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Abstract: In this article, sufficient conditions are given for the
existence of a viscosity solution to the first initial boundary value
problem for the equation of porous media type with low order
terms.
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1 DBsgegeHue u OCHOBHBIE Pe3yJbTAThI

Paccmorpum ypaBaenue uibTparuu ¢ MAIIIMA I€HAMA
up = (U")ge + F(t,z,u,u) B8 Qp =(0,T) x (=1,1), m>1, (1)
VJIOBJIETBODSIIONIEE TPAHUIHBIM ycsioBusM Jupuxiie
u(t, =) = u(t,l) =0,
a TaKKe HAYAJIBHOMY YCJIOBHIO
u(0,2) = ug(x) >0, wug(—Il) =wup(l) =0,

rje dbyHKIMs Uy HenpepbiBHA 110 Lesibiepy ¢ nokasarenaem 1/m:
1
|uo(z) = uo(y)| < Clo —y|=. (2)
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Cnenas B ypasuennu (1) 3aMeny 1mepeMeHHBIX

m _

v=——u" 1,
m—1

MBI [IOJTy9aeM ypasHeHue (puabTpaiuu st gasjieans v(t, x)

2

vy = (m — Dovg, + v+ G(t, z,v,v,) B Qp, (3)

KOTOpoe y,H‘OBJIeTBOpHeT FpaHHquIM yCHOBI/IHI\J

u(t,—1) =v(t,1) =0, (4)
a TakyKe HAYAJILHOMY YCJIOBUIO
m _
v(0,2) = vo(z) = mu()” Ya), wo(=1) = wo(l) = 0. (5)
Bamerum, uTo u3 (2) BbITEKAET, YTO Vg (L) YIOBIETBOPSIET

() = 00(y)] < Colo —yf*, @ =", ()
m
¢ HekoTopoii nocrosinuoit Cy. 3uecy G(t, x,v,v,) = F(t,x,u,u,) Upu yka-
3aHHON 3aMeHe IepeMeHHbIX. B nasibHeiinem 6yeM paccMaTpuBaTh 3a1ady
(3)—(5), 1t KOTOPOI U JIOKazKeM CyIIeCTBOBaHUE Bsi3KOro 1o JInowcy pere-
HUSI.

VYpasuenuto (3) npu G = 0 mocesieHo 6oJibInoe KoaudecTso pabor. He
uMesi BOBMOZKHOCTHU IIPUBECTH MOJIHBI CIIMCOK COOTBETCTBYIOIIEH JIMTepaTy-
pbI, orMernM Juiib MoHorpadun |1, [13| n cebuiku B Hux. B ciayvae G = 0
ObLIM TI0JIYY€Hbl ONTHMAJIbHBIE PE3YJILTATHI O [VIAJKOCTH PEIIEHHI 110 IIPO-
CTPaHCTBEHHON MepeMeHHO# Kak 3ajsiaun wpuxiie, Tak u 3agadun Komu. B
[EePBOM CiIyuae Oblia J0Ka3aHa HeIPEPBIBHOCTH PelleHns 1o [ebaepy ¢ mo-
KasaTeJeM —, BO BTOPOM — HeIIPepbIBHOCTD pellieHus 110 ['elbJepy ¢ HoKa-
3aTeneM — .

Hamum onpesiesienne Bsizkoro pernenus 3agaqu (3)—(5) caemys [14] (cwm.
taxke [5], [10]).

Onpegesienue 1. Bydem 2060pumb, 4mo HenpepuleHai, HeompuyamenbHas
Pynryus v(t, x) Aeasemea easkum cybpewenuem (cyneppeweruem) 3a0a4u
(3)-(5), ecau
v(t,—1)=0(=>0), wv(t,l)=0(>0),
v(0,2) < vo(x) (> vo(x)), =€ (=11),
u s moboti pynxyuu ¢(t, ) € CH2(Qr) u mouex (t, ), (to, o) € Qr, daa
KOMOPHLT

U(t, l‘) < ¢(t7x) ( > ¢(t7x))7 U(to,ajo) = Qf)(to,x()),

B8blMOSAHAETNCA
(to,z0)

Baskum peweruem 3adauu (3)—(5) asaaemes nenpepuienas, HEOmpuyamens-
nas Pynryus v(t, ), Komopas 00HOBPEMENHO ABAAEMCS CYb- U cyneppewe-
HUEM.

