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Abstract: The paper is devoted to the study of the equilibrium
problem for an elastic body containing a delaminated thin rigid
inclusion with a local defect. The problem is considered in a domain
with a cut, on the faces of which boundary conditions of the
inequality type are specified. The statement uses a positive para-
meter characterizing the degree of damage of the inclusion at a
point. The problem is formulated in the form of a variational
inequality, from which a complete system of equations and inequali-
ties is obtained, fulfilled in the domain with a cut, as well as on
the crack line. Limit transitions are substantiated for the damage
parameter and it is shown that the limiting cases correspond to
problems of a thin rigid inclusion with a break, as well as a problem
with a solid rigid inclusion without defects.
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1 Введение

Исследование в области математического моделирования композит-
ных материалов приобретает все большую актуальность в связи с рас-
ширением областей их применения. Одним из важных для приложений
и интересным с точки зрения науки направлений является моделирова-
ние напряженно-деформированного состояния материалов, содержащих
тонкие включения с различными дефектами. В то же время, построе-
ние адекватной модели требует предварительного теоретического ана-
лиза и корректной математической постановки. Данная работа посвя-
щена изучению плоской задачи о равновесии упругого тела с отслоив-
шимся тонким жестким включением. Постановка предполагает наличие
положительного параметра, характеризующего локальное повреждение
включения. Величина параметра соответствует степени поврежденности
материала включения в точке.

Модель тонкого жесткого включения в упругом теле формулируется
с использованием условия на структуру вектора-функции перемещений
точек включения. Подобные модели рассматривались ранее, например,
можно найти ряд результатов в [1, 2, 3, 4]. Аналогичные модели отслоив-
шихся тонких жестких включений в вязкоупругом теле изучались в [5],
в работе [6] исследовались модели объемных жестких включений с от-
слаиванием. В статье [7] обсуждаются асимптотические модели тонких
включений, которые позволяют получать их различные типы, включая
упругие и жесткие включения, а также трещины и редуцированные (ис-
чезающие) включения.

Отслоение тонкого включения предполагает образование трещины, на
одном из берегов которой прикреплено данное включение. Поэтому за-
дача формулируется в области с разрезом. При этом на берегах раз-
реза, как на части границы области, задаются краевые условия типа
неравенств (так называемые условия непроникания берегов трещины).
Односторонний характер этих условий приводит к необходимости при-
менения неклассических методов исследования поставленных задач. За
последние десятилетия разработаны методы вариационных неравенств,
применяемые для такого рода задач, с общими подходами в данных ме-
тодах можно ознакомиться в монографиях [8, 9, 10]. Отметим также
обзор работ по теме, приведенный в [11]

В применении к задачам о жестких включениях с помощью методов
вариационных неравенств получен обширный ряд результатов, помимо
упомянутых выше работ. В частности, в работах [12, 13, 14, 15] изуча-
лись задачи о сопряжении тонких жестких включений с другими типа-
ми включений в концевых и внутренних точках. При постановке задач
сопряжения в [13, 15] вводится параметр повреждаемости в точке со-
пряжения. Задача о тонком упругом включении с параметром, харак-
теризующим локальное повреждение, изучалась в [16]. Известны также
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другие подходы к рассмотрению степени поврежденности тонких вклю-
чений, например модели с нелокальными параметрами поврежденности
[17, 18]

В настоящей работе исследуется задача для тонкого отслоившегося
жесткого включения, имеющего локальное повреждение. Приводится
постановка в форме задачи минимизации функционала энергии на мно-
жестве допустимых перемещений. Данный функционал содержит слага-
емое с заданным положительным параметром повреждаемости. Задача
эквивалентна вариационному неравенству. Основной целью работы яв-
ляется получение полной системы уравнений и неравенств, выполняю-
щихся в области с разрезом, на берегах трещины, а также в точке дефек-
та. Все полученные соотношения имеют ясную физическую интерпрета-
цию. Проведено сравнение с ранее известными моделями тонких вклю-
чений и различными случаями их сопряжения. Далее рассматривается
семейство задач для различных значений параметра повреждаемости.
Исследованы предельные переходы при стремлении параметра к нулю и
бесконечности и проанализированы предельные задачи.

Полученные результаты также сравнивались с известными другими
моделями для поврежденных балок и тонких жестких включений [19,
20, 21, 22, 23, 24], а также моделями различных соединений шарнирного
типа между стержневыми и балочными конструкциями [25, 26].

