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Abstract: In the literature, five families of optimal circulant
graphs of degree four with a rectangular L-shape of tessellation
of graphs on the plane Z2 are known. The rectangular (mesh-
connected) pattern of tessellation of the graph of intermodular
connections allows an efficient arrangement of chips in networks on
a chip – with a minimum number of intersections of connections
and their minimum length, independent of the number of nodes,
and also an optimal algorithm for finding the shortest paths in
terms of the number of operations. In this paper, a new method for
obtaining families of circulants with given scalability and optima-
lity properties is found. Six series of new infinite families of optimal
circulant graphs of degree four with a rectangular L-shape of laying
graphs on the plane and a minimum diameter are obtained. The
domains of existence of such series are considered. Analytical for-
mulas for specifying the parameters of laying families of graphs
on the plane are found, which can be used in organizing routing
algorithms in networks-on-chip.
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1 Введение

С развитием технологической базы наряду с применением циркулянт-
ных графов в различных областях информатики [1, 2, 3, 4, 5] и теорети-
ческих исследованиях [6, 7, 8] актуальным становится их использование
в качестве топологии сетей на кристалле (networks-on-chip) [9, 10, 11].
Эта тенденция обусловлена их лучшими структурными показателями
при большом количестве узлов, такими, как диаметр, среднее расстоя-
ние и высокая масштабируемость, по сравнению со стандартными то-
пологиями сетей на кристалле (решётками, двумерными торами, ги-
перкубами). Дадим определение циркулянтного графа степени четыре.
Пусть N, 1 ≤ s1 < s2 < N/2 – целые числа. Неориентированный граф
C(N ; s1, s2) с множеством вершин V = {0, 1, . . . , N − 1} и множеством
рёбер E = {(i, j) : i − j ≡ ±sm (mod N),m = 1, 2} называется цир-
кулянтным графом (циркулянтной сетью) размерности два, множество
{s1, s2} – образующими графа, N – порядком. Циркулянт связен, если
(N, s1, s2) = 1. На рис. 1 изображён циркулянтный граф C(10; 1, 4). Диа-

Рис. 1. Циркулянтный граф C(10; 1, 4)

метр графа d(N ; s1, s2) = maxi,j∈V d(i, j), где d(i, j) – длина кратчайшего
пути между вершинами i и j. Известна точная нижняя граница диамет-
ра двумерных циркулянтов любого порядка N > 4 [1, 2, 12]:

D(N) = ⌈(−1 +
√
2N − 1)/2⌉. (1)

Среднее расстояние графа Dav(N ; s1, s2) = (1/N(N − 1))
∑
i,j

d(i, j). При

равном количестве узлов и линий связи в сетях наилучшими по различ-
ным критериям функционирования являются оптимальные топологии
с минимумом диаметра (и/или среднего расстояния) и, соответственно,
с минимумом максимальной (и/или средней) структурной задержки в
сети и максимальной связностью [3].

Объектом исследования в настоящей работе являются семейства оп-
тимальных по диаметру циркулянтных графов степени четыре, которые
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могут быть представимы в виде решётчатых структур – прямоугольных
L-контуров [13, 14] плотной укладки графов на плоскости Z2. Постро-
ение таких структур в классе циркулянтов и их применение в качестве
сетей связи исследовались в работах [5, 15, 16, 17, 18, 19]. Такие структу-
ры подходят для практической реализации в качестве топологий сетей
на кристалле, благодаря возможности оптимального размещения ком-
понентов в кристалле и эффективной организации маршрутизации. В
настоящей работе в разделе 2 вводятся основные определения и даётся
обзор известных работ по построению семейств таких структур. В разде-
лах 3 и 4 приводятся результаты поиска новых аналитически задаваемых
семейств оптимальных циркулянтов степени четыре с прямоугольным
контуром, объединённых в шесть различных серий, и доказывается их
корректность. В разделе 5 исследуется свойство масштабируемости по
диаметру найденных семейств оптимальных графов с прямоугольным
контуром.

2 Теоретические основы исследования

В [4, 12, 15] получено аналитическое описание семейства двумерных
циркулянтов, оптимальных по диаметру и среднему расстоянию для лю-
бого числа вершин. Ниже даётся их описание, представленное в [15]:

Теорема 1. Для любого целого N > 5 оптимальный двумерный цирку-
лянт порядка N есть

C(N ; s2 − 1, s2), где s2 = ⌈
√
N/2⌉. (2)

Далее будем использовать также другое представление графов семей-
ства (2), полученное в [12], с образующими, заданными в виде функций
от диаметра d > 1:

C(N ; s1, s2) =

{
C(N ; d− 1, d), при Nd−1 < N ≤ 2d2,
C(N ; d, d+ 1), при 2d2 < N ≤ Nd.

