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Abstract: Several asymptotic formulas for probabilities of the
Wiener process to stay between different square root boundaries
are known after papers of Breiman (1965), Sato (1977), Novikov
(1979, 1981), Gärtner (1982), Uchiyama (1980), Greenwood and
Perkins (1983). In the present work we investigate accuracy of
these approximations. We present several general estimates in
the case of two boundaries. In particular, these estimates con-
tain the ones obtained earlier by Uchiyama in the limiting case of
one boundary.
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1 Introduction and main results

1.1. Introduction. For a standard Brownian motion Bt = B(t), defined
for all t ≥ 0, introduce into consideration the following stopping time:

τc1,c2 := inf{t ≥ 1 : Bt /∈ (c1
√
t, c2

√
t)} = inf{t ≥ 1 : Ut /∈ (c1, c2)},
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where Ut = U(t) := B(t)/
√
t for t > 0 and c1 < c2. Our main aims are to

approximate, for large T > 1, the probability

P(τc1,c2 > T |B1 = a) = P(τc1,c2 > T |U1 = a)

= P(c1 < Ut < c2 ∀t ∈ [1, T ]|U1 = a)

and the more general probability

Pc1,c2(a, T, y) = P(τc1,c2 > T and UT ≤ y|U1 = a), T > 1, (1)

for all parameters a, c1, c2, y satisfying the following relations:

−∞ < c1 < c2 ≤ ∞, a, y <∞ and c1 ≤ a, y ≤ c2. (2)

Denote by D the set of all values (a, c1, c2, y) which satisfy conditions from (2).
We fix the numbers c1 and c2 and we often omit the dependence of our no-
tations on c1, c2. We everywhere suppose that T > 1.

The study of first-passage times over one of the two square root boundaries
for the Brownian motion was initiated by Breiman [1]. After that several
results in exit problems with one-sided boundaries were obtained by Sato [8],
Novikov [6, 7], Gärtner [4], Uchiyama [9]. For more detailed history see
also [2]. All these results were summarized by Greenwood and Perkins [5]
in their Lemma 3. We recall the corresponding assertions below in our
Lemmas 1 and 5. In particular, for all c1 < c2 there exist functions

λ(c1, c2) > 0 and ψc1,c2(x) > 0 ∀x ∈ (c1, c2) (3)

such that

T λ(c1,c2)Pc1,c2(a, T, y) → Ψc1,c2(a, y) = ψc1,c2(a)θc1,c2(y) on D (4)

as T → ∞, where for all y ∈ (c1, c2)

θc1,c2(c1) = 0 < θc1,c2(y) :=

∫ y

c1

ψc1,c2(x)

||ψc1,c2 ||2
e−x2/2dx < θc1,c2(c2) <∞ (5)

and 0 < ||ψc1,c2 ||2 :=
∫ c2
c1
ψ2
c1,c2(x)e

−x2/2dx <∞.
Unfortunately, the explicit forms of functions λ(c1, c2) and ψc1,c2(x) are

known only in exceptional cases. For example, Breiman [1] pointed out that

λ(−1, 1) = 1 and λ(−c, c) = 2 for c2 = 3−
√
6.

Several authors (see, for example, [3]) also noted that

λ(0,∞) = 1/2 and ψ0,∞(x) =
√

2/πx

with θ0,∞(x) = 1− e−x2/2 for x ≥ 0,

where ||ψ0,∞|| = 4
√

2/π.
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1.2. Statement of the problem. There arises a natural task to obtain a
rate of convergence in (4), i.e. to find estimates for the difference

∆c1,c2(a, T, y) := T λ(c1,c2)Pc1,c2(a, T, y)−Ψc1,c2(a, y) on D, (6)

when T > 1. In the particular case, when c2 = y = ∞, such estimate was
obtained by Uchiyama [9]. In his Theorem 1.1 for all c := c1 ∈ R he found
a remarkable inequality:∣∣∆c,∞(a, T,∞)

