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Abstract: Several asymptotic formulas for probabilities of the
Wiener process to stay between different square root boundaries
are known after papers of Breiman (1965), Sato (1977), Novikov
(1979, 1981), Gértner (1982), Uchiyama (1980), Greenwood and
Perkins (1983). In the present work we investigate accuracy of
these approximations. We present several general estimates in
the case of two boundaries. In particular, these estimates con-
tain the ones obtained earlier by Uchiyama in the limiting case of
one boundary.
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1 Introduction and main results

1.1. Introduction. For a standard Brownian motion B; = B(t), defined
for all ¢t > 0, introduce into consideration the following stopping time:

Ter,eo ' =1nf{t > 1: B ¢ (clﬂ, 02\/£)} =inf{t >1:U; ¢ (c1,¢2)},
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where Uy = U(t) := B(t)//t for t > 0 and ¢; < cp. Our main aims are to
approximate, for large T" > 1, the probability
P(1e,co > T|B1 = a) = P(1¢, ¢, > T|U; = a)
=Plag < U <caVte[1,T)|U; = a)

and the more general probability
P.ca,T,y)=P(re; e, >T and Upr <ylU;y=a), T>1, (1)
for all parameters a, c1, co, y satisfying the following relations:
—o<c<e <o, ay<oo and ¢ <a,y < co. (2)

Denote by D the set of all values (a, ¢1, c2, y) which satisfy conditions from (2).
We fix the numbers ¢; and ¢y and we often omit the dependence of our no-
tations on c¢1, co. We everywhere suppose that 7' > 1.

The study of first-passage times over one of the two square root boundaries
for the Brownian motion was initiated by Breiman [1]. After that several
results in exit problems with one-sided boundaries were obtained by Sato [8],
Novikov |6, 7|, Gértner [4], Uchiyama [9]. For more detailed history see
also [2]. All these results were summarized by Greenwood and Perkins [5]
in their Lemma 3. We recall the corresponding assertions below in our
Lemmas 1 and 5. In particular, for all ¢; < ¢ there exist functions

A1, c2) >0 and  Ye, ¢, (z) >0 Ve (c1,c2) (3)
such that
T)‘(Cl’CQ)PCLCQ (a,T,y) = Wy 05(a,Y) = Vey05(a)0ey.eo(y) on D (4)
as T — oo, where for all y € (¢1, ¢2)

v wqm(x)
L e eI

2
and O < H¢617C2H2 f wcl,CQ m /2dx < 0.

Unfortunately, the exphc1t forms of functions A(c1, ¢c2) and e, o, (x) are
known only in exceptional cases. For example, Breiman [1]| pointed out that

e "y < Ocy.co(c2) <00 (B)

Ocy e (c1)=0< Ocy e (y) == /

M—=1,1)=1 and A-c¢,c)=2 for =3-6.
Several authors (see, for example, [3]) also noted that

A(0,00) =1/2 and Y0,00(T) = V/2/Tx

with 00,00(z) =1 — e /2 for x>0,

where ||t || = v/2/7.
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1.2. Statement of the problem. There arises a natural task to obtain a
rate of convergence in (4), i.e. to find estimates for the difference

A01702 (CL, T, y) = T)\(CLCQ)PCLCz (CL, T, y) - ‘1101702 (CL, y) on D, (6)

when 7" > 1. In the particular case, when ca = y = o0, such estimate was
obtained by Uchiyama [9]. In his Theorem 1.1 for all ¢ := ¢; € R he found
a remarkable inequality:

|Acoo(a, T, 00)| = [THNO®VP (1, 00 > T|UL = a) — e,00(a)0,00(c0)] (7)

Cl(e’:‘,c)

T exp(ex?) forany £>0 and T > Ti(e,c) > 1,

where the constants C (e, ¢) and T} (e, ¢) depend only on the chosen numbers
e > 0 and ¢ € R (for the implicit definitions of these constants see formula
(1.10) in [9]); in addition

for all ¢ € R the function s(c) is continuous and (c) > 1/2.  (8)
Our aim is to improve and generalize the estimate (7) of Uchiyama.
1.3. Main estimates. Below we consider only parameters from (2).

