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Abstract: In this article, sufficient conditions are given for the
existence of a viscosity solution to the first initial boundary value
problem for the equation of porous media type with low order
terms.
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1 Введение и основные результаты

Рассмотрим уравнение фильтрации с младшими членами

ut = (um)xx + F (t, x, u, ux) в ΩT = (0, T )× (−l, l), m > 1, (1)

удовлетворяющее граничным условиям Дирихле

u(t,−l) = u(t, l) = 0,

а также начальному условию

u(0, x) = u0(x) ≥ 0, u0(−l) = u0(l) = 0,

где функция u0 непрерывна по Гельдеру с показателем 1/m:

|u0(x)− u0(y)| ≤ C|x− y|
1
m . (2)

Tersenov Al. S., Tersenov Ar. S., Viscosity solutions of porous media type
equation with low order terms.
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Сделав в уравнении (1) замену переменных

v =
m

m− 1
um−1,

мы получаем уравнение фильтрации для давления v(t, x)

vt = (m− 1)vvxx + v2x +G(t, x, v, vx) в ΩT , (3)

которое удовлетворяет граничным условиям

v(t,−l) = v(t, l) = 0, (4)

а также начальному условию

v(0, x) = v0(x) =
m

m− 1
um−1
0 (x), v0(−l) = v0(l) = 0. (5)

Заметим, что из (2) вытекает, что v0(x) удовлетворяет

|v0(x)− v0(y)| ≤ C0|x− y|α, α =
m− 1

m
, (6)

с некоторой постоянной C0. Здесь G(t, x, v, vx) = F (t, x, u, ux) при ука-
занной замене переменных. В дальнейшем будем рассматривать задачу
(3)–(5), для которой и докажем существование вязкого по Лионсу реше-
ния.

Уравнению (3) при G = 0 посвящено большое количество работ. Не
имея возможности привести полный список соответствующей литерату-
ры, отметим лишь монографии [1], [13] и ссылки в них. В случае G = 0
были получены оптимальные результаты о гладкости решений по про-
странственной переменной как задачи Дирихле, так и задачи Коши. В
первом случае была доказана непрерывность решения по Гельдеру с по-
казателем 1

m , во втором – непрерывность решения по Гельдеру с пока-
зателем 1

m−1 .
Дадим определение вязкого решения задачи (3)–(5) следуя [14] (см.

также [5], [10]).

Определение 1. Будем говорить, что непрерывная, неотрицательная
функция v(t, x) является вязким субрешением (суперрешением) задачи
(3)–(5), если

v(t,−l) = 0 (≥ 0), v(t, l) = 0 (≥ 0),

v(0, x) ≤ v0(x) (≥ v0(x)), x ∈ (−l, l),

и для любой функции ϕ(t, x) ∈ C1,2(ΩT ) и точек (t, x), (t0, x0) ∈ ΩT , для
которых

v(t, x) ≤ ϕ(t, x)
(
≥ ϕ(t, x)

)
, v(t0, x0) = ϕ(t0, x0),

выполняется

ϕt − (m− 1)ϕϕxx − ϕ2
x −G(t, x, ϕ, ϕx)

∣∣∣
(t0,x0)

≤ 0 (≥ 0).

Вязким решением задачи (3)–(5) является непрерывная, неотрицатель-
ная функция v(t, x), которая одновременно является суб- и суперреше-
нием.
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Основным результатом статьи является теорема существования вязко-
го решения задачи (3)–(5) (см. теорему 1) в случае, когда правая часть,
в частности, может иметь произвольный полиномиальный рост по про-
изводной от решения. Кроме того, доказана непрерывность решения по
Гельдеру по переменной x с показателем α (см. лемму 2). С.Н. Кружко-
вым [9] был получен результат о характере непрерывности по t решения
линейного параболического уравнения, если априори известен модуль
непрерывности по пространственным переменным. Было доказано, что
непрерывность решения по Гельдеру по переменной x линейного уравне-
ния с показателем σ ∈ (0, 1], влечет непрерывность решения по Гельдеру
по переменной t с показателем σ

2+σ . Показатель непрерывности по Гель-
деру по переменной t был улучшен Б. Гилдингом [6], где было доказано,
что он равен σ

2 . В лемме 3 мы обобщили результат Кружкова–Гилдинга
на случай, когда в уравнении присутствует правая часть нелинейная по
производной от решения. Отметим, что в случае, если есть оценка макси-
мума модуля градиента решения, результат Кружкова-Гилдинга может
быть перенесен и на квазилинейные уравнения. Но, как уже было отме-
чено выше, такой гладкостью решения уравнения вида (3) не обладают.