<0 (>0).
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OCHOBHBIM PE3YJIBTATOM CTATHU SIBJISETCS TEOPEMa, CYIIIECTBOBAHUS BSI3KO-
ro permtenusi 3aga4an (3)—(5) (eM. reopemy 1) B ciiydae, Korja mnpapasi 4acTh,
B YaCTHOCTH, MOYXKET UMETh ITPOU3BOJIbHBIN MOJMHOMUATBHBIN POCT 10 IPO-
MU3BOJHOI OT pererust. KpoMe Toro, mokasaHa HENPEPBIBHOCTH PEIEHUS 110
lenbepy mo nepemenHoii = ¢ nokasaresieMm a (cMm. jgemmy 2). C.H. Kpyxko-
BbIM [9] ObLT MOJIyUeH pe3ysIbTaT O XapaKTepe HelPEPLIBHOCTHU 1O ¢ PellleHust
JINHEHHOTO TIapabOIMIECKOTO yPABHEHHS, €CJIM alpUOPU H3BECTEH MOJLYJIb
HEIPEPBIBHOCTHU 0 ITPOCTPAHCTBEHHBIM IIEPEMEHHBIM. BBLIO JoKa3aHo, 1To
HEINPEPBIBHOCTD PEITeHus 110 [e/ibJIepy 110 IepeMeHHON & JIMHEHHOTO ypaBHe-
Hus ¢ nokazaresieM o € (0, 1], Bjaeder HenpepbIBHOCTD pertienus 1o [esibiepy
1O IepeMeHHoii ¢ ¢ nokasarenem 7. Ilokasaress nenpepbsrocTy 10 lenb-
Jiepy 10 nepemenHoii ¢ 6but yaydmen b. Twiguarom [6], rae 6bu10 q0Ka3aHo,
4TO OH paBeH §. B yiemme 3 Mbr 06061 pesynbrar Kpyxkosa—I'uiqunra
Ha CJIydJail, KOT/la B yPABHEHUM IIPUCYTCTBYET IIPaBasi 9acTb HeJIMHEHHAsT 110
[IPOU3BO/IHOM OT perteHusi. OTMETUM, ITO B CJIydae, €CJIN €CTh OIEHKA MAKCHU-
MyMa, MOJIYJIs TpajeHTa pelrenusi, pesyibrar Kpyxkoa-['unagunra moxer
OBITH TIEPEHECEH U Ha KBa3WjIMHelHble ypaBHeHus. Ho, kak yxke O6bLIO OTMe-
YEHO BBIIE, TAKON [VIAJIKOCTBIO pellleHus ypaBHeHus Buja (3) He ob/iajaror.

JlokazaTebCTBO TEOPEMBI CYIIECTBOBAHNUS BA3KOIO peleHus 3a1a9u (3)—
(5) mpoBeIeM MEeTOIOM peryJ/IspU3allni HCXOHON KpaeBoii 3a1adu. B cBs3u ¢
9TUM, oTMeTUM paboTsl 2], [11], B KOTOPBIX GBLIO JTOKA3aHO CYIIECTBOBAHUE
BsI3KOr0 perrernsi B ciaydae G = G(u) TakKe ¢ MOMOIIBIO PEryJIsPH3aIliH.

[Tpeanonoxum, aro B (3) dyukuus G yaoBaeTBopsier

G(ta Y, ZlyQ) - G(t,$, 22, Q) > 07 (7)
G(t,l’,Zl, _q) - G(tvysza _Q) >0 (8)

upu t € [0,7], =l <y <x <, 21 < z2, ¢ > 0, & TaKXKe yCJIOBHUAM
G(t,z,2,q) <0, 2>0,q€R;  G(tz,20)=0, (9)

upu = € [—1,1], t € [0,T]. Ilpusenem npocroii npumep dyukiuu G, yaoBie-
tBopsttorneit (7)—(9):

G(t,(]}, 27Q) - f(t’ z)g(t7Q)7

rae g(t,q) > 0 as soboro g, g(t,0) = 0, a f(t, z) — HeBO3pacTaIas 1o 2
dyukus u rakas, aro f(t,z) >0 mpu z < 0.

st Toro, 9TobbI J0KA3aTh CyNIECTBOBAHUE BSI3KOT'O pelleHus 3aaaqu (3)—
(5) ¢ HOMOIIBIO TPEJIEJILHOTO [IEPEX0/1a, HEOOXOAUMO MOJIYYUTH PABHOMEPHBIE
OTHOCHTEIHHO TapaMeTpa peryIsapu3alyn oneHKu [enbaepa pemennii pery-
ngpu3oBannoil 3amaun. [Tonydenne omenkn lenbiepa 1o BpeMenn Gasupy-
eTcst Ha yIIOMSIHYTOM BbIlIe 0000mennn pesysnbrara KpyzKkosa-I'miaunra.
B cBs13u ¢ atum Oymem mpemmosaratb, 9To (G YIOBIETBOPSIET CJIEAYIOIIEMY
HEPABEHCTBY MO NMEPEMEHHOI ¢

G(t,x,2,q)| < ro(1 +[ql?), 10
pchax NG,z ) < Ro(1+ 1gf?) (10)
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€ HEKOTOPOH MOCTOSIHHON Ko 1 KakuM-ubo dbukcuposanubiM p > 0. Chop-
MyJIIDYEM Tellepb OCHOBHOI PE3y/IbTAaT HACTOSIIEH CTATHU.