Theorem 1. There exists a number s(c1,c2) > 0 such that for any function
Uq > 1 we have on D that

u/a\(cl’cz) u? a?
4 4 a
|A01,02 (aa T7 y)’ < \/e(l + 8A(Cl7 C2)>T%(01702) 'Uzg -1 P (Q(Ua + 1)>
for all T > 1, where A(c1,c2) := A(c1, ca) + #(c1, ca).
Now consider several particular cases.

Corollary 1. Let co < oo. Then from (9) with u, = 2 we immediately have

VT >1 ‘Acl,cz(a,ij) < M

<ree o p (10)

where

2 2
Co(er, e2) = ae(1 + 8A(cy, cp))28(1) exp <Hm{g1762}> < 0.

Unfortunately, we cannot find the optimal function u, > 1 which minimize
the right-hand side in (9). Instead, we present several simple approximations
to such functions. It is clear, that estimate (10) is bad for large values
of |e1], |ea|, or |a|; for example, Ca(c1,00) = oo. To avoid this problem,
instead of the simple u, = 2 we should use a function w, which depend
on a and A(ci,c2), especially for large values of |a| and A(ci,c2). Such
appropriate functions u, will be found in subsection 2.7; as a result, we
obtain the following sufficiently sharp and general estimate.
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Corollary 2. For any numbers b, > 0 and T > 1

(15 baa?) e e
T%(Cl,CQ)

|Acier(a, T, y)| < \/€1+1/b“(1 +8A(e1,¢2)) onD. (11)

In particular, in the simplest case, when b, = 1,

(1 +a2>A(Cl,02)
VT >1 ’A61,C2 ((I,T, y)‘ < €4/ 1+ 8A(Cl,CQ>W on D. (12)

On the other hand, with b, = 1+¢/A(c1, c2) we find from (11) the next two
interesting estimates.

Corollary 3. For anye >0 and T > 1

M i A(cr,e2)
el (1 A )) (13)

=T e 12
Cg(E,A(Cl,CQ)) 2
S W exp (Ea ) on D, (14)

where
C3(e,A) := y/e(1 + 8A)exp <2A6> < 0. (15)

Note that if |a| > 2 and A(c1,c2) > e then estimate (13) with ¢ = 1/2
is sharper than the simple inequality (12). Observe also that in (11), (12),
and (15) we have the coefficient v/1 + 8A instead of +/1 + 8A in the other
places of the paper (see the proof of Corollary 2 for the reason).

Remark 1. If ca = oo then A(c1,00) < oo and s(ci,00) = #(c1), where
the function () satisfies conditions (8). In this case inequalities (12) and
(13) are sharper than estimate (7) of Uchiyama, at least for sufficiently large
lal. In addition, rough inequality (14) is more convenient than (7) because
it takes place for all T > 1 with explicit constant Cs.

Our considerations show that sharper estimates (12) and (13) would allow
to simplify and shorten several proofs in [2| and [5].

1.4. Key estimates. Introduce a function:

© ( ) =4 71}2 7:1!2 >1 eR (16)
: ex v .
oY v2 —1 P 2(1} + 1) ’ Y

Theorem 2. Let a real number T' and functions ug and vy, be such that
ug >1, vy >1 and T >wugvy on D. (17)

Then we have the following estimate:

A(er,e
Ay er(a, T, y)| < M yvA(qm)@ (x)e " 2dz  onD, (18)
C1,C2 Y ) — \/%T%(Cl 7C2) o x Vg 9

where the numbers A(cy,ca) > s(c1,c2) > 0 were introduced in Theorem 1.
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The following rough inequalities may be useful in the case of small values
of T.

Theorem 3. With the numbers A(c1,c2) defined in (4)

TAenez) > Acyeo(a,T,y) > =V, ¢, (a,y) on D. (19)
In addition, for all functions u, and v, such that
ug>1 and vy >1 on D (20)

we have the next estimate:
Aer,e2) y

Uq SOUa( )/ )\(cl CQ) —.I2/2

—_— v x)e der onD. (21
\/% o x (70’171( ) ( )

Remark 2. The limiting function W, ,, introduced in (4), always exists

and is uniquely defined on D. But the function v, ,, used in all our results,

may be defined only up to a positive constant multiplier. For example, we

may put

0< V¢ e (a,y) <

7!’01,02 (a) = CCI»CQ\IICI:CQ (a’a 62) on D (22)

with an arbitrary constant Cg, ., dependent only on ci and cs.
These facts will be established in Lemma 5 below.

