (Jansen et al., 2003) depend on ε, while
our bound (29) depends on two extra parameters: pmax and Lmax, and does
not depend on ε. However, these differences are easily leveled off by Shmoys
et al.: they just put pmax = Lmax in our bound (29), which is a gross dis-
tortion of the bound. Of course, for some (very rare) instances (with small
values of parameters m,µ and n) these parameters can take close values.
But such an event is practically improbable for instances of practical size.
For the overwhelming majority of practically significant instances, our
accuracy bound (due to its asymptotic optimality) outperforms bound (6)
(not mentioning (5)).

However (Shmoys et al., 1994), having performed the above transfor-
mation of my accuracy bound (i.e., having equated pmax to Lmax), came
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to a completely different conclusion: “It is interesting to note that Sev-
ast’yanov’s algorithm for the job shop problem can be viewed as a (1+mµ3)-
approximation algorithm”. This “interesting observation” and a comparison
of the accuracy bound obtained in this way with their own (obviously bet-
ter!) bounds on the relative error enabled the authors to make an irrefutable
conclusion that their algorithms are “better than previously known ones”
(which is reflected in the title of their article: “Improved Approximation
Algorithms...”)4. It had not come to their mind that I would never pub-
lish an algorithm with that terrible relative accuracy bound, just because
the simplest algorithm A02 constructs a min{m,µ}-approximate schedule in
O(nµ+mµ) time (see Lemma 1 on page 1635).

As for the evaluation and comparison of algorithms by the second crite-
rion (the running time), Shmoys et al. (1994) admit that their algorithms
are inefficient, but they assign the responsibility for that inefficiency on my
algorithm: “While all of the algorithms that we give are polynomial-time,
they are all rather inefficient. Most rely on the algorithms of Sevast’yanov.”
However, I would look at this differently.

Of course, the authors of (Shmoys et al., 1994) are right that the com-
plexity of their algorithms depends significantly on the complexity of our
algorithm, for the simple reason that our algorithm is the most significant
part of their algorithms, applied to the majority of jobs in the orig-
inal problem instance (to so-called small jobs). For this reason, the bound
on the running time of their first algorithm coincides with that of ours.
Which, however, is not a “death sentence” for it, since the bound O(m2µ2n2)
is completely polynomial in all parameters of the problem, and is only
quadratic in the main parameter, the number of jobs n, whereas the val-
ues of the other two parameters, m and µ, are usually relatively small, and,
while solving the problem for a fixed shop, they “hit into” their natural upper
limits, when the planning horizon is expanded. Taking into account the pos-
sibility of linearization of the complexity of this algorithm in n, demonstrated
in Section 5, and also due to the high speed of modern Supercomputers (SC,
for short), such complexity of the algorithm does not seem to be an insur-
mountable obstacle for its application to instances of practical size. However,
this does not make this algorithm competitive with ours, since in accuracy it
remains catastrophically worse than our (asymptotically optimal) algorithm
on the majority of instances of practically significant size.

As for the second, (2 + ε)-approximation algorithm from (Shmoys et al.,
1994) (the complexity of which, after linearization, can be represented as
O(µn) + ψ(m,µ, ε), where ψ(m,µ, ε) is an exponent of m,µ, and 1/ε), its
main complexity (and the fundamental inapplicability of the algorithm for
solving practical problems) lies not in our algorithm, but is hidden in

4In a similar way, i.e., ignoring other conditions and parameters of comparison and
taking into account only the parameters chosen by themselves, they could conclude that
“The long jumper jumps better!”.
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the “constants” that estimate the complexity of the second half of the
algorithm. And as will be shown below, neither the linearization by n of
the running time of the first half of this algorithm, nor any technical progress
in the design of supercomputers can correct this situation.

To convince the reader in the practical inapplicability of this algorithm, we
will suggest to it to find a (2+ε)-approximate solution for a definitely small-
size instance with m = 10 machines in the shop and with µ = 10 operations
per job (all of which are to be processed on 10 different machines)5. At
that, we will take the number of jobs n ≈ 10000, which clearly does not
exceed its average value for practically significant instances. We will neither
overstrain their algorithm by proposing to find solutions arbitrarily close to
2-approximate ones, but take instead ε = 8 (thus letting the algorithm find
just a 10-approximate solution for our small instance).

Finally, we will allow the authors to use our new accuracy bound (15)
(which should help reduce the running time of their algorithm). We will also
make five further agreements.

A. That our instance is being solved in a System of parallel Supercom-
puters, each SC having the maximal known for today capacity of 2 · 1018
flops.

B. That there are 10 billion such SCs in our System on the Globe, i.e.,
about one “personal Supercomputer” for every inhabitant of the Earth6.