∣∣ = ∣∣T λ(c,∞)P(τc,∞ > T |U1 = a)− ψc,∞(a)θc,∞(∞)
∣∣ (7)

<
C1(ε, c)

Tκ(c) exp(εx2) for any ε > 0 and T > T1(ε, c) > 1,

where the constants C1(ε, c) and T1(ε, c) depend only on the chosen numbers
ε > 0 and c ∈ R (for the implicit definitions of these constants see formula
(1.10) in [9]); in addition

for all c ∈ R the function κ(c) is continuous and κ(c) > 1/2. (8)

Our aim is to improve and generalize the estimate (7) of Uchiyama.

1.3. Main estimates. Below we consider only parameters from (2).

Theorem 1. There exists a number κ(c1, c2) > 0 such that for any function
ua > 1 we have on D that

∣∣∆c1,c2(a, T, y)
∣∣ ≤ 4

√
e(1 + 8Λ(c1, c2))

u
Λ(c1,c2)
a

Tκ(c1,c2)
4

√
u2a

u2a − 1
exp

(
a2

2(ua + 1)

)
(9)

for all T > 1, where Λ(c1, c2) := λ(c1, c2) + κ(c1, c2).

Now consider several particular cases.

Corollary 1. Let c2 <∞. Then from (9) with ua = 2 we immediately have

∀T > 1
∣∣∆c1,c2(a, T, y)

∣∣ ≤ C2(c1, c2)

Tκ(c1,c2)
on D, (10)

where

C2(c1, c2) :=
4
√

4e(1 + 8Λ(c1, c2))2
Λ(c1,c2) exp

(
max{c21, c22}

6

)
<∞.

Unfortunately, we cannot find the optimal function ua > 1 which minimize
the right-hand side in (9). Instead, we present several simple approximations
to such functions. It is clear, that estimate (10) is bad for large values
of |c1|, |c2|, or |a|; for example, C2(c1,∞) = ∞. To avoid this problem,
instead of the simple ua = 2 we should use a function ua which depend
on a and Λ(c1, c2), especially for large values of |a| and Λ(c1, c2). Such
appropriate functions ua will be found in subsection 2.7; as a result, we
obtain the following sufficiently sharp and general estimate.
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Corollary 2. For any numbers ba > 0 and T > 1∣∣∆c1,c2(a, T, y)
∣∣ ≤ √

e1+1/ba(1 + 8Λ(c1, c2))
(1 + baa

2)Λ(c1,c2)

Tκ(c1,c2)
on D. (11)

In particular, in the simplest case, when ba = 1,

∀T > 1
∣∣∆c1,c2(a, T, y)

∣∣ ≤ e
√
1 + 8Λ(c1, c2)

(1 + a2)Λ(c1,c2)

Tκ(c1,c2)
on D. (12)

On the other hand, with ba = 1+ ε/Λ(c1, c2) we find from (11) the next two
interesting estimates.

Corollary 3. For any ε > 0 and T > 1∣∣∆c1,c2(a, T, y)
∣∣ ≤ C3(ε,Λ(c1, c2))

Tκ(c1,c2)

(
1 +

εa2

Λ(c1, c2)

)Λ(c1,c2)

(13)

≤ C3(ε,Λ(c1, c2))

Tκ(c1,c2)
exp

(
εa2

)
on D, (14)

where

C3(ε,Λ) :=
√
e(1 + 8Λ) exp

(
Λ

2ε

)
<∞. (15)

Note that if |a| ≥ 2 and Λ(c1, c2) ≥ e then estimate (13) with ε = 1/2
is sharper than the simple inequality (12). Observe also that in (11), (12),
and (15) we have the coefficient

√
1 + 8Λ instead of 4

√
1 + 8Λ in the other

places of the paper (see the proof of Corollary 2 for the reason).