5.8.6.8
Teopewma 1. [Ipednonosicum, wmo dymryua G(t,x,z,q) € CZ; " ((0,T) x
(=1, 1) xRxR) ¢ nekomopum noxazamenem 3 € (0,1) u svinoamens, yciosus
(7)—(9), (10). Tozda cywecmsyem saskoe pewenue v(t,x) sadawu (3)—(5)
makoe, 4mo

-1
[ot,2) = o(ty)| < Cole —y|*, a="—x, zye[-L1, te0,T]

(6%
e —— a
max{2,p}

20e nocmoannaa Coy uz (6), nocmoannaa Cy 3asucum auws om Cy, Ko, L, a, p
u d(z) = min{|z — |, | + |}

[o(ty, z)—v(ty, x)| < Chlt1—t2]?, v= e (-L1), t1,t2 € (0,T),

Cratbst CTPYKTypHUpOBaHa cieaytormuM obpasoM. Bropoii maparpad mo-
CBAIIEH MOJIYYEHUIO allpUOPHBIX OICHOK PElICHUs] PEeryIdpu30BaHHON 3aja-
9M, HE 3aBUCAININX OT IapaMeTpa peryidpusanuu. B Tperbem mnaparpade
IIPUBOJIUTCS JIOKA3aTEIbCTBO TEOPEMBI 1.

2  AnpuopHble OIleHKU pelieHus Peryjasspu30BaHHOI 3a1a4u

Jns1 mokasaTesbeTBa TeopeMbl 1 MbI CTPOUM IIOCTIE0BATEILHOCTD KIIACCH-
YeCKHUX PeIIeHNit v, CIIeyIOIIeil Peryaspu30BaHHoOll 3a/1a4n, T1ie ypaBHEeHHe
(3) ocraercst HenM3MEHHBIM

v = (m — 1) v vuze + Ufm +G(t,x,v4,v02) B O, (11)
KpaeBble yCJI0BHs (4) 3aMEHSIIOTCST YCIOBHIMI
vu(t, =) = vu(t, 1) = p >0, (12)
a HadaJIbHOE ycsioBue (5) IPUHIMAET BUJ
v (0, ) = vou(x) = p,  vou(£l) = p, (13)

rae GyHKus vgy, () — raagkas GYHKINS yI0BIETBOPSIONIAS COOTHOIIEHUM
[vou(z) — vou(y)| < Colz — y[?,

l[vop () — vo(@)|lce(—1) — 0 mpu  p— 0. (14)

Hagum mjist ymobcrBa yuTaTelis Olpe/iesIeHre KJIaCCUIeCKOro PeleHns 3a,/1a-

u (11)-(13).

Omnpenenenne 2. Oynxuyuro vy, (t,x) € (Ctlg(QT) NC%(Qr), ydosaemesopaio-

wyro ypasuenuto (11) 6 xaorcdoli mouke obaacmu, a Mardice HANANLHO Kpae-
svim yeaosuam (12), (13), nonumaemovim nomovewno, 6ydem nasv6amv Kaac-
cuveckum peweruem sadavu (11)—(13).
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B srom naparpade Mbl MOJIYyYUM PABHOMEPHYIO IO [i OIEHKY MaKCHUMyMa
MmoyJist pemennii 3agaun (11)—(13). Tak:ke moayduM paBHOMEDHYIO 10 fi
OlleHKY [esibjiepa 3THUX Ke PEeIIeHuii.

Pacemorpum 3amaay (11)—(13) u, mjist IpOCTOTHI, B JAJIbHEHAIIMX BBIKJIAI-
KaX OIYCTHM [t Y QYHKIUK Uy, m0J0KHUB v(t, ) = vu(t, x), vo(x) = vou(x).
B noBeix obosnavennsx 3agada (11)—(13) npurnmaer Bug

ve = (m — Dovge + 02 + G(t,z,v,v,) B Qr, (15)
o(t, =) =v(t,l) =pn >0, (16)
v(0,2) = vo(z) > p, wvo(l) = p, (17)
re vo(x) — riaakas HyHKIEs, YA0BIETBOPSIONAs COOTHOIIEHHIO
lvo(@) — vo(y)| < Colz —y|, (18)

rie nocrosiaaasi Cy uz (6). JlokazkeM CIIeyIoILyo JIeMMy.

Jdemma 1. Jlas 106020 kaaccuueckozo pewenus zadavu (15)—(17) 6 Qr
BEPHDL OUEHKU
< ’U(t,l‘) < CO(Z - x)a + (19)
W< o(t,x) < Coll + 2)° + . (20)

Jloxazamenvcmeo. 3aMeTuM, 4TO JIOKA3aTEJBCTBO JIEBONO HEPABEHCTBA B
(19), (20) BBITEKAET M3 IPUHIUAIIA MAKCUMYMa, IPUMEHEHHOTO K 3ajate (15)—
(17).