2 Proofs

2.1. Main representations. Introduce into consideration an Ornstein-
Uhlenbeck process

wyi=U(e) = e ?B(e') for t>0, andlet s:=logT >0. (23)

It is well-known that there exists a function ¢, ¢,(+,-,-) such that in the
domain D for all measurable A C [c1, co] and p(y) := e~¥*/2

P(Cl <w < caVte [07 5} and w; € A‘WO = a) = / qcy,co (aa esay)ﬂ(y)dy
A
(24)

This is the probability that the Ornstein-Uhlenbeck process with the absor-
bing barriers at positions ¢; < ¢z is not absorbed until the time s = log T
Here the function ¢, ¢,(:,-,) has several remarkable properties which were
used, for example, in [1] and [9]. The next assertion follows from more
general Proposition 2 and Lemma 3 in [5]. See also [9] for more details when
Cy = OQ.

Lemma 1. Let the real numbers a,cy,ca,y satisfy conditions (2). Then the
function qe, c,(,-,-), defined in (24), has the following properties:
(A) for each fired T = e® > 1 we have the next representation:

o0
Z or(a
Gerex (0, T, y) = § :e g (a) T/\k (25)
k=0
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for some functions {¢r(-) = ¢r(-, c1,c2)} and numbers {\i, = \i(c1,c2) > 0}
generated by the Ornstein-Uhlenbeck process, where the series converges ab-
solutely, uniformly for (a,y) in compact subsets of [c1, c2]?. The convergence
also holds in the space of all square-summable (with respect to the measure
w(a)p(y)dady) functions in the plane domain c¢; < a,y < cao.

(B) The function \o(c1,c2) is strictly positive, jointly continuous on the
set

C:={(c1,c2) : —00 < ¢1 < ¢3 < 00};

it is also strictly increasing in ¢ € (—00,ca|, and strictly decreasing in
¢y € [e1,00]. In addition,

lim Ao(c1,00) =0 and lim Ao(c1, c0) = o0.
(c1,62)— (—00,00) 0( ! 2) (c1,¢2)—(0,0) 0( ! 2)

(C) For each k >0 and all (c1,c2) € C
0 < Aoler, ) < -+ < Agl(er, ) < Agrai(er, e2) < 0.
Moreover, all functions A\i(c1,00) are continuous on R with
Ait1(c1,00) — Ag(c1,00) > 1/2 forall k=0,1,... and c¢; €R.
(D) The function ¢o(-) = ¢o(-,c1,c2) is positive on (c1,c2), moreover
Ve >0 inf{¢o(x,c1,c2) :c1 —e <z <cg—e}>0.

In addition, the function ¢o(-,c1,00) is continuous on [c1,00).
(E) functions {¢x(:) = ¢x(-,c1,c2)} form a complete orthonormal sys-

tem in the space Lglm of all square-summable (with respect to the measure

w(y)dy) functions on (c1,c2); in particular, for all j >k >0

c2 Cc2
/ ¢r(y,c1,c2)u(y)dy =1 and / kY, c1,¢2)05(y, c1, c2)p(y)dy = 0.
c1 C1

2.2. Corollaries from Lemma 1. Under conditions (2) consider the func-
tion:

Feven(@.7,9) 1= 00,0, T,9) — bo(a)so(y) = 70 3 P (o)
k=1

with the same functions {¢x(-)} and numbers {\;} as in (25).

Lemma 2. Suppose that conditions (2) and (17) are fulfilled. Then

(
(

TN (0, T )

)2()\1—/\0)
C1,C2 )

< (ugu Tey,co (a, ug, a)rclucz (y, UZ: y) (27)
S Uavy)”\l%l,@ ((I, ugﬂ a’)qcl,C2 (y7 ’U;) y) (28)
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Proof. Note first of all that by Schwartz inequality

9] 2 2
Sl Sl S A
k=1 a Y k=1 7@ k=1 Y

Here and below we use simplified notation 7“(-, -,+) instead of 7¢, ¢, (-, -, ).
On the other hand, we have from assumptions (17) that for all k£ > 1

11 1 1 1  (uguy)™ 1

TAe — Th TAe—A1 — ﬁ(uavy)’\k_Al TN (uquy) e

This elementary relation together with the definition of r(a,T,y) in (26)
imply that