C. That in each of 10 trillion galaxies (in the visible part of the Universe)
there are 100 billion stars, and each star has 10 planets, on each of which we
have placed an SC-system similar to that of the Earth. Totally, 1025 Globe
SC-systems, forming the Supercomputer System of the Universe (SSU ).

D. That we have the opportunity to parallelize our problem, equally di-
viding the load between all computers of the SSU, and that each SC can
work as long and continuously as desired.

E. That we measure the working time of our SSU in time units “AU ” (Age
of the Universe). We took the value of this unit to be 15 billion years.

After these strong assumptions (and suggestions on our part), the reader
should have no doubts on the “success of the enterprise”. However, the results
of the forthcoming analysis may be very discouraging to those potential
users of this algorithm who were attracted by its theoretical performance
guarantees in accuracy and complexity given in (Shmoys et al., 1994).

To begin with, let us estimate the total capacity of our SSU, as well as
how many flops (floating point operations) it can perform per the new unit
of time, 1AU.

5This special case of the Job Shop problem is called an acyclic job shop problem, in
which each job has exactly one operation on each machine, and each machine Mi processes
n jobs according to some permutation πi = (πi

1, . . . , π
i
n).

6By the way, ONE such modern SC occupies an area greater than 1000 m2, which
results in total more than 10.000.000 km2, — more than the area of China.
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Taking into account the above characteristics of the System, its total ca-
pacity is 2 · 1018 · 1010 · 1025 = 2 · 1053 flops. Accepting the agreement
that the Earth year consists of 365.25 days, we obtain the relation: 1AU
= 1.5 · 1010 · 365.25 · 24 · 3600 ≈ 4.73 · 1017 seconds. Multiplying this by the
capacity of SSU, we obtain an upper bound on the capacity of SSU per 1AU:
1071 flopAU.

Now let us estimate the complexity of an approximate solution to our
problem instance by the second algorithm from (Shmoys et al., 1994). The
user of this algorithm will have to find an optimal schedule for the set of
so called large jobs, the number of which can be estimated from above by
n′ = m2µ2(µ − 1)/ε = 11250. If we solve this sub-problem by a simple
enumeration of all combinations of permutations {πi | i ∈ [m]} (I remind that
this sub-problem must be solved exactly, so as to guarantee the relative
error of 10 for the resulting solution), then this will require enumerating
(n′)!m ≈ (11250/e)112500·(2π·11250)5 ≈ 10112500·log10 4138.644·105 log10 70 650 ≈
10406 921 variants of combinations of job permutations. For each variant of
this schedule, graph G of precedence constraints specifying the precedence of
operations by jobs and by machines, containsmn′ = 112500 nodes and about
2mn′ = 225000 arcs. It should be checked for the absence of directed cycles,
and if there are no cycles, the length of the critical path in graph G should be
computed. Using for these purposes the algorithm with running time O(mn′)
(linear in the number of arcs of the graph), we have to multiply the above
amount by at least the number 225000 ≈ 105.35 of arcs in G, which results
in 10406 926 elementary actions to be performed. Thus, to perform these
calculations on our CSU (the Super-Computer System of the Univers)
and find a solution (to a given small instance) that would be no more than
10 times worse the optimum, they would need time equal to 10406 855

Ages of the Universe.

As for the question of the practical feasibility of algorithms Aε from the
PTAS designed by Jansen et al. (2003), preliminary estimation shows that
the situation for these algorithms is even more deplorable starting from
rather small values of parameters m and µ. (At that, the scheme works
only with values ε < 1.)

7 Conclusion

In this paper, we present a new version of the algorithm for solving the Job
Shop problem based on the compact vector summation algorithm. As shown
in the paper, the new algorithm guarantees an improved a priori bound on
the absolute error of the solutions obtained, while the bound on the running
time remains the same. In addition, in Section 6 we perform a compar-
ative analysis of quality of four currently known theoretical algorithms of
approximate solution of this problem with a priori performance guarantees.
Undoubtedly, the algorithms presented in (Shmoys et al., 1994) and (Jansen
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et al., 2003) have significant theoretical value from the view point of para-
metric analysis of the complexity of approximate solution of the Job
Shop problem. However, in Section 6 we pursued a different goal: to per-
form a comparative analysis of the practical suitability of these algorithms
for solving real-size instances of the Job Shop problem. The results of this
analysis and of the comparison of the four algorithms are the following con-
clusions (the first two relate to accuracy, the rest ones — to the complexity
of the algorithms).

(1) According to the theoretical accuracy bounds derived for these algo-
rithms, none of them dominates the others in the entire range of
instances of this problem (in terms of accuracy of the solutions obtained).