2 Постановка задачи

Рассмотрим ограниченную область Ω ⊂ R2 с липшицевой границей
Γ, при этом будем считать, что граница состоит из двух частей: Γ =
Γ̄D ∪ Γ̄N , где ΓD ∩ ΓN = ∅. Единичный вектор нормали к Γ обозначим
через n. В области Ω рассмотрим гладкую кривую γ, для которой γ̄ ⊂ Ω.
Пусть точка O = (0, 0) является внутренней для этой кривой и делит
ее на две части: γ = γ1 ∪ γ2 ∪ {(0, 0)}. Единичные векторы нормали и
касательной к γ обозначим через ν = (ν1, ν2) и τ = (ν2,−ν1). Введем
обозначение для области с разрезом: Ωγ = Ω \ γ̄.

Область Ωγ заполнена упругим материалом, линия γ соответствует
тонкому жесткому включению. Тело жестко закреплено по краю вдоль
кривой ΓD и испытывает внешние нагрузки на ΓN .

Считаем также, что область Ωγ с помощью продолжения кривой γ
до внешней границы Γ может быть разбита на подобласти Ω+ и Ω− с
липшицевыми границами таким образом, чтобы выполнялись условия
meas(∂Ω± ∩ ΓD) > 0.

Будем считать, что включение γ отслаивается от упругой матрицы
с образованием трещины таким образом, что отслоение происходит от
верхнего берега трещины, а к нижнему берегу включение остается при-
крепленным. Таким образом, форма трещины также задана линией γ.
При этом разрез, соответствующий трещине, имеет два берега γ+ и γ−,
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где γ± ⊂ ∂Ω±. Направление нормали ν выбрано таким образом, что
ν = ν− = −ν+, где ν± - внешние нормали к ∂Ω± соответственно.

Пусть вектор-функция u = (u1, u2) задает перемещения точек тела
Ωγ , при этом ui соответствует перемещениям вдоль оси xi, i = 1, 2. Для
компонент тензора деформаций и тензора напряжений тела введем сле-
дующие формулы:

εij(u) =
1

2
(ui,j + uj, i) , i, j = 1, 2, σij = aijklεkl, i, j, k, l = 1, 2,

где ξ,j =
∂ξ
∂xj

. Коэффициенты aijkl = aijkl(x), i, j, k, l = 1, 2 - компоненты
тензора модулей упругости A, удовлетворяющие условиям

aijkl = ajikl = aklij ,

aijklξklξij ≥ c0|ξ|2, ∀ξij = ξji,

где c0 - положительная постоянная. Всюду в тексте по повторяющимся
индексам предполагается суммирование.

Жесткое включение моделируется следующим образом. Введем в рас-
смотрение пространство жестких инфинитезимальных перемещений сле-
дующего вида:

R(γα) = {ρ(α) = (ρ
(α)
1 , ρ

(α)
2 ) | ρ(α)(x) = (−a(α)x2 + b, a(α)x1 + d) на γα,

a(α), b, d ∈ R}, α = 1, 2.

Таким образом, для перемещений жесткого включения предполагается
возможным только перемещения типа переноса и поворота. Отметим,
что в точке O углы поворота, характеризуемые коэффициентами a(α),
могут быть различными, в то время как из условия ρ(1)(0) = ρ(2)(0) сле-
дует, что свободные члены b и d, характеризующие перенос, совпадают
для γ1 и γ2. Точку O можно рассматривать как точку сопряжения для
γ1 и γ2 и таким образом, данную задачу можно отнести к классу задач
сопряжения.

Поскольку включение γ отслаивается от упругой матрицы с обра-
зованием трещины, то перемещения точек на противоположных бере-
гах разреза γ могут не совпадать. Для значений некоторой функции
ξ на берегах γ+ и γ− введем обозначения с верхним индексом: ξ+ и
ξ−, также введем обозначение для скачка функции на берегах разреза:
[ξ] = ξ+ − ξ−. Включение отслаивается от берега γ+ и прикреплено к
берегу γ−, поэтому на γ− задаются условия склейки перемещений точек
тела и включения:

u− = ρ(α) на γα, α = 1, 2.