Доказательство теоремы существования вязкого решения задачи (3)–
(5) проведем методом регуляризации исходной краевой задачи. В связи с
этим, отметим работы [2], [11], в которых было доказано сущеcтвование
вязкого решения в случае G = G(u) также с помощью регуляризации.

Предположим, что в (3) функция G удовлетворяет

G(t, y, z1, q)−G(t, x, z2, q) ≥ 0, (7)

G(t, x, z1,−q)−G(t, y, z2,−q) ≥ 0 (8)

при t ∈ [0, T ], −l ≤ y < x ≤ l, z1 < z2, q ≥ 0, а также условиям

G(t, x, z, q) ≤ 0, z ≥ 0, q ∈ R; G(t, x, z, 0) = 0, (9)

при x ∈ [−l, l], t ∈ [0, T ]. Приведем простой пример функции G, удовле-
творяющей (7)—(9):

G(t, x, z, q) = f(t, z)g(t, q),

где g(t, q) ≥ 0 для любого q, g(t, 0) = 0, а f(t, z) – невозрастающая по z
функция и такая, что f(t, z) ≥ 0 при z ≤ 0.

Для того, чтобы доказать существование вязкого решения задачи (3)–
(5) с помощью предельного перехода, необходимо получить равномерные
относительно параметра регуляризации оценки Гельдера решений регу-
ляризованной задачи. Получение оценки Гельдера по времени базиру-
ется на упомянутом выше обобщении результата Кружкова-Гилдинга.
В связи с этим будем предполагать, что G удовлетворяет следующему
неравенству по переменной q

max
(t,x)∈ΩT ,|z|≤M

|G(t, x, z, q)| ≤ κ0(1 + |q|p), (10)
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с некоторой постоянной κ0 и каким-либо фиксированным p ≥ 0. Сфор-
мулируем теперь основной результат настоящей статьи.

Теорема 1. Предположим, что функция G(t, x, z, q) ∈ C
β
2
,β,β,β

t,x,z,q ((0, T )×
(−l, l)×R×R) с некоторым показателем β ∈ (0, 1) и выполнены условия
(7)—(9), (10). Тогда существует вязкое решение v(t, x) задачи (3)—(5)
такое, что

|v(t, x)− v(t, y)| ≤ C0|x− y|α, α =
m− 1

m
, x, y ∈ [−l, l], t ∈ [0, T ],

|v(t1, x)−v(t2, x)| ≤ C1|t1−t2|γ , γ =
α

max{2, p}
, x ∈ (−l, l), t1, t2 ∈ (0, T ),

где постоянная C0 из (6), постоянная C1 зависит лишь от C0, κ0, l, α, p
и d(x) = min{|x− l|, |x+ l|}.

Статья структурирована следующим образом. Второй параграф по-
священ получению априорных оценок решения регуляризованной зада-
чи, не зависящих от параметра регуляризации. В третьем параграфе
приводится доказательство теоремы 1.

2 Априорные оценки решения регуляризованной задачи

Для доказательства теоремы 1 мы строим последовательность класси-
ческих решений vµ следующей регуляризованной задачи, где уравнение
(3) остается неизменным

vµt = (m− 1)vµvµxx + v2µx +G(t, x, vµ, vµx) в ΩT , (11)

краевые условия (4) заменяются условиями

vµ(t,−l) = vµ(t, l) = µ > 0, (12)

а начальное условие (5) принимает вид

vµ(0, x) = v0µ(x) ≥ µ, v0µ(±l) = µ, (13)

где функция v0µ(x) – гладкая функция удовлетворяющая соотношениям

|v0µ(x)− v0µ(y)| ≤ C0|x− y|α,

||v0µ(x)− v0(x)||Cα([−l,l]) → 0 при µ → 0. (14)

Дадим для удобства читателя определение классического решения зада-
чи (11)–(13).