(2) For the overwhelming majority of instances having practically signifi-
cant sizes, our algorithm with bound (29) (ensuring asymptotic optimality
of the solutions obtained with an increase in the planning horizon) has an
advantage in accuracy over the algorithms from (Shmoys et al., 1994).

(3) Our algorithm has a moderate, polynomial in all main parameters,
bound on the running time O(m2µ2n2), which is just quadratic in the main
parameter of the problem, the number of jobs n. At that, the other two
parameters, m and µ, have natural upper bounds independent of length of
the planning horizon (T ), and thus, in the conditions of solving a practical
problem for a fixed shop, with an increase in T they can be treated as
amounts limited by constants, which justifies the practical feasibility of
our algorithm on real size problem instances on modern computers.

(4) The first of the two algorithms from (Shmoys et al., 1994) in its orig-
inal version has no advantage in complexity over our algorithm, but after
its modification (linearization in n, performed in Section 5) it gains some
advantage in the running time for large values of n. At that, as n increases,
it becomes much worse than our algorithm in accuracy (due to the fact
that its accuracy bound, depending on m and µ, remains stable, while the
relative error of our algorithm tends to zero).

(5) The second algorithm from (Shmoys et al., 1994), supposedly guar-
anteeing (2 + ε)-approximation in polynomial time (for any fixed values of
parameters m, µ, and ε), is practically inoperative on the overwhelming
majority of instances (starting with instances of small size), since even after
its linearization in n it is not capable of obtaining even 10-approximate
solutions for small enough instances in any physically observable time.
Thus, its comparison with our algorithm makes no sense on the ma-
jority of real-size instances.

The situation with the practical applicability of any algorithm Aε from the
PTAS presented in (Jansen et al., 2003) (according to our preliminary esti-
mation) seems even more hopeless. Moreover, as our calculations performed
in Section 6 convincingly demonstrate, this deplorable situation with the last
two algorithms can be corrected by no future progress in the development of
Supercomputers.
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The calculations made in Section 6 raise up some further interesting ques-
tions:

— What are the huge Super-Computers needed for, if, even with the help
of algorithms with “improved” performance guarantees, the Super-Computer
Army of the whole Universe for the whole Eternity is not capable of finding a
rough approximate solution for a small instance of an ordinary (just strongly
NP-hard) discrete optimization problem?

— What are the ingenious algorithms with theoretically justified “excellent
performance guarantees” (high accuracy and “polynomial-time” complexity)
needed for, if, even with the power of the Super-Computer System of the
Universe and for the whole Age of the Universe they are unable to find a
rough approximate solution for a small problem instance?

The answer to the first question, apparently, is that Super-Computers are
dedicated to solving some other-type enumeration problems (consisting in
processing a large amount of information in a minimum time and allowing
maximum parallelization of this process). And even when they are used for
solving such problems as the Job Shop problem, they should run programs
for the algorithms having more definite performance guarantees (without
hiding their inaccuracy into forms like “O(·)” and hiding their running time
into “constants” with indefinite values). When any new algorithms appear
that position themselves as an “improvement of all previous ones”, a not bad
idea is to test their practical applicability in terms of the time unit “AU” (as
demonstrated in Section 6). And in case that 1AU appears to be insufficient
to find a solution by the new method, this clearly indicates that one should
not rush into programming such an algorithm.

The answer to the second question is ambiguous and requires a detailed
analysis of each algorithm under consideration. It is only clear that the mere
existence of “excellent theoretical performance guarantees” for an algorithm
does not guarantee equally excellent practical behavior of this algorithm in
solving real-size problems (as shown by the above analysis of the algorithms
from (Shmoys et al., 1994) and (Jansen et al., 2003)). It is obvious that all
three algorithms were not originally intended for solving practical instances
of the Job Shop problem. They have purely theoretical significance and
contribute to the theoretical analysis of the parametric complexity
of an approximate solution of this problem.

Thus, our algorithm remains today the only workable algorithm for an
approximate solution to the Job Shop problem with theoretically justified
a priori bounds of their quality, enabling one for practically significant
instances of this problem to find solutions with acceptable accuracy and in
a realistic time.

As for the approach we have developed for an approximate solution of the
Job Shop problem (first proposed in (Sevastyanov, 1984, 1986) and improved
in this paper), its potential, as we see it, is far from being exhausted and lies
in two possible directions. First, we are not sure that this paper presents
the most perfect method for reducing the original problem to a compact
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vector summation problem. Reducing the degree of dependence of
the solution error on parameters m and µ is, in our opinion, a relevant
and quite achievable goal. Second, the unimprovability of the (presented
here) accuracy bound of the vector summation algorithm had not been
proved either, which gives hope for a possibility of its further improvement.
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A Searching for a base of a given family of vectors

Next, lin(Y ) will denote the linear hull of a set Y ⊆ Rd.