(3)

Здесь Nd = 2d2 + 2d + 1 – максимально возможное (достижимое) чис-
ло вершин двумерного циркулянта диаметра d [2]. В [15] графы семей-
ства (2) преобразованы в решётчатые структуры, получившие назва-
ние Midimew сетей, укладка которых на плоскости представляет собой
L-контуры (L-shapes) [13, 14] с рёбрами, соединяющими их граничные
вершины. Примеры задания циркулянтных графов на плоскости в ви-
де L-контуров с параметрами a, b, p, q и числом вершин N = ab − pq
показаны на рис. 2. На рис. 2b представлен L-контур для циркулян-
та C(10; 1, 4), на рис. 2c – L-контур прямоугольного вида для графа
C(12; 1, 4) с a = 4, b = 3, p = 0, q = 1. Midimew сети рассматривались в
качестве топологии при проектировании суперкомпьютеров с массовым
параллелизмом и сетей на кристалле. В [4, 15, 20] для них предложены
алгоритмы маршрутизации на основе аналитически вычисляемых век-
торов кратчайших путей. Для циркулянтов степени четыре известны
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Рис. 2. Параметры L-контуров для циркулянтов
C(N ; s1, s2): a), b) – общего вида, c) – прямоугольного ви-
да

Таблица 1. Семейства оптимальных графов (2) с прямо-
угольным контуром укладки на плоскости

Семейства Fi(d) C(N ; s1, s2) a b p q

F1(d) C(2d2 − d; d− 1, d) d 2d− 1 0 d− 1
F2(d) C(2d2; d− 1, d) d 2d 0 d− 1
F3(d) C(2d2 + d− 1; d, d+ 1) d+ 1 2d− 1 0 d
F4(d) C(2d2 + d; d, d+ 1) 2d+ 1 d d+ 1 0
F5(d) C(2d2 + 2d; d, d+ 1) d+ 1 2d 0 d

алгоритмы маршрутизации другого типа, также не требующие таблиц
маршрутизации и использующие параметры a, b, p, q плотной укладки
графов на плоскости [21].

В [15] для оптимальных графов семейства (2) найдены функции от
N , аналитически задающие параметры их представлений на плоскости в
виде L-контуров. Это позволило найти для каждого диаметра описания
пяти возможных семейств циркулянтов (2) с L-контуром прямоуголь-
ного вида, где N = ab. Планарное представление графов семейства в
виде прямоугольных контуров позволяет эффективно отображать граф
решения многих параллельных задач в вычислительную систему и, как
показано в [18], имеет минимальное число пересекающихся линий связи
и ограниченную длину максимальной из них, не зависящую от размера
сети, что является преимуществом при проектировании сетей на кри-
сталле. В табл. 1 даны описания всех пяти известных семейств F1(d),
F2(d), F3(d), F4(d), F5(d) оптимальных циркулянтных графов в виде
функций от диаметра d и найденные параметры a, b, p, q их укладки
на плоскости. Нумерация семейств соответствует порядку возрастания
значений N . Графы семейств существуют при всех диаметрах d > 1.

В [18] для графов семейств Fi(d), i ∈ 1, 5, разработан метод их транс-
формации в двумерные решётки, при котором длина самой длинной из
пересекающихся связей не растёт с размером сети, а увеличивается на
небольшую константу (≤ 5). Таким образом, при предварительно про-
ведённой несложной трансформации графа межмодульных соединений
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будут отсутствовать длинные провода в сети на кристалле с большим
числом модулей. Аналогичный способ трансформации может быть при-
менён к графам других возможных семейств с прямоугольным контуром
укладки на плоскости [16]. Известно также [15, 17] семейство близких к
оптимальным циркулянтных графов с L-контуром квадратного вида и
числом вершин N = 22i, i > 2. Диаметр графов семейства d = 3

√
N/4.

Данное семейство нашло применение в [5] в качестве базовой структу-
ры клеточных нейронных сетей при моделировании решения задач для
сложных физических процессов.

В настоящей работе решена задача существования и построения но-
вых семейств оптимальных циркулянтных графов степени четыре с ми-
нимумом диаметра и прямоугольным контуром укладки на плоскости,
и представлен процесс конструирования бесконечных серий таких се-
мейств графов. Найдены аналитические формулы для параметров ук-
ладки семейств графов на плоскости, которые могут применяться при
организации алгоритмов маршрутизации. Рассмотрены свойства мас-
штабируемости найденных графов.