Приведем вариационную формулировку рассматриваемой задачи.
Введем обозначения

H1
ΓD

(Ωγ)
2 = {u ∈ H1(Ωγ)

2 |u = 0 на ΓD},
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и рассмотрим множество допустимых перемещений вида

K = {u ∈ H1
ΓD

(Ωγ)
2 | [u]ν ≥ 0 на γ; u− = ρ(α) на γα, ρ(α) ∈ R(γα),

α = 1, 2}.

Неравенство [u]ν ≥ 0 задано на части границы области Ωγ , а именно на
берегах разреза γ. Данное ограничение исключает взаимное проникание
точек противоположных берегов трещины друг в друга и носит название
условия непроникания [8]. Ввиду наличия данного условия множество K
не является линейным подпространством пространства H1

ΓD
(Ωγ)

2 и за-
дача является нелинейной. Задачу равновесия двумерного упругого тела
с отслоившимся тонким жестким включением, имеющим повреждение,
можно сформулировать как задачу минимизации на множестве K функ-
ционала энергии

Πδ(u) =
1

2
B(u, u)− L(u) +

1

2δ
(ρ

(2)
2,1(0)− ρ

(1)
2,1(0))

2 =

=
1

2
B(u, u)− L(u) +

1

2δ
(a(2) − a(1))2,

где

B(u, v) =

∫
Ωγ

σ(u)ε(v) ds, L(u) =

∫
Ωγ

fu dx−
∫
ΓN

gu ds.

Здесь принято обозначение σ(u)ε(v) = σij(u)εij(v), fu = fiui, gu = giui,
i, j = 1, 2; через f = (f1, f2), g = (g1, g2) обозначены функции внешних
нагрузок, действующих в Ωγ и на ΓN соответственно. Первое слагаемое
функционала Πδ с квадратичной формой B(u, u) описывает энергию де-
формирования упругого тела, второе слагаемое выражает работу внеш-
них сил. Через δ обозначен положительный параметр, который считает-
ся заданным и характеризует степень поврежденности материала вклю-
чения в точке O. Форму последнего слагаемого функционала потенци-
альной энергии Πδ можно сравнить с известными в механике форму-
лами, описывающими шарнирное соединение стержневых конструкций,
см. напр. [25].

Поскольку наличие условий непроникания приводит к нелинейности
рассматриваемой задачи, то классические подходы к ее исследованию не
применимы. Изучение задач о трещинах с аналогичными граничными
условиями предполагает применение метода вариационных неравенств,
который подробно изложен в монографиях [8, 9, 10]. Применение данных
методов к задачам об отслоившихся включениях изучались во многих
работах, некоторые примеры можно найти в статьях [1, 2, 3, 27].

Таким образом, вариационная формулировка состоит в следующем:
найти элемент u ∈ K, доставляющий минимум функционалу Πδ на мно-
жестве K:

Πδ(u) = inf
ū∈K

Πδ(ū). (1)



О МОДЕЛИРОВАНИИ ЛОКАЛЬНОГО ДЕФЕКТА 1589

Следуя [27], можно доказать, что для заданных f ∈ L2(Ωγ)
2, g ∈ L2(ΓN )2,

aijkl ∈ L∞(Ω), i, j, k, l = 1, 2, задача (1) имеет единственное решение, удо-
влетворяющее вариационному неравенству

u ∈ K, B(u, ū− u)− L(u− u)+

+
1

δ
(a(2) − a(1))(a(2) − a(1) − a(2) + a(1)) ≥ 0, ∀ū ∈ K. (2)

3 Эквивалентная дифференциальная постановка

Целью дальнейших рассуждений является получение дифференци-
альной формулировки рассматриваемой задачи равновесия и доказа-
тельство ее эквивалентности вариационному неравенству. Для этого бу-
дем предполагать достаточную гладкость решений задачи.

Пусть имеет место вариационное неравенство (2). Перепишем его в
виде

u ∈ K,

∫
Ωγ

σ(u)ε(u− u) ds−
∫
Ωγ

f(u− u) dx−
∫
ΓN

g(u− u) ds+

+
1

δ
(a(2) − a(1))(a(2) − a(1) − a(2) + a(1)) ≥ 0, ∀ū ∈ K. (3)

Выбирая произвольную функцию θ = (θ1, θ2) ∈ C∞
0 (Ωγ)

2 и подставляя в
(3) пробный элемент вида u = u ± θ ∈ K, можно получить в области с
разрезом уравнение равновесия

−div σ = f в Ωγ .