Definition 4. A set of vectors XB ⊆ Rd is called a base of a family of
vectors X ⊂ Rd, if XB is linearly independent and XB ⊆ X ⊆ lin(XB).

The following lemma was proved in [14].

Lemma 6 ([14]). Let a family of vectors X = {x1, . . . , xn} ⊂ Rd and a
family of numbers Λ = {λj ∈ [0, 1] | j ∈ [n]} be given. Then there exists an
algorithm that in O(nd2) time finds a base XB of family X and a family of
numbers Λ′ = {λ′j ∈ [0, 1] | j ∈ [n]} such that∑

j∈[n]

λ′jxj =
∑
j∈[n]

λjxj
.
= x

 &
(
{xj |λ′j ∈ (0, 1)} ⊆ XB

)
.

It is easy to verify the existence of the desired base of the family of vec-
tors X and of the family of numbers {λ′j}. Indeed, if the family of vectors
{xj |λj ∈ (0, 1)} is linearly dependent, then we can find this dependence
and, using it, change the coefficients {λj ∈ (0, 1)} while preserving the sum∑
λjxj so that at least one of the coefficients turns to 0 or 1. Repeating this

procedure no more than n times, we arrive at a linearly independent family
of vectors {xj |λj ∈ (0, 1)}, which is obviously contained in some base of
family X. If (in the case of |X| > d) we first consider subfamilies of vectors
X ′ ⊆ X of cardinality |X ′| = d + 1, and use the usual Gauss method to
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find (in O(d3) time) the coefficients of the linear dependence of vectors in
each such subfamily, then we can obtain the desired base and the family of
numbers {λ′j} in time O(nd3). The procedure below yields the desired result
in O(nd2) time.

The procedure executes a loop on t = 1, . . . , n. At the end of each iteration
t of this loop, we know coefficients {λ′j ∈ [0, 1] | j ∈ [n]} and a partition of
the index set [n] into three subsets: [n] = JZ ∪ JW ∪ JR such that:∑
j∈[n]

λ′j xj = x; λ′j = λj , ∀ j ∈ JR = {t+ 1, . . . , n}; λ′j ∈ {0, 1}, ∀ j ∈ JZ ;

XB = {xj | j ∈ JW } is a base of the subfamily {xj | j ∈ [t] = JW ∪ JZ}.
Thus, initially all coefficients λ′j coincide with λj . At subsequent iterations

t, the set of indices {j ∈ JR} corresponds to those coefficients λ′j that have
not yet been transformed, and the set JZ corresponds to those ones that will
not be further transformed (they are integers). The coefficients {λj | j ∈ JW }
are “in progress”.

The base XB changes dynamically during the iterations of the loop over
t: new vectors are added to it, while some vectors (that were previously
included) leave it. (In the latter case, their indices move from set JW
to set JZ .) The current list of the base is determined by the set JW =
{j′(1), j′(2), . . . , j′(s)} of indices of the vectors included in it. It should be
noted that those indices of the base vectors will not necessarily be listed in
ascending order, since the place of each new vector in the base is dynami-
cally determined during the algorithm. In this case, the place in the base
that a vector receives when it enters the base is permanent until the mo-
ment of its leaving the base or until the end of the algorithm. This place
corresponds to the column number of matrix C of the transition from base
XB = {xj′(1), . . . , xj′(s)} to basis B (to be defined below).

Thus, at each iteration t, beyond the sets JZ , JW , JR, we adjust the fol-
lowing:
— basis B = {b1, . . . , bs} of space lin{x1, . . . , xt} and the first s = |JW | com-
ponents of the formed permutation π = (π1, . . . , πd) of coordinates of space
Rd, so that bk(πi) = 0, ∀ i ∈ [k − 1]; bk(πk) ̸= 0, ∀ k ∈ [s]. Namely, both
basis B and permutation π may be incremented by a new, (s+1)-th element,
while s previously defined elements remain unchanged;
— matrix C = (ck,i)k,i∈[s] of the transition from base XB = {xj′(1), . . . , xj′(s)}
to basis B:

bk =
∑
i∈[s]

ck,i xj′(i), k ∈ [s]; (30)

— function j′(i), specifying the position of each vector xj ∈ XB in the base
and in matrix (ck,i) (the i-th column of this matrix corresponds to vector
xj′(i)).