Remark 1. If c2 = ∞ then Λ(c1,∞) < ∞ and κ(c1,∞) = κ(c1), where
the function κ(·) satisfies conditions (8). In this case inequalities (12) and
(13) are sharper than estimate (7) of Uchiyama, at least for sufficiently large
|a|. In addition, rough inequality (14) is more convenient than (7) because
it takes place for all T > 1 with explicit constant C3.

Our considerations show that sharper estimates (12) and (13) would allow
to simplify and shorten several proofs in [2] and [5].

1.4. Key estimates. Introduce a function:

φv(y) :=
4

√
v2

v2 − 1
exp

(
y2

2(v + 1)

)
, v > 1, y ∈ R. (16)

Theorem 2. Let a real number T and functions ua and vy be such that

ua > 1, vy > 1 and T ≥ uavy on D. (17)

Then we have the following estimate:∣∣∆c1,c2(a, T, y)
∣∣ ≤ u

Λ(c1,c2)
a φua(a)√
2πTκ(c1,c2)

∫ y

c1

vΛ(c1,c2)x φvx(x)e
−x2/2dx on D, (18)

where the numbers Λ(c1, c2) > κ(c1, c2) > 0 were introduced in Theorem 1.
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The following rough inequalities may be useful in the case of small values
of T .

Theorem 3. With the numbers λ(c1, c2) defined in (4)

T λ(c1,c2) ≥ ∆c1,c2(a, T, y) ≥ −Ψc1,c2(a, y) on D. (19)

In addition, for all functions ua and vy such that

ua > 1 and vy > 1 on D (20)

we have the next estimate:

0 ≤ Ψc1,c2(a, y) ≤
u
λ(c1,c2)
a φua(a)√

2π

∫ y

c1

vλ(c1,c2)x φvx(x)e
−x2/2dx on D. (21)

Remark 2. The limiting function Ψc1,c2, introduced in (4), always exists
and is uniquely defined on D. But the function ψc1,c2, used in all our results,
may be defined only up to a positive constant multiplier. For example, we
may put

ψc1,c2(a) = Cc1,c2Ψc1,c2(a, c2) on D (22)

with an arbitrary constant Cc1,c2 dependent only on c1 and c2.
These facts will be established in Lemma 5 below.

2 Proofs

2.1. Main representations. Introduce into consideration an Ornstein-
Uhlenbeck process

ωt := U(et) = e−t/2B(et) for t ≥ 0, and let s := log T > 0. (23)

It is well-known that there exists a function qc1,c2(·, ·, ·) such that in the
domain D for all measurable A ⊂ [c1, c2] and µ(y) := e−y2/2

P(c1 < ωt < c2 ∀t ∈ [0, s] and ωs ∈ A|ω0 = a) =

∫
A
qc1,c2(a, e

s, y)µ(y)dy.

(24)

This is the probability that the Ornstein-Uhlenbeck process with the absor-
bing barriers at positions c1 < c2 is not absorbed until the time s = log T .
Here the function qc1,c2(·, ·, ·) has several remarkable properties which were
used, for example, in [1] and [9]. The next assertion follows from more
general Proposition 2 and Lemma 3 in [5]. See also [9] for more details when
c2 = ∞.

Lemma 1. Let the real numbers a, c1, c2, y satisfy conditions (2). Then the
function qc1,c2(·, ·, ·), defined in (24), has the following properties:

(A) for each fixed T = es > 1 we have the next representation:

qc1,c2(a, T, y) =
∞∑
k=0

e−λksϕk(a)ϕk(y) =
∞∑
k=0

ϕk(a)ϕk(y)

T λk
(25)
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for some functions {ϕk(·) = ϕk(·, c1, c2)} and numbers {λk = λk(c1, c2) > 0}
generated by the Ornstein-Uhlenbeck process, where the series converges ab-
solutely, uniformly for (a, y) in compact subsets of [c1, c2]2. The convergence
also holds in the space of all square-summable (with respect to the measure
µ(a)µ(y)dady) functions in the plane domain c1 < a, y < c2.