Pacemorpum dyukmuio h = Co(l + )%, |x| < . HanommmM, 9ro a =
m=L ~ (. Jlerko Bumers, aro h' > 0, h" < 0. Oyukmuus h yIOBIETBOPSIET

ygaBHeHHm
(m — 1)hhgy — hy = —h2, (21)
B 1o ke Bpems u3z (15) caexyer
(m — 1) vvge — vy = —02 — G(t, 2,0, 0,), (22)

oTKy/1a, BeauTast (21) nz (22), mia dysxmn
w(t7$) = U(t,(L’) - h(l + ‘T) — My

HOJLy 9aeM
Lw = (m — 1)vwyy —we + (m — Dhyw =
h2 —v2 — pu(m — Dhge — G(t, z,0,v,) > h2 — 02 — G(t,z,v,v,).  (23)
[Ipe/onozkum, 9o HbyHKIUsS W JOCTUTAET MOJIOKUTETHHOTO MAKCUMyMa B
nexoropoit Touke (tg,r9) € Qr \ I'r, tme I'r — napabosmueckasi rpanuia
obiactu Qp. B Touke (tg, o) BBIIOJIHEHBI COOTHOIIECHNUSI

w>0, W <0, w>0, v>0, hg <0,

9T0 BjedeT 3a coboil HepaseHcTBO Lw (to.20) < 0. B 1o ke Bpems, B TOU-
to,zo
ke (to,xo) umeem w; = 0. OTKyja, ucnouan3ys (9), BbITEKaeT, 9YTO B TOUKe
(to, o)
v>h, vy=hy vi=h3 G<O0.
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Taxkum obpaszom, u3 (23) mosxydaem

= (m — 1)vwg, + (m — 1)hgw —w > 0.
(to.00) ( ) ( ) -

DTO HPOTUBOPEUUT TOMY, YTO (DYHKIHSI W JOCTUTAET [OJOKUTEIHHOIO MaK-
cumyma B (tg, z0) € Qr \ T'r.

Pacemorpum w nva I'p. 3amernm, 4TO M3 COIVIACOBAHHOCTU I'PAHUYHBIX U
HAaJyaJbHBIX YCIOBHI paccMarpuBaeMoil 3ajaun, BbiTekaer v(0,—1) =
vo(—1) = p, orkyna npu t = 0 umeem

w(0,2) = vo(x) = (I + )" — p = wvo(x) —vo(=l) = (I + )" <0,
B cuty (18). Ilpu o = 4l nomyvaem
w(t,—1) =0, w(tl)=—h(2l])<O0.
CetoBaTE/IBHO,
v(t,z) <h(l+2)+p=(10+2)*+p.
Paccmorpum reneps dyHKIHIO
w(t,x) =v(t,x) — h(l — z) — p.

[Ipumensist K PYHKIUT W JTOCJTOBHO BCE PACCY2K/I€HUsI, KOTOPBIE OBLIN IPOBE-
JIEHBI BBIIIIE JIjist (DYHKIUU W, JIETKO MOKA3aTh, YTO OHA HE MOXKET JOCTUTATh
HOJIOXKUTENLHOr0 Makcumyma BHyTpu Q7 \ I'p. Ouesuzo

w(0,z) =vo(x) — ( —2)* — p=vo(x) —vo(l) — (I —2)* <0.
ITpu z = £I nonyuaaem w(t, —1) = —h(2l) <0, w(t,l) =0, ciemoBaresbHo,
v(t, ) <h(l—z)+p=(10—-2)"+p.
O
JloKazKeM Tereph CJIEAYIONLYIO JIEMMY.

JIemma 2. ITyemw swvinoanens yeaosus (7)—(9). Tozda das 06020 Kaaccu-
weckoz0 pewenus 3adavwu (15)—(17) sepra ouenka

lu(t,x) —v(t,y) < Colz —y|* Odaa scex x,y € [—1,1]. (24)
Jlokasamenvcmeo. Paccmorpum ypasuenue (15) B roukax (t,x) u (t,y)
ve(t, ) = (m — Dv(t, ) vee(t, ) + 02t 2) + G(t,z,v(t, ), v.(t, ), (25)

Ut(t7 y) = (m - 1)U(ta y)vyy(t» y) + UZ(ta y) + G(t7 Y, U(tv y)a Uy(ta y)) (26)
Beraurast (26) u3z (25), noayuanm, 910 DyHKIHS

V(t,z,y) =v(t,x) —v(t,y)
YAOBJIETBOPLAET CJIEAYIONIEMY COOTHOIIIECHUIO

LV =(m—-1)v(t,z)Vee + (m — Do(t,y)Vyy — Vi =

Ui(t’y) - U:%(tvx) + G(taya U(ta y)vvy(tay)) - G(tvxvv(tvx)vvx(ta x))
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[Ipeamnosioxkum, uro x > y u paccmorpuM byukiuo h(z —y) = Co(x — y)<.
3amerum, 9TO

how = 0", hyy=h", hy="hn, h,=-N.
OTKy/a BBITEKAET, ITO

Lih(z —y) = (m — 1)v(t,x)hes + (m — D)v(t,y)hyy — he =
1 1

1-1 1-1 1-1
Tah,QU(t,SL') + Tah/2v(ta y) = Tah,Q(U(t7$) + U(tay))'

s pasaoctu W =V — h 6yaem nmeThb
LW = (m — Dv(t,2)Wae + (m — Dv(t,y)Wyy — Wy =

U;(tay) - U%(t’x) + G(t,y,v(tjy),vy(t,y)) - G(t’xvv(t’x)’vx(tvx))_
1

1_Tah’2(v(t, z) + v(t, y)). (27)

Paccmorpum dyuknuio W B obsractu
P={(t,z,y): 0<t<Ty<uwz|z| <l |yl <l}.