’T a, T y Z ‘(rbk uavy Z \¢k . (uavy))\l
TM - Th uavy Ak T

(30)
Substituting now (29) into (30) we arrive at (27).
Next, it follows from representations (25) and (26) that
TCl,CQ yaT y
T)‘O Z T)‘k Z T)‘k qcl,CQ(y?Ta y)
Using this inequality with T = vy and with T = a, when y = a, we
obtain (28) as a consequence of (27). O

For all x € R and ¢t > 0 denote by p(t,z) := \/%nt exp (—%) the density

of Bt-
Lemma 3. Under conditions (2)

Gerer (@, T,y) < o(1 = 1/T,y — a/VT)/u(y). (31)

In particular, when a =y and t = v?,

%5 (y) 2 p(1—1/0*y—y/v) 02 (y)
< c1,c , Uy § - 5
vg)\o =>4 1 Z(y y) M(y) \/ﬂ
where @, (y) was defined in (16).
Proof. Note that o(1—1/T,-— a/\/T) is the density of Up = BT/\/T under

condition that By = a. Hence, under assumptions (2), we have from (24)
and (23) that

/chl,@ (a,T,y)u(y)dy < P(wiogT € Alwo = a) (33)

(32)

=P(Ur € AlB; =a) = /Acp(l —1/T,y — a/VT)dy,
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and, as a result, (31) follows for each y € (c1,c2) because (33) holds for all
sets A C (c1,¢2).
Next, for v > 1

v -y v -1 P+l Pl-1) ¢

2 2(1—1/%) 2 20w2-1) 20w+1) 2w+1) ov+1
Hence, in this case

p1—1/v*y—y/v) _ 1 v L
= exp —=u(y)-
1(y) or(1—1/v2) v+1) Vor
So, (32) is also proved with ¢,(y) introduced in (16). O

2.3. Proof of Theorem 2 . Below in the paper we use the next notations:
A= Aer, e2) := Ao(er, e2) = Ao < A= Aer, e2) := Mer,e2) = A1, (34)

y
5= n(cr,c2) ' =A\ — Ao >0, O(y,c1,c2) = / ¢o(x, c1, co)p(x)d.
el
Note also that by (23), (24), and (1)

Yy
Pcl,CQ (a'7 T, y) = / Gey,co (a7 T, x)u(x)dx on D. (35)

Cc1

Lemma 4. Suppose that the following equality

Wereo(a:y) = ey 00(@)0ey 00 (y) = Yola, y,, c1,c2) := gola, c1, c2)b0(y, c1, c2)

(36)
holds in domain D. Then estimate (18) and convergence (4) take place. In
particular, condition (36) is obviously fulfilled when ., ¢,(a) = ¢o(a,c1,c2).

Proof. If condition (36) is true, then we see from (6), (26), and (35) that

Y
Acrea(a, T, ) = / For.ea (@ T, 2)pa() . (37)

Cc1

Using now (28), (32), and (34) we get

Ugq U
’TChCQ(a’ T Y | < TC)l\ly)\O \/qcl c2 aa uaaa ey, cz(ya y7y)

= T/\lf)\o \/% T%(Cl,CQ) m

Plugging the last inequality into (37) we arrive at (18).
At last, convergence (4) follows from estimate (18) with uq = v, =2. O

< (uavy) ! (Pua( )So’uy(y) o (uavy)A(cl’CZ) (pua(a)@vy(y)'

Lemma 5. Convergence (4) takes place if and only if condition (36) is
fulfilled. In addition, (36) holds if and only if there exists a constant C' > 0,
independent of a and y, such that

Yoy en(a) = Coola,cr,c2)  on D. (38)

In particular, formula (22) with Cy, ¢, = C/00(y, c1,c2) immediately follows
from (38) and (36).
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Proof. When ¢, ., = ¢o, convergence (4) takes place by Lemma 4 with
Ve, eola,y) = ¥o(a,y,c1,c2). So, this equality holds for all functions ¢, ¢,
which is possible to use in (4). But condition ¥, ¢, (a,y) = Yo(a,y,c1,c2)
coincides with (36).