Определение 2. Функцию vµ(t, x) ∈ C1,2
t,x(ΩT )∩C0(ΩT ), удовлетворяю-

щую уравнению (11) в каждой точке области, а также начально крае-
вым условиям (12), (13), понимаемым поточечно, будем называть клас-
сическим решением задачи (11)–(13).
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В этом параграфе мы получим равномерную по µ оценку максимума
модуля решений задачи (11)–(13). Также получим равномерную по µ
оценку Гельдера этих же решений.

Рассмотрим задачу (11)–(13) и, для простоты, в дальнейших выклад-
ках опустим µ у функции vµ, положив v(t, x) = vµ(t, x), v0(x) = v0µ(x).
В новых обозначениях задача (11)–(13) принимает вид

vt = (m− 1)vvxx + v2x +G(t, x, v, vx) в ΩT , (15)

v(t,−l) = v(t, l) = µ > 0, (16)
v(0, x) = v0(x) ≥ µ, v0(±l) = µ, (17)

где v0(x) – гладкая функция, удовлетворяющая соотношению

|v0(x)− v0(y)| ≤ C0|x− y|α, (18)

где постоянная C0 из (6). Докажем следующую лемму.

Лемма 1. Для любого классического решения задачи (15)–(17) в ΩT

верны оценки
µ ≤ v(t, x) ≤ C0(l − x)α + µ, (19)
µ ≤ v(t, x) ≤ C0(l + x)α + µ. (20)

Доказательство. Заметим, что доказательство левого неравенства в
(19), (20) вытекает из принципа максимума, примененного к задаче (15)–
(17).

Рассмотрим функцию h = C0(l + x)α, |x| < l. Напомним, что α =
m−1
m > 0. Легко видеть, что h′ > 0, h′′ < 0. Функция h удовлетворяет

уравнению
(m− 1)hhxx − ht = −h2x, (21)

В то же время из (15) следует

(m− 1)vvxx − vt = −v2x −G(t, x, v, vx), (22)

откуда, вычитая (21) из (22), для функции

w(t, x) = v(t, x)− h(l + x)− µ,

получаем
Lw ≡ (m− 1)vwxx − wt + (m− 1)hxxw =

h2x − v2x − µ(m− 1)hxx −G(t, x, v, vx) ≥ h2x − v2x −G(t, x, v, vx). (23)
Предположим, что функция w достигает положительного максимума в
некоторой точке (t0, x0) ∈ ΩT \ ΓT , где ΓT – параболическая граница
области ΩT . В точке (t0, x0) выполнены соотношения

w > 0, wxx ≤ 0, wt ≥ 0, v > 0, hxx < 0,

что влечет за собой неравенство Lw
∣∣∣
(t0,x0)

< 0. В то же время, в точ-

ке (t0, x0) имеем wx = 0. Откуда, используя (9), вытекает, что в точке
(t0, x0)

v > h, vx = hx, v2x = h2x, G ≤ 0.
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Таким образом, из (23) получаем

Lw
∣∣∣
(t0,x0)

≡ (m− 1)vwxx + (m− 1)hxxw − wt

∣∣∣
(t0,x0)

≥ 0.

Это противоречит тому, что функция w достигает положительного мак-
симума в (t0, x0) ∈ ΩT \ ΓT .

Рассмотрим w на ΓT . Заметим, что из согласованности граничных и
начальных условий рассматриваемой задачи, вытекает v(0,−l) =
v0(−l) = µ, откуда при t = 0 имеем

w(0, x) = v0(x)− (l + x)α − µ = v0(x)− v0(−l)− (l + x)α ≤ 0,

в силу (18). При x = ±l получаем

w(t,−l) = 0, w(t, l) = −h(2l) < 0.

Следовательно,

v(t, x) ≤ h(l + x) + µ = (l + x)α + µ.

Рассмотрим теперь функцию

w̃(t, x) = v(t, x)− h(l − x)− µ.