Ipenmonoxum, aro W mOCTHraeT CBOEro IIOJIOXKHTEJILHOIO MAKCHMYyMa B
nexoTopoit Touxe (tg, zg,y0) € P\ T, tne I' — nmapabonmyeckas rpannma P.
Torga B sToit Touke Wy (to, o, y0) = Wy(to, zo,y0) = 0. Kax crencrsue,
nostydaeM vz (to, o) = vy(to,yo). Ormernm takxke, aro W(ty, zo,y0) > 0,
9TO BJIedeT 3a coboit v(ty, zg) > v(tg,yo) > 0. YIuThIBasi BHIIIEN3I0KEHHOE,
a takxke (7), moayvaem u3 (27)

Lw = v2(to, y0) — v (to, z0)+
(t0,r0,y0)
G(to,yo,v(to, yo), h' (o0 — o)) — G(to, zo, v(to, zo), b’ (x0 — yo))—
1-41
. a prm _ ¢ " 5
70 — 70) (zo — o) (v(to, T0) + v(to, y0)) > 0 (28)

nockosibky 1 — 1/ < 0. C s1pyroii CropoHbI B TOUYKE HOJIOKUTEJIHLHOTO MaK-
cCUMyMa
nw = (m —Lo(t,x)Wee + (m — Do(t, y) Wy, — Wy <0,
(to,o,y0) (to,0,y0)
qro nporuBopednt (28). Takum obpasom, dyukiws W HE MOXKET JOCTUTATDH
[TOJIOYKUTEJIBHOTO MAaKCUMyMa BHYTpu P.
Paccmorpum teneps W na I'. Ilpu t = 0

W(0,2,y) = vo(x) — vo(y) — h(z —y) <0,
B cuity (18). U3 jieMMbl 2 BBITEKAIOT CJIE/IYIOIIHE J[BA HEPABEHCTBA
W(tly)=p—v(ty)—h(l—-y) <0, t€(0,T), yel[-L1],
W(t,z,—l) =v(t,z) —pu—h(z+1) <0, te(0,7), ze€l[-1LI].
N3 tpex mocseauux HEPABEHCTB MOy YIaeM, 9TO

Wi_<0
P
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u, KakK CJIeiCTBHE,
o(@)—v(y) <hz—y) v P. (29)

Ananornano, Berauras (25) u3 (26), s W = v(t,y) —v(t,x) — h(x —y)
OyJieM UMeTh

Ll/W:(
umy—v@yy+G

V(t, @)W + (m — 1)o(t, y) Wy, — Wy =
t,m,v(t, x),v.(t, ) — Gt y,v(t, ), vy(t,y))—

1)
(

1

h —ap(u(t,z) +v(t,y)) B P. (30)
Tpeonoxum, uro W JIOCTATAET CBOETO TMOJIOKUTETHHOTO MaKCHMyMa B
HeKoTOpoit Touke (t1,z1,y1) € P\I'. Torma vy (t1,z1) = vy(t1,y1) = —h'(z1—

y1) < 0. Ormernm Takxke, aro W (to, xo,yo) > 0, aro Bieder 3a coboit 0 <
v(to, o) < v(to,yo). YIUTHIBAS BBINIEN3IOXKEHHOE, a Takxke (8), mosydaeMm

3 (30)

LW = va(t1, 1) — v (t1, 1)+
(tlvwlzyl)
G(th X1, U(tl, xl)a —h/(iﬂl - yl)) - G(tb Y1, 'U(tl, yl)a _h/(xl - yl))_
_ 1
. p?(py — t1, t1, > 0. 31
Iz — o) (1 —y1) (v(t1, 1) +v(t1,y1)) (31)
C apyroil CTOPOHBI, B TOYKE MOJOKUTEILHOTO MAKCAMYMA,
Llw =(m— 1)0(75,9;)@96 + (m— l)v(t,y)wyy - Wt <0,

(tlvajhyl) (t17$17y1)

qro nporuBopeunt (31). Takum obpasom, dyukims W He MOXKeT JOCTUTATH
MTOJIOZKUTEIHLHOTO MaKCuMyMa BHyTpu P.
Pacemorpum teneps W na I'. Ilpu t = 0

W(0,2,9) = vo(y) — vo(x) — h(x —y) <0,
B cuity (18). 13 JleMMBbl 2 BBITEKAIOT CJIe/IyIOINE J[BA HEPABEHCTBA
W(t,ly) =v(t,y) —p—h(l—y) <0, te(0,T), yel-LI,
W(t,a,—1)=p—v(t,z) —h(z+1) <0, te(0,T), =€l

s TpexX IMOCJACTHUX HEPaBEHCTB BBITCKaET

o~

wWi_<0
P

U, KaK CJIeJICTBHE,

v(y) —v(z) <h(r—y) B P. (32)
3 (29), (32) BbITeKaer

[vo(z) —v(y)| < h(z—y) B P

B cuny cumMerpun mepeMeHHBIX T U ¥, CJIydall * < Yy UCCIIeyeTCs aHaJo-
ruaHo. B pesynbrare MBI TOTydYaeM

[v(z) —v()| < h(lz —y|) = Colz —y/|*
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upu t € [0,T], |z| <1, |y| <. Onenka (24) nokasana. O

[Tepeiimem Temepb K J0KA3aTEIbCTBY JIEMMBI, KOTOpasl sIBJIsSeTCsi 00001IIe-
nueM pesyibrata KpyxkkoBa—['miinunara, yIOMsSHYTOTO BO BBEICHUN.