Возьмем теперь элемент ũ ∈ K, который удовлетворяет условиям:

ũ− = ũ+ = ρ̃(α) = (−ã(α)x2 + b̃, ã(α)x1 + d̃) на γα, α = 1, 2.

Таким образом, [ũ] = 0 на γ и элементы вида u = u ± ũ ∈ K мож-
но подставлять в (3) последовательно в качестве пробных функций. В
результате придем к выводу, что имеет место равенство

∫
Ωγ

σ(u)ε(ũ) dx−
∫
Ωγ

fũ dx−
∫
ΓN

gũ ds+
1

δ
(a(2) − a(1))(ã(2) − ã(1)) = 0.
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Интегрируя данное равенство по частям, с учетом краевого условия на
ΓD, получим

−
∫
Ωγ

σij,j(u)ũi dx−
∫
Ωγ

fiũi dx−
∫
ΓN

giũi ds+

∫
ΓN

σij(u)nj ũi ds+

+

2∑
α=1

{∫
γ+
α

σij(u)ν
+
j ũi ds+

∫
γ−
α

σij(u)ν
−
j ũi ds

}
+

+
1

δ
(a(2) − a(1))(ã(2) − ã(1)) = 0. (4)

С учетом полученного выше уравнения равновесия и произвольности ũ,
отсюда можем получить граничное условие

σ(u)n = g на ΓN ,

где σn = (σ1jnj , σ2jnj), j = 1, 2. Тогда из (4) следует
2∑

α=1

∫
γα

[σij(u)νj ]ũi ds =
1

δ
(a(2) − a(1))(ã(2) − ã(1)). (5)

Введем представление вида σij(u)νj = (σ1(u), σ2(u)) для вектор-функции
поверхностных сил, где через σ1, σ2 обозначены первая и вторая компо-
ненты вектора σijνj соответственно. Отметим, что ввиду криволиней-
ности γ, компоненты σ1 и σ2 могут не совпадать с касательной στ и
нормальной σν составляющими данного вектора на γ. Также будем ис-
пользовать представления ρ(α)(x) = (−a(α)x2 + b, a(α)x1 + d) и ρ̃(α)(x) =

(−ã(α)x2+ b̃, ã(α)x1+ d̃) для векторов жестких перемещений. В этих обо-
значениях (5) может быть переписано в виде

2∑
α=1

∫
γα

(
[σ1(u)](−ã(α)x2 + b̃) + [σ2(u)](ã

(α)x1 + d̃)
)
ds =

=
1

δ
(a(2) − a(1))(ã(2) − ã(1)). (6)

Предположим, что ũ выбрано таким, что b̃ = d̃ = 0. Тогда из (6) получим

2∑
α=1

∫
γα

(
−[σ1(u)]ã

(α)x2 + [σ2(u)]ã
(α)x1

)
ds =

=
1

δ
(a(2) − a(1))(ã(2) − ã(1)).

Отсюда при ã(2) = 0 будем иметь∫
γ1

(
[σ2(u)]x1 − [σ1(u)]x2

)
ds = −1

δ
(a(2) − a(1)) = 0, (7)
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а при ã(1) = 0 получим∫
γ2

(
[σ2(u)]x1 − [σ1(u)]x2

)
ds =

1

δ
(a(2) − a(1)) = 0. (8)

Вернемся к (6). С учетом условий (7) и (8), будем иметь
2∑

α=1

∫
γα

(
[σ1(u)]̃b+ [σ2(u)]d̃

)
ds = 0.

Из произвольности b̃ и d̃ следует, что имеют место условия вида∫
γ

[σ1(u)] ds = 0,

∫
γ

[σ2(u)] ds = 0.

Кроме того, ввиду наличия трещины, на берегах γ выполнена система
краевых условий следующего вида:

[u]ν ≥ 0, σ+
ν (u) ≤ 0, σ+

τ (u) = 0, σ+
ν (u)[u]ν = 0 на γ.

Данные условия описывают возможный контакт берегов трещины, вклю-
чая условие их взаимного непроникания (первое из представленных со-
отношений). Эти условия могут быть получены стандартным путем, из-
ложенным при доказательстве аналогичных теорем для задач об отсло-
ившемся жестком включении [27].