When adding a new vector xt to consideration at iteration t, the following
three cases are possible.
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(1) Vectors XB ∪ {xt} are linearly independent. In this case, vector xt is
added to basis XB and placed in it at the (s+1)-th position, where s = |XB|.
In addition, basis B and permutation π are supplemented with (s + 1)-th
elements; matrix C is incremented by one more column and one row.

(2) Vectors XB ∪ {xt} are linearly dependent; vector xt does not get into
the base. After recalculating the coefficients {λ′j}, index t of vector xt is
transferred from JW to JZ . The base, the basis, matrix C, and permutation
π remain unchanged.

(3) Vectors XB ∪ {xt} are linearly dependent; one of vectors of the base
(xj′(i∗)) is removed from it, and vector xt is inserted into the base at the
vacated position i∗. (In matrix C it will correspond to the recalculated
i∗-th column.) Matrix C and function j′(i) are recalculated; basis B and
permutation π remain unchanged.

Procedure Search_for_a_Base(integer: n,s; family of integers:
{jB[i] | i ∈ [d]}; family of vectors in Rd : X={xt | t ∈ [n]};

family of reals: Λ = {λj ∈ [0, 1] | j ∈ [n]},Λ′ = {λ′j ∈ [0, 1] | j ∈ [n]});
% The OUTPUT parameter {jB[i] | i ∈ [s]} is the set of indices of the vectors
% xt ∈ X forming the base XB of X that we are looking for
% Local parameters:

integer: t, k, j, i, i∗; real: ε, ε∗; vector in Rd : b;
family of integers: JR, JZ , JW , J ′

W , {πk | k ∈ [d]};
family of reals: {µk | k ∈ [n]}; {µ′k | k ∈ [n]}; {ck,i | k, i ∈ [d]};
family of vectors in Rd : B={bk | k ∈ [d]};

BEGIN
JR ← [n]; JZ ← ∅; JW ← ∅; λ′j ← λj , ∀ j ∈ [n]; s← 0;
for t← 1, . . . , n do begin

JR ← JR \ {t}; if xt = 0 then {λ′t ← 0; JZ ← JZ ∪ {t}}
else begin
JW ← JW ∪ {t}; jB[s+ 1]← t; b← xt;
for k ← 1, . . . , s do {µk ← b(πk)/bk(πk); b← b− µkbk};

% We have obtained vector b = xt−
∑

k∈[s] µkbk such that b(πi) = 0 (i ∈ [s]).
% Substituting the values of {bk} from (30) to this expression, we obtain
% b = −

∑
i∈[s+1] µ

′
jB [i]xjB [i], where the coefficients {µ′jB [i]} are defined as:

µ′jB [i] ←
∑

k∈[s] µk · ck,i, i ∈ [s]; µ′jB [s+1] ← −1;
% As proved in [14], xjB [s+1] linearly depends on vectors {xjB [1], . . . , xjB [s]},
% if and only if b = 0. We next check, if b(πi) = 0, ∀ i ∈ [d] \ {πi | i ∈ [s]}.

if b ̸= 0 then begin
find a coordinate i∗ ∈ [d] \ {πi | i ∈ [s]} such that b(i∗) ̸= 0;
πs+1 ← i∗; bs+1 ← b;

% We next complement matrix (ci,j) by defining the coefficients from the
% (s+ 1)-th row and the (s+ 1)-th column as:

cs+1,i ← −µ′jB [i], i ∈ [s+ 1];
ck,s+1 ← 0, k ∈ [s]; s← s+ 1;
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end % “if b ̸= 0”
else begin % the case when vectors {xjB [1], . . . , xjB [s+1]} are linearly

% dependent, since
∑

i∈[s+1] µ
′
jB [i]xjB [i] = 0 and µ′jB [s+1] = −1.

Define the set J ′
W

.
= {j ∈ JW |µ′jB [i] ̸= 0};

find ε∗ = max{ε |λ′j + εµ′j ∈ [0, 1], ∀ j ∈ J ′
W };

redefine the coefficients {λ′j | j ∈ J ′
W } as: λ′j ← λ′j + ε∗µ′j , j ∈ J ′

W ;
% At that, the sum

∑
j∈[n] λ

′
jxj does not change and at least one of the

% coefficients {λ′j | j ∈ J ′
W } takes a value from {0, 1}.