JIemma 3. Jlas 106020 Kaaccuveckozo peuenun v 3adavwu (15)—~(17), ydo-
saemsoparouwezo (10), (24), umeem mecmo oyerka

(0%

[v(t1, @) — v(te,2)| < Cifts — to|", v = (33)

max{2, p}’
x € (=11), t1,t2 € (0,T), 20e Cy zasucum om Cy, Ko, l,a,p u
d(z) = min{|z — 1|, |z + |}

Jlokazamenvecmeo. PukcupyeMm HEKOTOPYIO TOUKy (to, To), rue to € [0,1 —T],
¢ HekoropbiM 0 < 7 < T u z¢ € (—1,1). Paccmorpum napaJsuienemnumes

= {(t,l‘) e (to,to +7—)’ S (JIO 7/),1704“[))},
riae 0 < p < d(xp) = d. Obosnaunm uepes

s= max |v(t,zg) — v(to, zo)|.
tE[to,to-‘rT]

Bamernm, uro seMMa 1 (IIpH JI0OCTATOYHO MAJIbIX [i) JIA€T OIEHKY

maxv < Col* +1 = M,
Qp

Hamee mIst onpeeIeHHOCTHA CIUTAeM p > 2.
TTonoxkum

2s
)‘(pa S) = Kﬁ + Ko,

rie p, ko — nocrostanble u3 (10), a mocrosianast K yaoBiaeTBopsieT

K > (m+3)MIP2 4 ko(4M)P~1 > 0. (34)
Brenem dbyukimm
S
Bu(t.0) = olta o) + |Cap™ + (¢~ ) 5) + (o = 02,

s

s
02(t,x) = ’U(to, xo) — I:Copa + (t - to))\(p, S) + —2(36 - $0)2:| .
N3 geMMBbl 2 BbITEKaeT
|v(t0,x0) — U(to,l’)‘ S C()pa.
Otkyna
s
01(to, x) = v(to, z0) + Cop™ + ?(l‘ — x0)? > v(to, x0) + Cop® =
v(to, o) — v(to, ) + Cop™ + v(to, z) > v(to, T).
Hastee ipu |z — 9| = p numeem

01 (t, ) = v(to, z0) + Cop™ + (t — to)A(p,s) + 5 >

lz—zo|=p
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v(to, xo) + Cop™ + s = v(t, ) + (v(to, xo) — v(t, o) + s)+

|z —wo|=p
(U(tva) _U(ta 1')) +COPa > ’U(t,l‘) :
lz—2o|=p |lz—0|=p
Takum obpazom,
01(t,x) > v(t,z) Ha mapaboimdeckoii rpanuie obmactu II.  (35)

Paccmorpum stmneitnbIit onepaTop

0 0?
=——-(m-1)v—.
( L
Ouesnno, L(01) = A(p,s) — (m — 1)11/2)—3. st 6 = 6 — v, nonydaem
~ ~ ~ 2s 2
L(0) =0y — (m—1)vb, = Np,s) — (m — 1)1}; —v; — G(t,z,v,05). (36)
IIpenonoxkum, 4To B HEKOTOpOii Touke (fo,Zo) € I dbyukmus  mocruraer
OTPHIATELHOrO MUHIMYMa. Torja B 9TOi TOUKe MbI HMeeM

2s -
= —(Zog — xg) — vz(tg,xg) = 0,
- M(O 0) — va(to, To)
éa:x(t~07‘%0) Z 07 ét(f()v:iO) S 07

U, KaK cjaeacTBue paBeHcTBa (36), mosydaem, 9To

z| - =01z — Vg

7 = )‘(pv 5) - (m - 1)@(50,570)3;—

(to,%o)

2s 2 ~ ~ _ . 25,
<pz($0 —560)) -G <to,$o,v(t07$0),p2($o —fBo)) >

0, — (m — 1)U(§m

2s 2s 2s 2

K= 4 kg—(m—-1)M= — < gzo—a:()) -

> (m = )M =5 = ( (0 = w0)
I - _ . 25 _

G t(), o, ’U(to, .’L‘o), ?(1'0 — JZ()) . (37)

3aech Mbl ucnoab30Baal TO, 4T0 v < M u A(p,s) = K% + ro. Uz (10)
CJIEJIyeT 9TO

=28, 25 _ P
G(to,.fo,’l)(to,l’o),?(l'o —SC())) <Ky |1+ ?"’L’O_.I(ﬂ . (38)