Применяя к функции w̃ дословно все рассуждения, которые были прове-
дены выше для функции w, легко показать, что она не может достигать
положительного максимума внутри ΩT \ ΓT . Очевидно

w̃(0, x) = v0(x)− (l − x)α − µ = v0(x)− v0(l)− (l − x)α ≤ 0.

При x = ±l получаем w̃(t,−l) = −h(2l) < 0, w̃(t, l) = 0, следовательно,

v(t, x) ≤ h(l − x) + µ = (l − x)α + µ.

□

Докажем теперь следующую лемму.

Лемма 2. Пусть выполнены условия (7)—(9). Тогда для любого класси-
ческого решения задачи (15)—(17) верна оценка

|v(t, x)− v(t, y) ≤ C0|x− y|α для всех x, y ∈ [−l, l]. (24)

Доказательство. Рассмотрим уравнение (15) в точках (t, x) и (t, y)

vt(t, x) = (m− 1)v(t, x)vxx(t, x) + v2x(t, x) +G(t, x, v(t, x), vx(t, x)), (25)

vt(t, y) = (m− 1)v(t, y)vyy(t, y) + v2y(t, y) +G(t, y, v(t, y), vy(t, y)). (26)
Вычитая (26) из (25), получим, что функция

V (t, x, y) = v(t, x)− v(t, y)

удовлетворяет следующему соотношению

L1V ≡ (m− 1)v(t, x)Vxx + (m− 1)v(t, y)Vyy − Vt =

v2y(t, y)− v2x(t, x) +G(t, y, v(t, y), vy(t, y))−G(t, x, v(t, x), vx(t, x)).
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Предположим, что x > y и рассмотрим функцию h(x− y) = C0(x− y)α.
Заметим, что

hxx = h′′, hyy = h′′, hx = h′, hy = −h′.

Откуда вытекает, что

L1h(x− y) = (m− 1)v(t, x)hxx + (m− 1)v(t, y)hyy − ht =

1− 1
α

h
h′2v(t, x) +

1− 1
α

h
h′2v(t, y) =

1− 1
α

h
h′2(v(t, x) + v(t, y)).

Для разности W = V − h будем иметь

L1W ≡ (m− 1)v(t, x)Wxx + (m− 1)v(t, y)Wyy −Wt =

v2y(t, y)− v2x(t, x) +G(t, y, v(t, y), vy(t, y))−G(t, x, v(t, x), vx(t, x))−
1− 1

α

h
h′2(v(t, x) + v(t, y)). (27)

Рассмотрим функцию W в области

P = {(t, x, y) : 0 < t < T, y < x, |x| < l, |y| < l}.
Предположим, что W достигает своего положительного максимума в
некоторой точке (t0, x0, y0) ∈ P \ Γ, где Γ – параболическая граница P .
Тогда в этой точке Wx(t0, x0, y0) = Wy(t0, x0, y0) = 0. Как следствие,
получаем vx(t0, x0) = vy(t0, y0). Отметим также, что W (t0, x0, y0) > 0,
что влечет за собой v(t0, x0) > v(t0, y0) > 0. Учитывая вышеизложенное,
а также (7), получаем из (27)

L1W
∣∣∣
(t0,x0,y0)

= v2y(t0, y0)− v2x(t0, x0)+

G(t0, y0, v(t0, y0), h
′(x0 − y0))−G(t0, x0, v(t0, x0), h

′(x0 − y0))−
1− 1

α

h(x0 − y0)
h′2(x0 − y0)(v(t0, x0) + v(t0, y0)) > 0 (28)

поскольку 1− 1/α < 0. С другой стороны в точке положительного мак-
симума

L1W
∣∣∣
(t0,x0,y0)

≡ (m− 1)v(t, x)Wxx + (m− 1)v(t, y)Wyy −Wt

∣∣∣
(t0,x0,y0)

≤ 0,

что противоречит (28). Таким образом, функция W не может достигать
положительного максимума внутри P .