Next, assume that condition (36) is fulfilled. Recall that ||¢o||? := 1 as it
follows from assertion (E) of Lemma 1. Hence in this case we have from (5)
that

Y Cog(x,c1,c
ol = €250 and 0y a(y) = [ L 40
C

1

Substituting these equalities into (36) we see that condition (36) holds be-

cause C2/C? = 1 and the product 1, ¢,(a)0c, ., (y) is independent of C' > 0.
On the other hand, when condition (36) holds with some possible function

ey ,co» We have from (36) with y = ¢ that identity (38) takes place with

Cc2
C= [ onlasercanle)dn f6, (e > 0
Cc1
[l

So, there are no cases in Theorem 2 when condition (36) does not hold.
Hence, Theorem 2 is proved in Lemma 4 in all cases.

2.4. Proof of Theorem 3. From (3) and (32) with v = v, and v = u, we
immediately have that

A
vy Pu, (Y)
0 < ¢o(y) < T

Now, by definition (34),

A
and 0 < ¢p(a) < U”?;%r(a) on D. (39)

yUA‘PU (z)
0 <6y, ci1,c dx < 22 (x)dx. 40
o(wreren) = [ont@tas < [" 25D y@yar o)

Substituting (39) and (40) into the representation (36) for W, .,(a,y) we
arrive at (21).

At last, (19) is evident by (6), because the probability P, .,(a,T,y) < 1.
So, both assertions of Theorem 3 are proved.

2.5. Two auxiliary lemmas. First of all note that for v > 1

4/ / / 4/v+1
1_1/U2 v—|—1 <hi(v v—l

Lemma 6. For all y > c1

Ou(y) := / ’ oo(z)pu(x)ds < V2rBi(v), v > 1. (42)

Cc1
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Proof. From definition (16) we see that

2 2 2
etauts) = oo (50754 = 5 ) = 1w (g ). 0>t

with o2(v) := (v +1)/v. Hence

) = [ euamtere < 5a00) [ enw (=550 ) o = VERRWa0)
(43)

for v > 1, where

(v—l—l) v+l
\/ 1\ w1 v+1 =\ o = A,

Thus, (42) follows from (43 O

For ¢ = 1, 2 introduce functions:

fl (U) = Bl(U)UA and fQ(va) = BQ(U)UAQOv(y)v v > ]-a Y€ Ra (44)
where the value A = \; was defined in (34). Note that

1 1
0<x<A<oo and 1<v*:—1+ﬂ<1+—<oo

Lemma 7. Forally e R and K > 1

2
v,y) < Ve(l+8A) K™ exp <g> when v, < v < UK. (45)
v
In addition, for all y > c;
020, (y) < vAV27B1(v) = V2 fi(vy) < V21 e(1+8A).  (46)

Proof. From definitions (41) and conditions (45) on number v we have:

2 2
5§(v)<ﬁj‘(u):1+ﬁ§1+ 1:1+8A,

Vx
vh < oAKD = (1 + 41/\) KM < VKM = ek,

Substituting this estimates into definition (44) of functions f;, we arrive
at (45). When K = 1, these arguments and (42) also imply (46). O

2.6. Proof of Theorem 1 . We are going to show that under assump-

tion (77)

fo(ua, a) f1(vs)
T%

First of all we apply Theorem 2 with v, = v,. In this case the main condi-

tion (17) of this theorem has the form:

Ug > 1 and T > ugvs, (48)

VT >1 Vug>1 |Acye(a,T,y)| < on D.  (47)
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and assertion (18) may be rewritten in the following way:
A
Ug Pu, (@) A fo(ua,a) ,
A a, T, < L 20, (y) = ————0,0,, on D, (49
} 01,62( y)| — m P v (y> \/%T% v (y> ( )

where we used simplified notations, introduced in (16), (42), and (44). But
now (47) immediately follows from (49) and (46).

Thus, we proved (47) when assumption (48) is true. Now suppose that (48)
is not fulfilled and assume instead that the next condition takes place:

ug > 1 and 1 < T < ugv,. (50)

Now we will apply Theorem 3. From the first inequality in (19), using (50),
we get:

T (uque)™

Berea(a Toy) ST = - < 02 (51
A
< Lt @ (vn) = P2 ()

on D, because ¢, (a) > 1 and f;(v) > 1.
On the another hand, under assumption (50) we find from (19) and (21)
that

_AC1,C2 (a,T, y) < Vee (a’y) <

P A
(uqvs)” u o aSOua(a)v*Ayv*@) on D.