3 Поиск множества оптимальных циркулянтов степени
четыре с прямоугольным контуром

В [15] доказано, что среди Midimew сетей, имеющих одновременно ми-
нимальный диаметр и минимально возможное среднее расстояние, нет
других семейств с искомым свойством, кроме найденных в табл. 1. По-
этому ослабим обязательное требование минимума среднего расстояния
в искомом графе и будем искать нужные семейства среди циркулянтов с
минимально возможным диаметром, совпадающим с точной нижней гра-
ницей (1). Для этого перечислим множество значений числа вершин гра-
фов N = 2d2 ± f(d), являющихся расширением структур с прямоуголь-
ным контуром из табл. 1 и произведением двух сомножителей (здесь
f(d) – искомый линейный полином):

N = (d± k)(2d± j) = ab, k ≥ 0, j ≥ 0, (4)

где d = D(N) – диаметр оптимального графа. При этом область из-
менения параметров k и j при любых d ≥ 1 ограничена следующим
необходимым условием оптимальности графов:

2d2 − 2d+ 1 < N(d) ≤ 2d2 + 2d+ 1. (5)

Одновременное выполнение обеих частей (5) означает существование та-
кого числа dm (минимального диаметра), при котором функция N(d)
при любом d ≥ dm может быть числом вершин оптимального цирку-
лянта c прямоугольным контуром укладки на плоскости. Рассмотрим
четыре возможные комбинации знаков в (4):

(a) N = (d + k)(2d + j) = 2d2 + (2k + j)d + kj. Проверка условия (5)
−2 ≤ 2k + j ≤ 2 даёт значения k = 0, j = 0, 1, 2 и k = 1, j = 0 при
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Таблица 2. Серии Si(d, k) новых семейств оптимальных
циркулянтов с прямоугольным контуром

Si Семейства графов C(N ; s1, s2) a b p q

S1 C(2d2 − d− 2k2 + k; d− k, d+ k + 1) 2d+ 2k − 1 d− k p1 0
S2 C(2d2 − d− 2k2 − k; 1, 2d+ 2k) d+ k 2d− 2k − 1 0 d− k
S3 C(2d2 − 2k2; 1, d2 − d− k2 − k) d+ k 2d− 2k 0 d− k − 1
S4 C(2d2 + d− 2k2 − k; 1, 2d− 2k) d− k 2d+ 2k + 1 0 d+ k + 1
S5 C(2d2 + d− 2k2 + k; 1, 2d+ 2k) d+ k 2d− 2k + 1 0 d− k + 1
S6 C(2d2 + 2d− 2k2 − 2k; d− k, d+ k + 1) d+ k + 1 2d− 2k 0 d− k

d ≥ 1. Соответственно, имеем три множества значений N = 2d2 ⊆ F2(d),
N = 2d2 + d ⊆ F4(d) и N = 2d2 + 2d ⊆ F5(d).

(b) N = (d−k)(2d+j) = 2d2+(j−2k)d−kj. Из условия −1 ≤ j−2k ≤ 2
следует 2k − 1 ≤ j ≤ 2k + 2. При k = 0 имеем совпадения с N из случая
(a). При k > 0 получим следующие четыре новых множества значений
N :

N = 2d2 + 2d− 2k2 − 2k ∈ S6

N = 2d2 + d− 2k2 − k ∈ S4

N = 2d2 − 2k2 ∈ S3

N = 2d2 − d− 2k2 + k ∈ S1.

(c) N = (d + k)(2d − j) = 2d2 + (2k − j)d − kj. Проверка условия
−2 ≤ 2k− j ≤ 2 при k = 0 даёт значения j = 0, 1. Соответственно, имеем
два множества значений N = 2d2 ⊆ F2(d), N = 2d2 − d ⊆ F1(d).

При k > 0 имеем 2k−2 ≤ j ≤ 2k+1. Соответственно, получаем четыре
множества значений N (среди них S2 и S5 – новые множества):

N = 2d2 + 2d− 2k2 + 2k ∈ S6

N = 2d2 + d− 2k2 + k ∈ S5

N = 2d2 − 2k2 ∈ S3

N = 2d2 − d− 2k2 − k ∈ S2.

(d) N = (d− k)(2d− j) = 2d2 − (2k + j)d+ kj. Аналогичная проверка
выполнения (5) не даёт новых значений N .