Рассмотрим теперь W на Γ. При t = 0

W (0, x, y) = v0(x)− v0(y)− h(x− y) ≤ 0,

в силу (18). Из леммы 2 вытекают следующие два неравенства

W (t, l, y) = µ− v(t, y)− h(l − y) ≤ 0, t ∈ (0, T ), y ∈ [−l, l],

W (t, x,−l) = v(t, x)− µ− h(x+ l) ≤ 0, t ∈ (0, T ), x ∈ [−l, l].

Из трех последних неравенств получаем, что

W
∣∣∣
P
≤ 0
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и, как следствие,

v(x)− v(y) ≤ h(x− y) в P . (29)

Аналогично, вычитая (25) из (26), для Ŵ = v(t, y) − v(t, x) − h(x − y)
будем иметь

L1Ŵ ≡ (m− 1)v(t, x)Ŵxx + (m− 1)v(t, y)Ŵyy − Ŵt =

v2x(t, x)− v2y(t, y) +G(t, x, v(t, x), vx(t, x))−G(t, y, v(t, y), vy(t, y))−
1− 1

α

h
h′2(v(t, x) + v(t, y)) в P. (30)

Предположим, что Ŵ достигает своего положительного максимума в
некоторой точке (t1, x1, y1) ∈ P \Γ. Тогда vx(t1, x1) = vy(t1, y1) = −h′(x1−
y1) < 0. Отметим также, что Ŵ (t0, x0, y0) > 0, что влечет за собой 0 <
v(t0, x0) < v(t0, y0). Учитывая вышеизложенное, а также (8), получаем
из (30)

L1Ŵ
∣∣∣
(t1,x1,y1)

= v2x(t1, x1)− v2y(t1, y1)+

G(t1, x1, v(t1, x1),−h′(x1 − y1))−G(t1, y1, v(t1, y1),−h′(x1 − y1))−
1− 1

α

h(x1 − y1)
h′2(x1 − y1) (v(t1, x1) + v(t1, y1)) > 0. (31)

С другой стороны, в точке положительного максимума

L1Ŵ
∣∣∣
(t1,x1,y1)

= (m− 1)v(t, x)Ŵxx + (m− 1)v(t, y)Ŵyy − Ŵt

∣∣∣
(t1,x1,y1)

≤ 0,

что противоречит (31). Таким образом, функция Ŵ не может достигать
положительного максимума внутри P .

Рассмотрим теперь Ŵ на Γ. При t = 0

Ŵ (0, x, y) = v0(y)− v0(x)− h(x− y) ≤ 0,

в силу (18). Из Леммы 2 вытекают следующие два неравенства

Ŵ (t, l, y) = v(t, y)− µ− h(l − y) ≤ 0, t ∈ (0, T ), y ∈ [−l, l],

Ŵ (t, x,−l) = µ− v(t, x)− h(x+ l) ≤ 0, t ∈ (0, T ), x ∈ [−l, l].

Из трех последних неравенств вытекает

Ŵ
∣∣∣
P
≤ 0

и, как следствие,

v(y)− v(x) ≤ h(x− y) в P . (32)

Из (29), (32) вытекает

|v(x)− v(y)| ≤ h(x− y) в P .

В силу симметрии переменных x и y, случай x < y исследуется анало-
гично. В результате мы получаем

|v(x)− v(y)| ≤ h(|x− y|) = C0|x− y|α
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при t ∈ [0, T ], |x| ≤ l, |y| ≤ l. Оценка (24) доказана. □

Перейдем теперь к доказательству леммы, которая является обобще-
нием результата Кружкова–Гилдинга, упомянутого во введении.

Лемма 3. Для любого классического решения v задачи (15)–(17), удо-
влетворяющего (10), (24), имеет место оценка

|v(t1, x)− v(t2, x)| ≤ C1|t1 − t2|γ , γ =
α

max{2, p}
, (33)

x ∈ (−l, l), t1, t2 ∈ (0, T ), где C1 зависит от C0, κ0, l, α, p и
d(x) = min{|x− l|, |x+ l|}.