*g* -
= 7= N v-(v) T\/27

Using now notations from (44) and estimate (46) we obtain:

fo(ua,a) A f2(uq, a)
_ < < = .
Ay eo(a,T,y) < N vy 0y, (y) < T fi(vy) on D

Thus, it follows from the last inequality and (51) that estimate (47) is true
under assumption (50).

So, (47) is proved in all cases. But the desired estimate (9) in Theorem 1
follows immediately from (47) and (46). Hence, Theorem 1 is also proved.

2.7. Proof of Corollary 2. We are going to use inequality (45) for a
instead of y and u, instead of v, where

ug = v K, with K= (14 baaQ), b > 0.
Then a?/u, < a?/K < 1/b,. Hence, by (45),

fa(ua,a) < /e(1+8A)(1 + bya?)* exp (;}) on D.
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Substituting this estimate into (9), we obtain:

BeelaTy)| < Ve(@ + a2

T%
V/e(1 +8A)(1 + bea®)™ 1
< Ve(1+8A) e(1+8 72}({ + bad”) exp <2b> on D.

It is easy to see that the last inequality coincides with (11).
Thus, Corollary 2 is true. Hence, all the results of the paper are proved.

Acknowledgment. The author is thankful to the referee for careful
reading of the paper and very useful comments.

References

[1] L. Breiman, First exit times from a square root boundary, Proc. Fifth Berkeley Symp.
Math. Stat. Prob., 2 (1965), 1236-1249. Zbl 0241.60035

[2] D. Denisov, G. Hinrichs, A.I. Sakhanenko, V. Wachtel, Crossing an asymptotically
square root boundary by the Brownian motion, Proc. Steklov Inst. Math., 316 (2022),
105-120. Zbl 1495.60076

[3] D. Denisov, A.L. Sakhanenko, V. Wachtel, First-passage times for random walks
with nonidentically distributed increments, Ann. Probab., 46:6 (2018), 3313-3350.
Zbl 1434.60126

[4] J. Gértner, Location of wave fronts for the multi-dimensional K-P-P equation and
Brownian first exit densities, Math. Nachr., 105 (1982), 317-351. Zbl 0501.60083

[5] P. Greenwood, E. Perkins, A conditioned limit theorem for random walk and Brownian
local time on square root boundaries, Ann. Probab., 11 (1983), 227-261. Zbl 0522.60030

[6] A.A. Novikov, On estimates and the asymptotic behavior of nonexit probabilities of
a Wiener process to a moving boundary, Math. USSR, Sb., 38:4 (1981), 495-505.
Zbl 0462.60079

[7] A.A. Novikov, The martingale approach to problems about the time of the first inter-
section of nonlinear boundaries, Tr. Mat. Inst. Steklova, 158 (1981), 130-152.

[8] Sh. Sato, Evaluation of the first-passage time probability to a square root boundary for
the Wiener process, J. Appl. Probab., 14 (1977), 850-856. Zbl 0408.60077

[9] K. Uchiyama, Brownian first exit from and sojourn over one-sided moving bound-
ary and application, Z. Wahrscheinlichkeitstheor. Verw. Geb., 54 (1980), 75-116.
Zbl 0431.60080

ALEXANDER IVANOVICH SAKHANENKO
SOBOLEV INSTITUTE OF MATHEMATICS,
PR. KopTyUuGa, 4,

630090, NovosIBIRSK, Russia

Email address: aisakh@mail.ru


https://doi.org/10.1134/S0081543822010096
https://doi.org/10.1134/S0081543822010096
https://doi.org/10.1214/17-AOP1248
https://doi.org/10.1214/17-AOP1248
https://doi.org/10.1002/mana.19821050117
https://doi.org/10.1002/mana.19821050117
https://doi.org/10.1214/aop/1176993594
https://doi.org/10.1214/aop/1176993594
https://doi.org/10.1070/SM1981v038n04ABEH001455
https://doi.org/10.1070/SM1981v038n04ABEH001455
https://doi.org/10.2307/3213358
https://doi.org/10.2307/3213358
https://doi.org/10.1007/BF00535355
https://doi.org/10.1007/BF00535355

	Introduction and main results
	Introduction
	Statement of the problem
	Main estimates
	Key estimates

	Proofs 
	Main representations
	Corollaries from Lemma 1
	Proof of Theorem 2 
	Proof of Theorem 3
	Two auxiliary lemmas
	Proof of Theorem 1 
	Proof of Corollary 2