(B) The function λ0(c1, c2) is strictly positive, jointly continuous on the
set

C := {(c1, c2) : −∞ < c1 < c2 ≤ ∞};

it is also strictly increasing in cl ∈ (−∞, c2], and strictly decreasing in
c2 ∈ [c1,∞]. In addition,

lim
(c1,c2)→(−∞,∞)

λ0(c1, c2) = 0 and lim
(c1,c2)→(0,0)

λ0(c1, c2) = ∞.

(C) For each k > 0 and all (c1, c2) ∈ C

0 < λ0(c1, c2) < · · · < λk(c1, c2) < λk+1(c1, c2) <∞.

Moreover, all functions λk(c1,∞) are continuous on R with

λk+1(c1,∞)− λk(c1,∞) > 1/2 for all k = 0, 1, . . . and c1 ∈ R.

(D) The function ϕ0(·) = ϕ0(·, c1, c2) is positive on (c1, c2), moreover

∀ε > 0 inf{ϕ0(x, c1, c2) : c1 − ε < x < c2 − ε} > 0.

In addition, the function ϕ0(·, c1,∞) is continuous on [c1,∞).
(E) functions {ϕk(·) = ϕk(·, c1, c2)} form a complete orthonormal sys-

tem in the space L2
c1,c2 of all square-summable (with respect to the measure

µ(y)dy) functions on (c1, c2); in particular, for all j > k ≥ 0∫ c2

c1

ϕ2k(y, c1, c2)µ(y)dy = 1 and
∫ c2

c1

ϕk(y, c1, c2)ϕj(y, c1, c2)µ(y)dy = 0.

2.2. Corollaries from Lemma 1. Under conditions (2) consider the func-
tion:

rc1,c2(a, T, y) := T λ0qc1,c2(a, T, y)− ϕ0(a)ϕ0(y) = T λ0

∞∑
k=1

ϕk(a)ϕk(y)

T λk
(26)

with the same functions {ϕk(·)} and numbers {λk} as in (25).

Lemma 2. Suppose that conditions (2) and (17) are fulfilled. Then

T 2(λ1−λ0)r2c1,c2(a, T, y) ≤ (uavy)
2(λ1−λ0)rc1,c2(a, u

2
a, a)rc1,c2(y, v

2
y , y) (27)

≤ (uavy)
2λ1qc1,c2(a, u

2
a, a)qc1,c2(y, v

2
y , y). (28)
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Proof. Note first of all that by Schwartz inequality

Σ :=
∞∑
k=1

|ϕk(a)|
uλk
a

|ϕk(y)|
vλk
y

≤

√√√√ ∞∑
k=1

ϕ2k(a)

u2λk
a

√√√√ ∞∑
k=1

ϕ2k(y)

v2λk
y

(29)

=

√
r(a, u2a, a)

u2λ0
a

√
r(y, v2y , y)

v2λ0
y

.

Here and below we use simplified notation r(·, ·, ·) instead of rc1,c2(·, ·, ·).
On the other hand, we have from assumptions (17) that for all k ≥ 1

1

T λk
=

1

T λ1

1

T λk−λ1
≤ 1

T λ1

1

(uavy)λk−λ1
=

(uavy)
λ1

T λ1

1

(uavy)λk
.

This elementary relation together with the definition of r(a, T, y) in (26)
imply that

|r(a, T, y)|
T λ0

≤
∞∑
k=1

|ϕk(a)ϕk(y)|
T λk

≤ (uavy)
λ1

T λ1

∞∑
k=1

|ϕk(a)ϕk(y)|
(uavy)λk

=
(uavy)

λ1

T λ1
Σ.
(30)

Substituting now (29) into (30) we arrive at (27).
Next, it follows from representations (25) and (26) that

rc1,c2(y, T, y)

T λ0
=

∞∑
k=1

ϕ2k(y)

T λk
≤

∞∑
k=0

ϕ2k(y)

T λk
= qc1,c2(y, T, y).