Us (37), (38), yaursiBasi, uro |Tg — o] < p < I, s < 2M, nosryuaem

~ 2s 25 25\ 2 25\P
L0 >K——(m—-1M——-—(—) —& - =
D = o = Mo (p) 0(0)
2
p% (K — (m —1)MpP=2 — 2spP~2 — ko (2s)P 1) >
2s

s (K — (m —1)MIP~2 — 4AM1P~2 — ko(4M)P~1) =
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2
= (K = (m+3)MIP™? — sg(4M)P™1) > 0, (39)
p

B cuty (34). YTo HEBO3MOXKHO B TOYKE OTPHUIATEIBHONO MUHIMYMA.

B cayuae, xorgpa p € [0, 2] HAIO MOJOKUTH
A(p,s) = Ki + ko, (40)
rje nocrosuHas K BbiOpaHa Tax, 4To
K > (m+ 3)M + ro(4M)P~H27P. (41)
Tora nepasencTBo, anasorndnoe (39), Oyger uMeTh BUJ

2s 2s 2s
>KZ _(m-1)MZ - (22 2 =
)(io,fco)_ p? (m=1) p? < > (P)
>

L0

§
02

2s 19—
2 (K — (m —1)M — 4M — ko(AM)P~127P) =

(K —(m—1)M — 2s — Ko(2s)P™ 1P2 p)

2s

2

P
B cuity (41). Takum obpazom, dyHKus  He MOXKET JOCTHIATH OTPHUIIATE b
HOTO MUHHMYyMa B Touke (tg, Zo). [Ipunnmas Bo BuuMamnme (35), MBI 3aKJIIO-

qaeM, 9TO

(K — (m+3)M — ko(4M)P~11*7P) > 0,

01(t,x) > v(t,z) B IL
AHATOTUYIHO TIOJTyvIaeM HEPABEHCTBO
Oa(t,z) <wv(t,z) B IL

OTkyna yKe cpa3y BBITEKAET, ITO

S
[o(t, ) — v(to, zo)| < Cop™ + (t —to)A(p, s) + ?(:E — 1),

lv(t, zg) — v(to, zo)| < Cop® +TA(p,s), T=1—to.
CemoBaTe/IBHO,

s= max |v(t,zg) — v(to, x0)| < Cop™ + 7 (p, 9)
tE[to,t0+T]

U 9Ta OlleHKa MMeeT MecTo s Jsiroboro p € (0,d]. Ilpu p > 2 nmeem
Cop® +7A(p,8) = Cop® +7 (2Ksp™P + ko) < K [p*+7(1+sp7P)],

re K = max{Coy, M, 2K }. Takum 06pa3oM, MbI TI0JIydaeM CJIeyroliee Hepa-
BEHCTBO _

s<K[p*+71(1+sp7P)]. (42)
ITycts 7 < d*tP (2M) . Ouesusmo,

(rs)a < (r2M)+s <d
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1
(nanomunmM, uro s < 2M). Crenosaresbho, u3 (42), njs p, = (7s)e+r mo-

JIygaem

s< K [pff + 7+ Tsp;p] =K [(7‘5)(1%rp + 7+ 75(75)%} =

K |:T + 2(7’8)%“} . (43)
Paccmorpum nBa coydas: 7 < (TS)O‘L*P uT > (TS)O‘L*P. B nepsom caaydae u3
(43) MbI HOSTygaeM
s < SIN((TS)%W,

OTKYyIa
a+p

s< (3K) 7 5.
Bo Bropom cityuae uz 7 > (7s)atr ciaemyer, 9To
s < Ta < T%

an/I0<T<1,TaKKaK§>%.

I[Tpenonioxkum Tenepb, uro 7 > d*TP (2M )_1. Torma

2M o atp ot a
|U(t0 +T,x0) — ’U(to,.’L‘o)‘ <2M = —717 < (QM) de PpaTP_
TP

Jlerko BuzeTs, uTo B ciaydae p € [0,2] u Boibope dyukmun A(p,s) u3z (40),

nokazarejib L'esibjiepa 110 nepemenHoii ¢ Oyjier pasen 5.
Taxkmm 06pa3oM, MbI JOKa3aJId, ITO IMEET MECTO OleHKa (33) ¢ MOCTOsH-

noit C'
! atp _ otp ~ a+tp
Clzmax{l,(ZM) pod " ,(3K P )}

3 /loka3aTejbCTBO TeopeMbl 1.

Bosspaiasicb K IpexKHUM 0003HAYEHHAM U = Uy, PACCMOTPUM 3aJady
(11)-(13). Bamernm, 4yro npu BeoaHEeHNH yciaosust G(t,x,v,,0) = 0, ms
m0boro Kiaccuaeckoro pemrenns 3aga4n (11)-(13) umeer mecTo onenka vy, >
{, 9TO MO3BOJISIET [IPUMEHHUTDH PE3YyJIbTAThI, Oy YeHHble B [12], 0 cymecTBO-
BaHUM KJIACCUIECKOIO PEIIeHMs YKa3aHHO 3aJa41 IPU BLIIOJHEHUH YCJIO-

v.