Доказательство. Фиксируем некоторую точку (t0, x0), где t0 ∈ [0, T−τ ],
с некоторым 0 < τ < T и x0 ∈ (−l, l). Рассмотрим параллелепипед

Π = {(t, x) : t ∈ (t0, t0 + τ), x ∈ (x0 − ρ, x0 + ρ)},
где 0 < ρ ≤ d(x0) = d. Обозначим через

s = max
t∈[t0,t0+τ ]

|v(t, x0)− v(t0, x0)|.

Заметим, что лемма 1 (при достаточно малых µ) дает оценку

max
ΩT

v ≤ C0l
α + 1 = M,

Далее для определенности считаем p > 2.
Положим

λ(ρ, s) = K
2s

ρp
+ κ0,

где p, κ0 – постоянные из (10), а постоянная K удовлетворяет

K > (m+ 3)Mlp−2 + κ0(4M)p−1 > 0. (34)

Введем функции

θ1(t, x) = v(t0, x0) +

[
C0ρ

α + (t− t0)λ(ρ, s) +
s

ρ2
(x− x0)

2

]
,

θ2(t, x) = v(t0, x0)−
[
C0ρ

α + (t− t0)λ(ρ, s) +
s

ρ2
(x− x0)

2

]
.

Из леммы 2 вытекает

|v(t0, x0)− v(t0, x)| ≤ C0ρ
α.

Откуда

θ1(t0, x) = v(t0, x0) + C0ρ
α +

s

ρ2
(x− x0)

2 ≥ v(t0, x0) + C0ρ
α =

v(t0, x0)− v(t0, x) + C0ρ
α + v(t0, x) ≥ v(t0, x).

Далее при |x− x0| = ρ имеем

θ1(t, x)
∣∣∣
|x−x0|=ρ

= v(t0, x0) + C0ρ
α + (t− t0)λ(ρ, s) + s ≥
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v(t0, x0) + C0ρ
α + s = v(t, x)

∣∣∣
|x−x0|=ρ

+ (v(t0, x0)− v(t, x0) + s)+

(v(t, x0)− v(t, x))
∣∣∣
|x−x0|=ρ

+ C0ρ
α ≥ v(t, x)

∣∣∣
|x−x0|=ρ

.

Таким образом,

θ1(t, x) ≥ v(t, x) на параболической границе области Π. (35)

Рассмотрим линейный оператор

L ≡ ∂

∂t
− (m− 1)v

∂2

∂x2
.

Очевидно, L(θ1) = λ(ρ, s)− (m− 1)v 2s
ρ2

. Для θ̃ = θ1 − v, получаем

L(θ̃) ≡ θ̃t − (m− 1)vθ̃xx = λ(ρ, s)− (m− 1)v
2s

ρ2
− v2x −G(t, x, v, vx). (36)

Предположим, что в некоторой точке (t̃0, x̃0) ∈ Π функция θ̃ достигает
отрицательного минимума. Тогда в этой точке мы имеем

θ̃x

∣∣∣
(t̃0,x̃0)

= θ1x − vx

∣∣∣
(t̃0,x̃0)

=
2s

ρ2
(x̃0 − x0)− vx(t̃0, x̃0) = 0,

θ̃xx(t̃0, x̃0) ≥ 0, θ̃t(t̃0, x̃0) ≤ 0,

и, как следствие равенства (36), получаем, что

θ̃t − (m− 1)vθ̃xx

∣∣∣
(t̃0,x̃0)

= λ(ρ, s)− (m− 1)v(t̃0, x̃0)
2s

ρ2
−(

2s

ρ2
(x̃0 − x0)

)2

−G

(
t̃0, x̃0, v(t̃0, x̃0),

2s

ρ2
(x̃0 − x0)

)
≥

K
2s

ρp
+ κ0 − (m− 1)M

2s

ρ2
−
(
2s

ρ2
(x̃0 − x0)

)2

−

G

(
t̃0, x̃0, v(t̃0, x̃0),

2s

ρ2
(x̃0 − x0)

)
. (37)

Здесь мы использовали то, что v ≤ M и λ(ρ, s) = K 2s
ρp + κ0. Из (10)

следует что∣∣∣∣G(t̃0, x̃0, v(t̃0, x̃0),
2s

ρ2
(x̃0 − x0))