Using this inequality with T = v2y and with T = u2a, when y = a, we
obtain (28) as a consequence of (27). □

For all x ∈ R and t > 0 denote by φ(t, x) := 1√
2πt

exp
(
−x2

2t

)
the density

of Bt.

Lemma 3. Under conditions (2)

qc1,c2(a, T, y) ≤ φ(1− 1/T, y − a/
√
T )

/
µ(y). (31)

In particular, when a = y and t = v2,

ϕ20(y)

v2λ0
≤ qc1,c2(y, v

2, y) ≤ φ(1− 1/v2, y − y/v)

µ(y)
=
φ2
v(y)√
2π

, (32)

where φv(y) was defined in (16).

Proof. Note that φ(1− 1/T, ·−a/
√
T ) is the density of UT = BT /

√
T under

condition that B1 = a. Hence, under assumptions (2), we have from (24)
and (23) that∫

A
qc1,c2(a, T, y)µ(y)dy ≤ P(ωlog T ∈ A|ω0 = a) (33)

= P(UT ∈ A|B1 = a) =

∫
A
φ(1− 1/T, y − a/

√
T )dy,
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and, as a result, (31) follows for each y ∈ (c1, c2) because (33) holds for all
sets A ⊂ (c1, c2).

Next, for v > 1

y2

2
− (y − y/v)2

2(1− 1/v2)
=
y2

2
− y2(v − 1)2

2(v2 − 1)
=
y2(v + 1)

2(v + 1)
− y2(v − 1)

2(v + 1)
=

y2

v + 1
.

Hence, in this case
φ(1− 1/v2, y − y/v)

µ(y)
=

1√
2π(1− 1/v2)

exp

(
y2

v + 1

)
=

1√
2π
φ2
v(y).

So, (32) is also proved with φv(y) introduced in (16). □

2.3. Proof of Theorem 2 . Below in the paper we use the next notations:

λ := λ(c1, c2) := λ0(c1, c2) = λ0 < Λ := Λ(c1, c2) := λ1(c1, c2) = λ1, (34)

κ := κ(c1, c2) := λ1 − λ0 > 0, θ0(y, c1, c2) :=

∫ y

c1

ϕ0(x, c1, c2)µ(x)dx.

Note also that by (23), (24), and (1)

Pc1,c2(a, T, y) =

∫ y

c1

qc1,c2(a, T, x)µ(x)dx on D. (35)

Lemma 4. Suppose that the following equality

Ψc1,c2(a, y) = ψc1,c2(a)θc1,c2(y) = Ψ0(a, y, , c1, c2) := ϕ0(a, c1, c2)θ0(y, c1, c2)
(36)

holds in domain D. Then estimate (18) and convergence (4) take place. In
particular, condition (36) is obviously fulfilled when ψc1,c2(a) = ϕ0(a, c1, c2).

Proof. If condition (36) is true, then we see from (6), (26), and (35) that

∆c1,c2(a, T, y) =

∫ y

c1

rc1,c2(a, T, x)µ(x)dx. (37)

Using now (28), (32), and (34) we get

|rc1,c2(a, T, y)| ≤
(uavy)

λ1

T λ1−λ0

√
qc1,c2(a, u

2
a, a)qc1,c2(y, v

2
y , y)

≤ (uavy)
λ1

T λ1−λ0

φua(a)φvy(y)√
2π

=
(uavy)

Λ(c1,c2)

Tκ(c1,c2)
φua(a)φvy(y)√

2π
.

Plugging the last inequality into (37) we arrive at (18).
At last, convergence (4) follows from estimate (18) with ua = vy = 2. □

Lemma 5. Convergence (4) takes place if and only if condition (36) is
fulfilled. In addition, (36) holds if and only if there exists a constant C > 0,
independent of a and y, such that

ψc1,c2(a) = Cϕ0(a, c1, c2) on D. (38)

In particular, formula (22) with Cc1,c2 = C/θ0(y, c1, c2) immediately follows
from (38) and (36).
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Proof. When ψc1,c2 = ϕ0, convergence (4) takes place by Lemma 4 with
Ψc1,c2(a, y) = Ψ0(a, y, c1, c2). So, this equality holds for all functions ψc1,c2

which is possible to use in (4). But condition Ψc1,c2(a, y) = Ψ0(a, y, c1, c2)
coincides with (36).