Buit (7)-(9) B upennosnoxennu, uro byukuus G(t, z,v,q) € EQ’EITU’(I((O,T) X
(—1,1) x R?) ¢ mexoropbim mokazatesem v € (0,1) (em. Teopemy 1 B [12]).

Kak n3Becrno [5], riiajkas GyHKIHs SBASETC BI3KIM PEIICHUEM yPaBHE-
HUSI TOTJIa M TOJIBKO TOTJIA, KOIJIa OHA YJOBJIETBODSIET €My B KJIACCHIECKOM
cmbicste. Takmm o6pasom, Kiaccudeckoe perrenne vy, 3ajgaqan (11)—(13) .-
JIsIeTCsl TAKZKe ¥ BsI3KUM pellleHreM Toif ke camoii 3azaun. Chopmysmmpyem
cJlelyoIyio jieMMy 00 armpokcumMarmu |5, [8], umeroniyo Mecto B Teopun
BSI3KUX PEIIeHNil, TPUMEHUTENHHO K HAIIEMY CJIyYalo.
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Jlemma 4. Paccmompum 3adawy (3)—(5). Ipednonostcum, wmo cywecmsy-
em cemeticmeo 8A3KUL PASHOMEPHO 02DAHUMEHHLT U DABHOCTNENENHO Henpe-
DOIGHBIT, HA AI0O0M KOMNAKMHOM 1n0dMHodCecmee obaacmu Qp, peuenudi
vy 3adavu (11)—(13), npuvem svinoaneno ycaosue (14). Tozda cywecmsyem
nenpepwvishoe 6 Q eazkoe pewenue v 3adavu (3)—(5) maxoe, wmo
v = lim v,,.
pn—0

st Toro, 9To6bl IPUMEHNTD JIEMMY 00 allpPOKCUMAIIH, JOCTATOTHO 110~
JIyYIUTh paBHOMEDHBIE 110 i oleHKH [esbiaepa. 13 jmemm 1,2 Mbl nostydaem
PaBHOMEPHYIO 110 {1 OIeHKY [esibiiepa 1o mepemMeHHoI x:

lou(t,z) —vu(t,y)| < Colr —y|* mpm te€[0,T], z,ye[-l1. (44)
3 nemMbl 3 cielyeT paBHOMEPHas 10 j4 olleHKa [eibepa 1o nepeMeHHoil ¢

v (t1, @) —vu(te, 2)| < Crlty — 2|7, v = (45)

e
max{2, p}’
x € (=1,1), t1,t2 € (0,T). Taxum 06pazom, OC/IEIOBATETLHOCTD vy KJIACCH-
geckux perrenmit sajaan (11)—(13) nprmaesxur npocrpanctsy Cl (Qr),
[pUYeM IIOCTOsTHEBIE ['esibjiepa Kak 110 BpeMEHHU TaK U 110 IPOCTPAHCTBEHHO
HepeMeHHOl He 3aBuCAT OT . 13 (44), (45), nepexo/is K MO/IIOCTIe0BATE b
HOCTH (OCTaBJIsAsl Te Ke 0DO3HAYCHHsI), y’Ke JIETKO BBITEKACT PaBHOMEPHAsI
exovoets v, = v € ClyY mpu g — 0 Ha T0G0M KOMITAKTHOM MHOZKECTBe
obaactu p. 3aMeTuM, 4TO U3 IPeJICTABIEHHs] KPAEBbIX U HAYAJIbHBIX YCI0-
Buit B (12), (13) Jerko ciefyer ux paBHOMEpHasl CXOAUMOCTH 1pu p — 0
K HavyaJbHO KpaeBbIM ycioBusiM (4), (5). Teneps yxke, ucnomnbsyst gemmy 06
AIIPOKCHMAIINH, IOJIydaeM, 9To v = lim,, 0 v, €CTh BsI3KOE PeIeHne 3a,/[atdn
(3)-(5). M3 mosy4enmpIx Bpime oneHok Berexaet, uro v € C1Y (Qr).

Bameuanue 1. Ymo xacaemcs 60npocos eQUHCTNEEHHOCTIU, OTMMEMUM Da-
oomu 3], [4] 6 cayuae G = 0, 6 Komopwx Gviao darno Hosoe onpedenenue
BA3K020 PEWEHUA, NO360AUBUWE0 NPEOJOALTL NPOBAEMY OMCYMCTNEUSs MO-
nomonnocmu Jugdeperyuarvrozo ypasrenus (3) no nepemennotl v. Kax
U3BECMHO, 6 TNEOPUU BAZKUL PEWEHUL MOHOMOHHOCTL JuPdeperuuarvHo-
20 YPABHENUA MO PEWEHUI ABAACMCH KAOUEBLM YCAOBUEM, NO3E0AAIOULUM
dokaszamv meopemy cyuecmeosanus u eduncmeernocmu memodom Huuu—
Ieppona [7].
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