Find i∗ ∈ [s+ 1] such that (λ′jB [i∗] ∈ {0, 1}) &(jB[i
∗] ∈ J ′

W );
JW ← JW \ {jB[i∗]}; JZ ← JZ ∪ {jB[i∗]};

% In case jB[i∗] = jB[s+ 1] = t, there is nothing to do next, because both
% the base and the basis remain unchanged. Otherwise, we replace vector
% xjB [i∗] of base XB by vector xt and recalculate the coefficients (ck,i) of
% the transition from the base to basis B (which remains unchanged)
% according to formula (30). (We note here that J ′′

W
.
= J ′

W \ {t} ̸= ∅, since
% xt =

∑
j∈J ′′

W
µ′jxj ̸= 0.) So,

if i∗ ≤ s then begin
ck,i∗ ← ck,i∗/µ

′
jB [i∗]; ck,i ← ck,i − ck,i∗µ′jB [i], i ∈ [s] \ {i∗}, k ∈ [s];

jB[i
∗]← t;

end; % “if”
end; % “else”

end; % “for t”
END; % of Procedure Search_for_a_Base

B Vector summation algorithm A1 from Theorem 1

Definition 5. Let B be a convex set in Rd, I be a finite set such that k .
=

|I| ≥ d, a ∈ Rd, Ba
.
= conv{0, a−B/d}. A family of vectors {xi | i ∈ I} ⊂ B

is called a Ba-balanced system of vectors (Ba-BSV, for short), if there is a
family of numbers {λi ∈ R | i ∈ I} satisfying the conditions:

λi ∈ [0, 1], i ∈ I, (31)∑
i∈I

λi = k − (d− 1), (32)

∑
i∈I

λixi ∈ Ba. (33)

The construction of the desired sequence π∗ of summing the vectors of
family X = {xi | i ∈ [N ]} ⊂ Rd by algorithm A1 is based on the cyclic usage
of the procedure Next_BSV (described below), which, heaving at its input
a Ba-balanced system of vectors U = {xi | i ∈ I} ⊂ Rd (defined for a subset
I ⊆ [N ], s.t. |I| ≥ d+1), finds an index i∗ ∈ I such that the family U \{xi∗}
is a Ba-BSV again.

The correctness of this procedure was justified in
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Lemma 7 ([19]). Let B be a convex set in Rd, a ∈ Rd, {xi ∈ B | i ∈ I} be a
Ba-BSV with |I| .= k ≥ d+1, for which the corresponding family of numbers
{λi | i ∈ I} satisfying the conditions (31)–(33) is known. Then there exists
an index i∗ ∈ I such that the system of vectors U ′ = {xi | i ∈ I \ {i∗}} is
Ba-BSV again; index i∗ and the numbers {λ′i} corresponding to vectors from
U ′ can be found in O(kd 2) time.

Procedure Next_BSV (integer: i∗, k; finite set: I; % |I| = k
family of vectors in Rd: U = {xi | i ∈ I};

family of reals: Λ = {λi | i ∈ I});
% The input family of vectors U is a Ba-BSV with coefficients {λi | i ∈ I}.
% The set I (with the output value I ← I \{i∗}), numbers i∗ and k, and the
% transformed families U and Λ are also outputs of the procedure.

% Local parameters:
integer: i, i0;
real: ε, r;
a finite set of integers: I1, IW , I−W , I

′′
W ;

a family of reals with indices {i ∈ I}: {λ′i}, {λ′′i }, {µi}, {µ′i}, {µ′′i }, {ηi};
family of vectors in Rd+1: Ū = {x̄i | i ∈ I}; Ū ′ = {x̄i | i ∈ IW };
vector in Rd: c, b;
vector in Rd+1: c̄, ā;

BEGIN
Put λ′i ← (k − d)λi/(k − d+ 1), ∀ i ∈ I. Then we have:

λ′i ∈ [0, 1], i ∈ I, (34)∑
i∈I

λ′i = k − d, (35)

∑
i∈I

λ′ixi ∈ Ba. (36)

To obtain the desired result (a Ba-BSV with the number of vectors less
by one), it remains to transform the coefficients {λ′i} while preserving the
properties (34)–(36) so that one of the coefficients (λ′i∗) becomes zero (which
would mean that the family of vectors U ′ = {xi | i ∈ I \ {i∗}} becomes a Ba-
BSV). The desired transformation will require at most four “Steps” described
below.

Step 1. Let us define a family of vectors Ū = {x̄i
.
= (xi, 1) | i ∈ I} ⊂

Rd+1, and then transform the coefficients {λ′i} while preserving the condition
(34) and the sum

∑
i∈I λ

′
ix̄i so that the subfamily of vectors Ū ′ .