Next, assume that condition (36) is fulfilled. Recall that ||ϕ0||2 := 1 as it
follows from assertion (E) of Lemma 1. Hence in this case we have from (5)
that

||ψc1,c2 ||2 = C2 > 0 and θc1,c2(y) :=

∫ y

c1

Cϕ0(x, c1, c2)

C2
µ(x)dx.

Substituting these equalities into (36) we see that condition (36) holds be-
cause C2/C2 = 1 and the product ψc1,c2(a)θc1,c2(y) is independent of C > 0.

On the other hand, when condition (36) holds with some possible function
ψc1,c2 , we have from (36) with y = c2 that identity (38) takes place with

C =

∫ c2

c1

ϕ0(x, c1, c2)µ(x)dx
/
θc1,c2(c2) > 0.

□

So, there are no cases in Theorem 2 when condition (36) does not hold.
Hence, Theorem 2 is proved in Lemma 4 in all cases.

2.4. Proof of Theorem 3. From (3) and (32) with v = vy and v = ua we
immediately have that

0 ≤ ϕ0(y) ≤
vλyφvy(y)

4
√
2π

and 0 ≤ ϕ0(a) ≤
uλaφua(a)

4
√
2π

on D. (39)

Now, by definition (34),

0 ≤ θ0(y, c1, c2) =

∫ y

c1

ϕ0(x)µ(x)dx ≤
∫ y

c1

vλxφvx(x)
4
√
2π

µ(x)dx. (40)

Substituting (39) and (40) into the representation (36) for Ψc1,c2(a, y) we
arrive at (21).

At last, (19) is evident by (6), because the probability Pc1,c2(a, T, y) ≤ 1.
So, both assertions of Theorem 3 are proved.

2.5. Two auxiliary lemmas. First of all note that for v > 1

β2(v) :=
4
√

1− 1/v2 =
4

√
v2

v2 − 1
= 4

√
v2

(v − 1)(v + 1)
< β1(v) :=

4

√
v + 1

v − 1
.

(41)

Lemma 6. For all y ≥ c1

θv(y) :=

∫ y

c1

φv(x)µ(x)dx ≤
√
2πβ1(v), v > 1. (42)
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Proof. From definition (16) we see that

φv(y)µ(y) = β2(v) exp

(
y2

2(v + 1)
− y2

2

)
= β2(v) exp

(
− y2

2σ2(v)

)
, v > 1.

with σ2(v) := (v + 1)/v. Hence

θv(y) =

∫ y

c1

φv(x)µ(x)dx ≤ β2(v)

∫ ∞

−∞
exp

(
− x2

2σ2(v)

)
dx =

√
2πβ2(v)σ(v)

(43)

for v > 1, where

β2(v)σ(v) =
4

√
v2

v2 − 1
= 4

√
v2

(v − 1)(v + 1)
· (v + 1)2

v2
= 4

√
v + 1

v − 1
= β1(v).

Thus, (42) follows from (43). □

For i = 1, 2 introduce functions:

f1(v) := β1(v)v
Λ and f2(v, y) := β2(v)v

Λφv(y), v > 1, y ∈ R, (44)

where the value Λ = λ1 was defined in (34). Note that

0 < κ < Λ <∞ and 1 < v∗ := 1 +
1

4Λ
< 1 +

1

κ
<∞.