∣∣∣∣ ≤ κ0

(
1 +

(
2s

ρ2
|x̃0 − x0|

)p)
. (38)

Из (37), (38), учитывая, что |x̃0 − x0| ≤ ρ < l, s ≤ 2M , получаем

L(θ̃)
∣∣∣
(t̃0,x̃0)

≥ K
2s

ρp
− (m− 1)M

2s

ρ2
−
(
2s

ρ

)2

− κ0

(
2s

ρ

)p

=

2s

ρp
(
K − (m− 1)Mρp−2 − 2sρp−2 − κ0(2s)

p−1
)
≥

2s

ρp
(
K − (m− 1)Mlp−2 − 4Mlp−2 − κ0(4M)p−1

)
=
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2s

ρp
(
K − (m+ 3)Mlp−2 − κ0(4M)p−1

)
> 0, (39)

в силу (34). Что невозможно в точке отрицательного минимума.
В случае, когда p ∈ [0, 2] надо положить

λ(ρ, s) = K
2s

ρ2
+ κ0, (40)

где постоянная K выбрана так, что

K > (m+ 3)M + κ0(4M)p−1l2−p. (41)

Тогда неравенство, аналогичное (39), будет иметь вид

L(θ̃)
∣∣∣
(t̃0,x̃0)

≥ K
2s

ρ2
− (m− 1)M

2s

ρ2
−
(
2s

ρ

)2

− κ0

(
2s

ρ

)p

=

2s

ρ2
(
K − (m− 1)M − 2s− κ0(2s)

p−1ρ2−p
)
≥

2s

ρ2
(
K − (m− 1)M − 4M − κ0(4M)p−1l2−p

)
=

2s

ρ2
(
K − (m+ 3)M − κ0(4M)p−1l2−p

)
> 0,

в силу (41). Таким образом, функция θ̃ не может достигать отрицатель-
ного минимума в точке (t̃0, x̃0). Принимая во внимание (35), мы заклю-
чаем, что

θ1(t, x) ≥ v(t, x) в Π.

Аналогично получаем неравенство

θ2(t, x) ≤ v(t, x) в Π.

Откуда уже сразу вытекает, что

|v(t, x)− v(t0, x0)| ≤ C0ρ
α + (t− t0)λ(ρ, s) +

s

ρ2
(x− x0)

2,

и
|v(t, x0)− v(t0, x0)| ≤ C0ρ

α + τλ(ρ, s), τ = t− t0.

Следовательно,

s = max
t∈[t0,t0+τ ]

|v(t, x0)− v(t0, x0)| ≤ C0ρ
α + τλ(ρ, s)

и эта оценка имеет место для любого ρ ∈ (0, d]. При p > 2 имеем

C0ρ
α + τλ(ρ, s) = C0ρ

α + τ
(
2Ksρ−p + κ0

)
≤ K̃

[
ρα + τ

(
1 + sρ−p

)]
,

где K̃ = max{C0,M, 2K}. Таким образом, мы получаем следующее нера-
венство

s ≤ K̃
[
ρα + τ

(
1 + sρ−p

)]
. (42)

Пусть τ ≤ dα+p (2M)−1. Очевидно,

(τs)
1

α+p ≤ (τ2M)
1

α+p ≤ d
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(напомним, что s ≤ 2M). Следовательно, из (42), для ρ∗ = (τs)
1

α+p по-
лучаем

s ≤ K̃
[
ρα∗ + τ + τsρ−p

∗
]
= K̃

[
(τs)

α
α+p + τ + τs(τs)

−p
α+p

]
=

K̃
[
τ + 2(τs)

α
α+p

]
. (43)

Рассмотрим два случая: τ ≤ (τs)
α

α+p и τ ≥ (τs)
α

α+p . В первом случае из
(43) мы получаем

s ≤ 3K̃(τs)
α

α+p ,

откуда

s ≤
(
3K̃

)α+p
p

τ
α
p .