Таким образом, дифференциальная формулировка задачи равновесия
состоит в следующем. Для заданных в Ωγ и на ΓN функций внешних
нагрузок f = (f1, f2) и g = (g1, g2) найти в Ωγ поле перемещений u =
(u1, u2) точек тела и тензор напряжений σ = {σij(u)}, i, j = 1, 2, кроме
того на γα найти элементы ρ(α) ∈ R(γα), α = 1, 2, такие, что выполнена
следующая система уравнений и граничных условий:

−div σ = f в Ωγ , (9)
u = 0 на ΓD, σn = g на ΓN , (10)

u− = ρ(α) на γα, ρ(α) ∈ R(γα), α = 1, 2, (11)∫
γα

(
[σ2]x1 − [σ1]x2

)
ds =

(−1)α

δ
(a(2) − a(1)), a(α) = ρ

(α)
2,1 (0),

α = 1, 2, (12)∫
γ

[σ1] ds = 0,

∫
γ

[σ2] ds = 0; (13)

[u]ν ≥ 0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [u]ν = 0 на γ. (14)

Полученная система включает уравнения равновесия упругого тела (9),
выполненные в области с разрезом Ωγ , а также краевые условия на внеш-
ней границе (10), описывающие закрепление на ΓD и воздействие внеш-
них нагрузок на ΓN . Согласно условию (11), на γ−α функция u совпадает
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с некоторым элементом ρ(α) пространства R(γα), то есть этот элемент
является одним из неизвестных задачи. Таким образом, кроме переме-
щений u в области необходимо также найти неизвестные постоянные
a(1), a(2), b и d. Соотношения (12) и (13) являются условиями равнове-
сия тонкого жесткого включения с дефектом, они выражают равенство
нулю главного вектора сил и главного вектора моментов для γ.

Можно сравнить полученную систему уравнений и краевых условий
с аналогичными условиями, выведенными для других моделей тонких
включений и других видов их сопряжения.

Например, в работах [12, 14, 28] получена система для случаев сопря-
жения без учета повреждаемости для различных моделей тонких вклю-
чений: тонкое жесткое, упругое включение Тимошенко, а также тонкое
полужесткое включение. В условиях идеального сцепления угол между
включениями в исходном недеформированном состоянии упругого тела
является фиксированным, следовательно, после деформирования углы
поворота совпадают. Поэтому в условии на моменты для каждого из
включений, аналогичном условию (12), в этом случае в правой части
стоит нуль, т.е. оно не содержит разности углов. Этот тип сопряжения
для рассматриваемой в настоящей работе задачи соответствует предель-
ному случаю при стремлении параметра повреждаемости к нулю. В слу-
чае полного излома между включениями в приведенных для сравнения
в этом абзаце работах моменты для обоих включений совпадают. Это бу-
дет соответствовать предельному случаю при δ → ∞. Оба предельных
перехода будут рассмотрены в следующем разделе.

Для задачи с параметром повреждаемости при сопряжении включе-
ния Тимошенко и тонкого жесткого включения в [13] получена систе-
ма, которая включает условия на моменты, выписанные как и в (12),
отдельно для каждого включения и содержащие параметр повреждае-
мости в качестве коэффициента пропорциональности при разности уг-
лов поворота. В [16] изучался случай тонкого упругого включения типа
Бернулли-Эйлера с повреждением. Для этой задачи, аналогично (12), в
точке сопряжения выписано условие на моменты, соответствующее рас-
сматриваемой модели упругого включения, при этом моменты также
пропорциональны разности углов.

Покажем, что из системы (9)-(14) можно обратно получить вариаци-
онное неравенство (2). Возьмем u ∈ K, умножим уравнение (9) на u−u,
и проинтегрируем полученное равенство по Ωγ . В результате получим
уравнение

−
∫
Ωγ

σij,j(u)(ui − ui) dx =

∫
Ωγ

fi(ui − ui) dx.
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Применяя интегрирование по частям и учитывая условия (10), можем
привести это уравнение к виду

B(u, u− u)− L(u− u) +

∫
γ

[σij(u)νj · (ui − ui)] ds = 0. (15)

Перепишем (15) в виде

B(u, u− u)− L(u− u) + I + J = 0, (16)

где

I =

∫
γ

(σij(u)νj)
+(ui − ui)

+ ds−
∫
γ

(σij(u)νj)
+(ui − ui)

− ds,

J =

∫
γ

(σij(u)νj)
+(ui − ui)

− ds−
∫
γ

(σij(u)νj)
−(ui − ui)

− ds.