Lemma 7. For all y ∈ R and K ≥ 1

f2(v, y) ≤ 4
√
e(1 + 8Λ)KΛ exp

(
y2

2v

)
when v∗ ≤ v ≤ v∗K. (45)

In addition, for all y ≥ c1

vΛ∗ θv∗(y) ≤ vΛ∗
√
2πβ1(v∗) =

√
2πf1(v∗) ≤

√
2π 4

√
e(1 + 8Λ). (46)

Proof. From definitions (41) and conditions (45) on number v we have:

β42(v) < β41(v) = 1 +
2

v − 1
≤ 1 +

2

v∗ − 1
= 1 + 8Λ,

vΛ ≤ vΛ∗K
Λ =

(
1 +

1

4Λ

)Λ

KΛ ≤ e1/4KΛ = 4
√
eKΛ.

Substituting this estimates into definition (44) of functions fi, we arrive
at (45). When K = 1, these arguments and (42) also imply (46). □

2.6. Proof of Theorem 1 . We are going to show that under assump-
tion (??)

∀T > 1 ∀ua > 1
∣∣∆c1,c2(a, T, y)

∣∣ ≤ f2(ua, a)f1(v∗)

Tκ on D. (47)

First of all we apply Theorem 2 with vy = v∗. In this case the main condi-
tion (17) of this theorem has the form:

ua > 1 and T ≥ uav∗, (48)
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and assertion (18) may be rewritten in the following way:

∣∣∆c1,c2(a, T, y)
∣∣ ≤ uΛaφua(a)√

2πTκ
vΛ∗ θv∗(y) =

f2(ua, a)√
2πTκ

vΛ∗ θv∗(y) on D, (49)

where we used simplified notations, introduced in (16), (42), and (44). But
now (47) immediately follows from (49) and (46).

Thus, we proved (47) when assumption (48) is true. Now suppose that (48)
is not fulfilled and assume instead that the next condition takes place:

ua > 1 and 1 < T ≤ uav∗. (50)

Now we will apply Theorem 3. From the first inequality in (19), using (50),
we get:

∆c1,c2(a, T, y) ≤ T λ =
TΛ

Tκ ≤ (uav∗)
Λ

Tκ (51)

≤ (uav∗)
Λ

Tκ φua(a)β1(v∗) =
f2(ua, a)f1(v∗)

Tκ

on D, because φu(a) > 1 and β1(v) > 1.
On the another hand, under assumption (50) we find from (19) and (21)

that

−∆c1,c2(a, T, y) ≤ Ψc1,c2(a, y) ≤
(uav∗)

κ

Tκ Ψc1,c2(a, y)

≤ (uav∗)
κ

Tκ
uλaφua(a)√

2π
vλ∗ θv∗(y) =

uΛaφua(a)

Tκ
√
2π

vΛ∗ θv∗(y) on D.

Using now notations from (44) and estimate (46) we obtain:

−∆c1,c2(a, T, y) ≤
f2(ua, a)

Tκ
√
2π

vΛ∗ θv∗(y) ≤
f2(ua, a)

Tκ f1(v∗) on D.

Thus, it follows from the last inequality and (51) that estimate (47) is true
under assumption (50).

So, (47) is proved in all cases. But the desired estimate (9) in Theorem 1
follows immediately from (47) and (46). Hence, Theorem 1 is also proved.

2.7. Proof of Corollary 2. We are going to use inequality (45) for a
instead of y and ua instead of v, where

ua = v∗K, with K = (1 + baa
2), ba > 0.

Then a2/ua ≤ a2/K ≤ 1/ba. Hence, by (45),

f2(ua, a) ≤ 4
√
e(1 + 8Λ)(1 + baa

2)Λ exp

(
1

2ba

)
on D.
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Substituting this estimate into (9), we obtain:∣∣∆c,∞(a, T, y)
∣∣ ≤ 4

√
e(1 + 8Λ)

f2(ua, a)

Tκ

≤ 4
√
e(1 + 8Λ)

4
√
e(1 + 8Λ)(1 + baa

2)Λ

Tκ exp

(
1

2ba

)
on D.

It is easy to see that the last inequality coincides with (11).
Thus, Corollary 2 is true. Hence, all the results of the paper are proved.
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