= {x̄i ∈
Ū |λ′i ∈ (0, 1)} is contained in some base Ū∗ of family Ū . By Lemma 6, the
desired coefficients {λ′i} and the base Ū∗ ⊆ Ū can be found (by means of the
procedure Search_for_a_Base described in Application A) in O(|I|d 2) time.
If among the coefficients {λ′i} there is a coefficient λ′i∗ = 0, then the family
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of vectors {xi}i̸=i∗ is the desired Ba-BSV with coefficients {λi ← λ′i}i̸=i∗ .
Next we assume that

λ′i > 0, ∀ i ∈ I. (37)
Let IW

.
= {i ∈ I |λ′i ∈ (0, 1)}, I1

.
= {i ∈ I |λ′i = 1}. Then using (35) and

(37), we obtain

k − d =
∑
i∈I

λ′i =
∑
i∈I1

λ′i +
∑
i∈IW

λ′i = |I1|+
∑
i∈IW

λ′i = k − |IW |+
∑
i∈IW

λ′i,

implying d+
∑

i∈IW λ′i = |IW | ≤ |Ū∗| ≤ d+ 1. Thus,
∑

i∈IW λ′i must be an
integer not greater than 1. It cannot be 0 (since |IW | ≥ d), so, we obtain:∑

i∈IW

λ′i = 1, |IW | = d+ 1, Ū ′ is a basis of Rd+1.

Let us transform the coefficients {λ′i | i ∈ IW } while preserving the prop-
erties (34)–(36) so that one of the coefficients becomes zero. To that end,
we denote:

c
.
= −

∑
i∈I1

xi, c̄
.
= (c, 1) ∈ Rd+1, b

.
=

∑
i∈I

λ′ixi ∈ Ba. (38)

Step 2. Let us find the unique representation c̄ =
∑

i∈IW µix̄i. The
coefficients {µi} can be found, for example, by the Gauss method in O(d 3) ≤
O(kd 2) time. If

I−W
.
= {i ∈ IW |µi ≤ 0} ̸= ∅, (39)

we define ε .
= maxi∈I−W

{−µi/(λ′i − µi)}. Clearly, ε ∈ [0, 1),

λ′′i
.
= (1− ε)µi + ελ′i = µi + ε(λ′i − µi) ≥ 0, ∀ i ∈ IW ,

and there is an i∗ ∈ I−W such that λ′′i∗ = 0. It follows from
∑

i∈IWµi = 1,∑
i∈IWλ

′
i = 1 that

∑
i∈IW λ′′i = 1. Put λ′′i ← 1, ∀ i ∈ I1. Then

∑
i∈I λ

′′
i =

|I1|+
∑

i∈IW λ′′i = k− |IW |+1 = k− (d+1)+ 1 = k− d. Furthermore, due
to (38) and ε ∈ [0, 1),∑

i∈I
λ′′i xi =

∑
i∈I1

xi +
∑
i∈IW

λ′′i xi = −c+
∑
i∈IW

[(1− ε)µi + ελ′i]xi =

= −c+ (1− ε)c+ ε(c+ b) = εb ∈ Ba.

Thus, the family of vectors U = {xi | i ∈ I ′} (specified for the set of indices
I ′
.
= I \ {i∗}) is a Ba-BSV with coefficients {λi ← λ′′i | i ∈ I ′}.
Let (39) not hold, which means, µi ∈ (0, 1), ∀ i ∈ IW .

Step 3. Find the unique representation of vector ā = (da, 1) ∈ Rd+1

in the form: ā =
∑

i∈IW ηix̄i. Since
∑

i∈IW (dµi + ηi) = d + 1, there exists
i0 ∈ IW such that dµi0 +ηi0 ≤ 1. Since µi0 > 0, the inequality ηi0 < 1 holds,
and we can define

r
.
=

µi0
1− ηi0

≤ 1

d
. (40)



APPROXIMATION ALGORITHM FOR THE JOB SHOP PROBLEM 1671

As shown in [19], vector c− rxi0 can be presented as

c− rxi0 =
∑
i∈IW

µ′ixi − dar (41)

with coefficients µ′i
.
= µi + µi0ηi/(1 − ηi0), i ∈ I ′W

.
= IW \ {i0}; µ′i0

.
= 0.

Thus,∑
i∈IW

µ′i =
∑
i∈I′W

µ′i =
∑
i∈I′W

µi +
µi0

(1− ηi0)
∑
i∈I′W

ηi =
∑
i∈I′W

µi + µi0 =
∑
i∈IW

µi = 1,

so, putting µ′i = 1 (i ∈ I1), we obtain
∑

i∈I µ
′
i = k − (d + 1) + 1 = k − d.