Во втором случае из τ ≥ (τs)
α

α+p следует, что

s ≤ τ
p
α ≤ τ

α
p

при 0 < τ < 1, так как p
α > α

p .
Предположим теперь, что τ ≥ dα+p (2M)−1. Тогда

|v(t0 + τ, x0)− v(t0, x0)| ≤ 2M =
2M

τ
α
p

τ
α
p ≤ (2M)

α+p
p d

−α+p
p

α
τ

α
p .

Легко видеть, что в случае p ∈ [0, 2] и выборе функции λ(ρ, s) из (40),
показатель Гельдера по переменной t будет равен α

2 .
Таким образом, мы доказали, что имеет место оценка (33) с постоян-

ной C1

C1 = max
{
1, (2M)

α+p
p d

−αα+p
p ,

(
3K̃

α+p
p

)}
.

□

3 Доказательство теоремы 1.

Возвращаясь к прежним обозначениям v = vµ, рассмотрим задачу
(11)–(13). Заметим, что при выполнении условия G(t, x, vµ, 0) = 0, для
любого классического решения задачи (11)–(13) имеет место оценка vµ ≥
µ, что позволяет применить результаты, полученные в [12], о существо-
вании классического решения указанной задачи при выполнении усло-
вий (7)–(9) в предположении, что функция G(t, x, v, q) ∈ C

ν
2
;ν

t;x,v,q((0, T )×
(−l, l)× R2) с некоторым показателем ν ∈ (0, 1) (см. теорему 1 в [12]).

Как известно [5], гладкая функция является вязким решением уравне-
ния тогда и только тогда, когда она удовлетворяет ему в классическом
смысле. Таким образом, классическое решение vµ задачи (11)–(13) яв-
ляется также и вязким решением той же самой задачи. Сформулируем
следующую лемму об аппроксимации [5], [8], имеющую место в теории
вязких решений, применительно к нашему случаю.
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Лемма 4. Рассмотрим задачу (3)–(5). Предположим, что существу-
ет семейство вязких равномерно ограниченных и равностепенно непре-
рывных, на любом компактном подмножестве области ΩT , решений
vµ задачи (11)–(13), причем выполнено условие (14). Тогда существует
непрерывное в ΩT вязкое решение v задачи (3)–(5) такое, что

v = lim
µ→0

vµ.

Для того, чтобы применить лемму об аппроксимации, достаточно по-
лучить равномерные по µ оценки Гельдера. Из лемм 1,2 мы получаем
равномерную по µ оценку Гельдера по переменной x:

|vµ(t, x)− vµ(t, y)| ≤ C0|x− y|α при t ∈ [0, T ], x, y ∈ [−l, l]. (44)

Из леммы 3 следует равномерная по µ оценка Гельдера по переменной t

|vµ(t1, x)− vµ(t2, x)| ≤ C1|t1 − t2|γ , γ =
α

max{2, p}
, (45)

x ∈ (−l, l), t1, t2 ∈ (0, T ). Таким образом, последовательность vµ класси-
ческих решений задачи (11)–(13) принадлежит пространству Cγ,α

t,x (ΩT ),
причем постоянные Гельдера как по времени так и по пространственной
переменной не зависят от µ. Из (44), (45), переходя к подпоследователь-
ности (оставляя те же обозначения), уже легко вытекает равномерная
сходимость vµ ⇒ v ∈ Cγ,α

t,x при µ → 0 на любом компактном множестве
области ΩT . Заметим, что из представления краевых и начальных усло-
вий в (12), (13) легко следует их равномерная сходимость при µ → 0
к начально краевым условиям (4), (5). Теперь уже, используя лемму об
аппроксимации, получаем, что v = limµ→0 vµ есть вязкое решение задачи
(3)–(5). Из полученных выше оценок вытекает, что v ∈ Cγ,α

t,x (ΩT ).

Замечание 1. Что касается вопросов единственности, отметим ра-
боты [3], [4] в случае G = 0, в которых было дано новое определение
вязкого решения, позволившего преодолеть проблему отсутствия мо-
нотонности дифференциального уравнения (3) по переменной v. Как
известно, в теории вязких решений монотонность дифференциально-
го уравнения по решению является ключевым условием, позволяющим
доказать теорему существования и единственности методом Ишии–
Перрона [7].
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