Преобразуем I, принимая во внимание условия (14):

I =

∫
γ

(σij(u)νj)
+[ui − ui] ds =

∫
γ

σ+
ν (u)[uν − uν ] ds =

=

∫
γ

σ+
ν (u)[uν ] ds−

∫
γ

σ+
ν (u)[uν ] ds =

∫
γ

σ+
ν (u)[uν ] ds.

Далее вычислим, принимая во внимание условия (11), (13)

J =

∫
γ

[σij(u)νj ](ui − ui)
− ds =

2∑
α=1

∫
γα

(
[σ1](ρ

(α)
1 − ρ

(α)
1 ) + [σ2](ρ

(α)
2 − ρ

(α)
2 )

)
ds =

=

2∑
α=1

∫
γα

(
[σ1]x2 − [σ2]x1

)
(a(α) − a(α)) ds.

Применяя здесь условия (12), можем получить

J =
1

δ
(a(2) − a(1))(a(2) − a(1) − a(2) + a(1)).

Следовательно, соотношение (16) перепишется в виде

B(u, u− u)− L(u− u) +
1

δ
(a(2) − a(1))(a(2) − a(1) − a(2) + a(1)) =

= −
∫
γ

σ+
ν (u)[uν ] ds. (17)

Из второго условия в (13), а также свойств элементов множества K, сле-
дует неотрицательность правой части (17), что означает справедливость
вариационного неравенства (2).

Таким образом, мы доказали следующее утверждение.
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Теорема 1. Задача (9)-(14) эквивалентна вариационному неравенству
(2) при условии достаточной гладкости решений.

4 Предельные задачи

При каждом фиксированном значении параметра δ задача (2) име-
ет единственное решение. Тогда мы можем сформулировать семейство
задач с данным параметром. Формулировка имеет вид вариационных
неравенств, где нижний индекс δ обозначает, что решение соответствует
данному значению параметра:

uδ ∈ K, B(uδ, ū− uδ)− L(u− uδ)+

+
1

δ
(a

(2)
δ − a

(1)
δ )(a(2) − a(1) − a

(2)
δ + a

(1)
δ ) ≥ 0, ∀ū ∈ K. (18)

Здесь использованы обозначения:

u−δ (x) = ρ
(α)
δ (x) = (−a

(α)
δ x2 + bδ, a

(α)
δ x1 + dδ) на γα,

u−(x) = ρ(α)(x) = (−a(α)x2 + b, a(α)x1 + d) на γα.

Будем рассматривать предельный переход по параметру δ и проана-
лизируем получаемые при этом предельные задачи.

Последовательно подставим в (18) пробные функции вида u = 0 и
u = 2uδ. Сравнивая полученные неравенства, придем к выводу, что вы-
полнено соотношение

B(uδ, uδ)− L(uδ) +
1

δ
(a

(2)
δ − a

(1)
δ )2 = 0. (19)

Вначале рассмотрим первый предельный случай при δ → ∞, который
соответствует бесконечному возрастанию поврежденности в точке O.

Благодаря неравенству Корна, из (19) можем получить равномерную
по δ оценку вида

∥uδ∥H1
ΓD

(Ωγ)2 ≤ c1.

Отсюда следует, что при δ → ∞ имеет место сходимость

uδ → u∞ слабо в H1
ΓD

(Ωγ)
2, u−∞ = ρ(α)∞ на γα, ρ(α)∞ ∈ R(γα), (20)

где
ρ(α)∞ (x) = (−a(α)∞ x2 + b∞, a(α)∞ x1 + d∞), α = 1, 2.

Учитывая ограниченность a
(1)
δ , a

(2)
δ и сходимость (20), можно осуще-

ствить предельный переход в (18) при δ → ∞. Предельная задача сфор-
мулируется в форме вариационного неравенства вида

u∞ ∈ K, B(u∞, ū− u∞)− L(u− u∞) ≥ 0, ∀ū ∈ K. (21)

Задача (21) допускает дифференциальную постановку, в которой ниж-
ний индекс "∞"для простоты опускается. А именно, для заданных в Ωγ

и на ΓN функций внешних нагрузок f = (f1, f2) и g = (g1, g2) найти
в Ωγ поле перемещений u = (u1, u2) точек тела и тензор напряжений
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σ = {σij(u)}, i, j = 1, 2, кроме того на γα найти элементы ρ(α) ∈ R(γα),
α = 1, 2, такие, что выполнена следующая система уравнений и гранич-
ных условий:

−div σ = f в Ωγ , (22)
u = 0 на ΓD, σn = g на ΓN , (23)

u− = ρ(α) на γα, ρ(α) ∈ R(γα), α = 1, 2, (24)∫
γα

(
[σ2]x1 − [σ1]x2

)
ds = 0, α = 1, 2, (25)

∫
γ

[σ1] ds = 0,

∫
γ

[σ2] ds = 0; (26)

[u]ν ≥ 0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [u]ν = 0 на γ. (27)

Данная система может быть получена аналогично методу, изложенному
в предыдущем разделе. Задача (22)-(27) соответствует случаю полного
излома между γ1 и γ2, т.е. здесь имеется два отдельных тонких жестких
включения. Как видно из соотношений (25), моменты для каждой из
частей γ1 и γ2 равны нулю.

Теперь рассмотрим предельный переход при δ → 0. Для этого из (19)
получим равномерные по δ оценки вида

∥uδ∥H1
ΓD

(Ωγ)2 ≤ c1, (a
(2)
δ − a

(1)
δ )2 ≤ c2δ.

Отсюда следует, что при δ → 0 выполняется

uδ → u0 слабо в H1
ΓD

(Ωγ)
2, (28)

u−0 = ρ
(α)
0 на γα, ρ

(α)
0 ∈ R(γα), (29)

ρ
(α)
0 (x) = (−a

(α)
0 x2 + b0, a

(α)
0 x1 + d0), α = 1, 2, a

(1)
0 = a

(2)
0 = a0. (30)

Введем множество

K0 = {u ∈ H1
ΓD

(Ωγ)
2 | [u]ν ≥ 0 на γ; u− = ρ0 на γ, ρ0 ∈ R(γ)},

где

R(γ) = {ρ = (ρ1, ρ2) | ρ(x) = (−ax2 + b, ax1 + d) на γ, a, b, d ∈ R}.

Возьмем произвольный элемент ū ∈ K0, для которого ū− = ρ̄ ∈ R(γ)
на γ, где ρ̄(x) = (−āx2 + b̄, āx1 + d̄). Заметим, что выбранный элемент
ū является элементом множества K, где ā(1) = ā(2) = ā и его можно
подставлять в (18) в качестве пробного. Тогда будем иметь неравенство

B(uδ, ū− uδ)− L(u− uδ)−
1

δ
(a

(2)
δ − a

(1)
δ )2 ≥ 0.

Переходя к пределу в этом неравенстве, получим с учетом (28)-(30)

u0 ∈ K0, B(u0, ū− u0)− L(u− u0) ≥ 0, ∀ū ∈ K0. (31)
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Задача вида (31) соответствует случаю идеального сцепления между γ1
и γ2, т.е. цельного отслоившегося тонкого жесткого включения без де-
фектов и изломов. Подобная задача с условиями жесткого закрепления
по всей внешней границе упругого тела изучалась в [27]. Для сравне-
ния приведем соответствующую дифференциальную постановку, опу-
стив для простоты нижний индекс "0".

Для заданных в Ωγ и на ΓN функций внешних нагрузок f = (f1, f2)
и g = (g1, g2) найти в Ωγ поле перемещений u = (u1, u2) точек тела
и тензор напряжений σ = {σij(u)}, i, j = 1, 2, кроме того на γ найти
элемент ρ ∈ R(γ), такие, что выполнена следующая система уравнений
и граничных условий:

−div σ = f в Ωγ , (32)
u = 0 на ΓD, σn = g на ΓN , (33)

u− = ρ на γ, ρ ∈ R(γ), (34)∫
γ

(
[σ2]x1 − [σ1]x2

)
ds = 0, (35)

∫
γ

[σ1] ds = 0,

∫
γ

[σ2] ds = 0, (36)

[u]ν ≥ 0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [u]ν = 0 на γ. (37)

Из условий (34)-(36) следует, что условие равновесия формулируется на
всем γ, поскольку жесткое включение является цельным.

Таким образом, задачи с параметром повреждаемости в некоторой
внутренней точке включения составляют полную систему задач об от-
слоившемся тонком жестком включении в том смысле, что предельные
случаи соответствуют случаям полного излома в точке дефекта и пол-
ному отсутствию повреждения.
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