Using (41) and (40), we also get∑
i∈I

µ′ixi =
∑
i∈I1

µ′ixi+
∑
i∈IW

µ′ixi = −c+ c− rxi0 + dar = dr

(
a− 1

d
xi0

)
∈ Ba

(since a − 1
dxi0 ∈ a −

1
dB ⊆ Ba and dr ≤ 1). Thus, if µ′i ≥ 0, ∀ i ∈ IW ,

we put I ′ .= I \ {i0}, λi ← µ′i (i ∈ I ′), i∗ ← i0, and the family of vectors
U = {xi | i ∈ I ′} becomes a Ba-BSV with coefficients {λi | i ∈ I ′}.

We next suppose that I ′′W
.
= {i ∈ IW |µ′i < 0} ̸= ∅.

Step 4. Define ε .
= maxi∈I′′W {−µ

′
i/(µi − µ′i)}. Then ε ∈ (0, 1) (because

all µi > 0). So, we get µ′′i
.
= (1− ε)µ′i + εµi = µ′i + ε(µi− µ′i) ≥ 0, ∀ i ∈ IW ,
∃ i∗ ∈ I ′′W : µ′′i∗ = 0,∑

i∈IW µ′′i = 1.

Putting µ′′i = 1 (i ∈ I1), we have
∑

i∈I µ
′′
i = k − d. Then, using (41), the

definition of {µi} (see Step 2), and (38), we obtain:∑
i∈I µ

′′
i xi =

∑
i∈I1 xi +

∑
i∈IW µ′′i xi = −c+

∑
i∈IW [(1− ε)µ′i + εµi]xi =

= −c+ (1− ε)(c− rxi0 + dar) + εc = (1− ε)dr
(
a− 1

dxi0
)
∈ Ba.

Thus, the family of vectors U .
= {xi | i ∈ I ′} (for I ′ .= I \ {i∗}) is a Ba-BSV

with coefficients {λi ← µ′′i | i ∈ I ′}.
Put I ← I ′.
END; % of Procedure Next_BSV

Algorithm A1(d, a,N,X;π)
(of finding the order π of a “compact summation” of the family of

vectors X = {xi | i ∈ [N ]} ⊂ Rd,
∑

xi∈X xi = 0)
Notation (see Theorem 1, page 1635, and Definition 5, page 1668):
B

.
= conv{X}; a ∈ Rd; Ba

.
= conv{0, a−B/d}

To obtain the desired permutation π of indices k ∈ [N ], we find a sequence
of sets Ik ⊆ [N ] (k = 1, . . . , N) such that

I1 ⊂ I2 ⊂ · · · ⊂ IN = [N ]; |Ik| = k, ∀ k ∈ [N ]; (42)∑
i∈Ik

xi ∈ (d− 1)B +Ba, ∀ k ∈ [N ]. (43)
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To that end, we first observe that if a family of vectors X(I)
.
= {xi | i ∈

I} ⊂ Rd (for |I| ≥ d) is a Ba-BSV with coefficients {λi | i ∈ I}, then∑
i∈I

xi =
∑
i∈I

(1− λi)xi +
∑
i∈I

λixi ∈
∑
i∈I

(1− λi)B +Ba = (d− 1)B +Ba,

holds, which means that X(I) meets (43). Also observe that X(IN ) is a
Ba-BSV with coefficients {λi = (N − (d − 1))/N | i ∈ IN}, since λi ∈
[0, 1],

∑
λi = N − (d − 1),

∑
λixi = 0 ∈ Ba. Applying these two facts

and Procedure Next_BSV, we can find subsets Id, . . . , IN−1 which are Ba-
BSV (and thus, meet (43)) and can define the items πk ∈ Ik \ Ik−1 (k =
d + 1, . . . , N) of permutation π, respectively. Finally, defining the subsets
{Ik | k < d} satisfying (42) arbitrarily, we obtain for them:

1

d− 1

∑
i∈Ik

xi =
k

d− 1

∑
i∈Ik

1

k
xi

.
=

k

d− 1
x′ ∈ B,

since x′ .=
∑

i∈Ik
1
kxi ∈ B, k

d−1 ≤ 1, and 0 ∈ B. Thus,∑
i∈Ik

xi ∈ (d− 1)B ⊆ (d− 1)B +Ba

(since 0 ∈ Ba), providing (43) again.
This yields the following simple scheme for Algorithm A1.

Local parameters:
integer: k, i∗;

BEGIN
I ← [N ]; λi ← (N − (d− 1))/N, ∀ i ∈ I;
for k ← N step −1 down to d+ 1 do
{Next_BSV (i∗; I; U = {xi ∈ X | i ∈ I}; Λ = {λi | i ∈ I}); πk ← i∗};

for k ← 1, . . . , d do {Find i∗ ∈ I; πk ← i∗; I ← I \ {i∗}}
END.
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