Остаётся найти (в случае их существования) соответствующие значе-
ния образующих для найденных значений числа вершин оптимальных
графов. В результате были получены шесть серий Si(d, k), i ∈ 1, 6, зна-
чений N(d, k), которые при фиксированных k соответствуют семействам
оптимальных циркулянтов с прямоугольным контуром. В табл. 2 приве-
дены описания найденных серий семейств графов Si(d, k) вместе с обра-
зующими s1, s2 и параметрами a, b, p, q прямоугольных контуров уклад-
ки на плоскости, которым они соответствуют (здесь p1 = d+k+1). Нуме-
рация серий семейств соответствует порядку возрастания числа вершин
входящих в них графов. Для найденных серий в табл. 3 даны области
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Таблица 3. Области изменения диаметров для серий Si(d, k)

Серии Si(d, k) Значения dm Диаметры: d ≥ dm, область k

S1(d, k) 2k2 − k + 2 k ≥ 1, d ̸= (2t+ 1)k + t, t ≥ 1
S2(d, k) 2k2 + k + 2 k ≥ 1
S3(d, k) k2 + 2 k ≥ 0, k ≡ d (mod 2)

S4(d, k) ⌈ 2k2+k+2
3

⌉ k ≥ 1

S5(d, k) ⌈ 2k2−k+2
3

⌉ k ≥ 1

S6(d, k) ⌈ k2+k+1
2

⌉ k ≥ 1, d ̸= (2t+ 1)k + t, t ≥ 1

изменения диаметров d графов соответствующих семейств, полученные
из условия (5) и условия связности графов (в сериях S1(d, k), S6(d, k),
где s1 ̸= 1, при невыполнении условия (N, s1, s2) = 1 графы оказываются
несвязными). Отметим, что описания семейств в сериях S1(d, 1), S6(d, 1)
порождают новые оптимальные графы с прямоугольным контуром, не
изоморфные описаниям (2) и (3). Для серий Si(d, k), i ∈ 2, 5, найдены
описания семейств графов с единичной образующей, существующих при
любых диаметрах d ≥ dm.

Вообще говоря, графы серий S4(d, k) и S5(d, k) можно объединить в
одну серию общего вида N = 2d2 + d−m(m+ 1)/2, но с разными пара-
метрами и образующими в зависимости от чётности (нечётности) m, то
же самое можно сказать и об объединении серий S1(d, k) и S2(d, k).

Следует отметить, что каждая серия содержит неограниченное коли-
чество порождаемых семейств оптимальных графов с прямоугольным
контуром, но при этом начальный диаметр, с которого начинается но-
вое семейство, каждый раз увеличивается. Визуально графы всех новых
серий расположены на линиях значений N(d), параллельных линиям,
образованным семействами F1(d), F2(d), F4(d), F5(d), F6(d), и сдвину-
тых влево. Причём, если на каждом диаметре существует только пять
семейств из табл. 1, то число графов новых серий из табл. 2 растёт с
ростом диаметра. В табл. 4 показан фрагмент (для диаметров d ≤ 14)
порядков графов с прямоугольным контуром укладки на плоскости. По-
рядки графов новых серий выделены жирным шрифтом, семейств из
табл. 1 – курсивом. На некоторых порядках графы новых серий пере-
секаются с графами семейств Fi(d), но при этом значения образующих
у них разные. Все такие случаи совпадений порядков графов отмече-
ны в табл. 4 подчёркиванием. В разделе 3 доказывается корректность
описаний новых серий семейств.

4 Доказательство оптимальности графов найденных
серий семейств

Докажем, что все графы серий Si(d, k) из табл. 2 являются оптималь-
ными. Для доказательства нам потребуется понятие l1-нормы [22].

Рассмотрим Z2 – двумерную целочисленную решётку. Зафиксируем
точку отсчёта (x, y) = (0, 0) ∈ Z2. Для точек (x, y) ∈ Z2 определим
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Таблица 4. Порядки графов семейств оптимальных цир-
кулянтов с прямоугольным контуром

d Порядки графов семейств
2 6, 8, 9, 10, 12
3 14, 15, 16, 18, 20, 21, 24
4 26, 28, 30, 32, 33, 35, 36, 40
5 42, 44, 45, 48, 49, 50, 52, 54, 55, 56, 60
6 63, 64, 65, 66, 68, 72, 75, 77, 78, 80, 84
7 88, 90, 91, 95, 96, 98, 99, 102, 104, 105, 112
8 114, 115, 117, 119, 120, 121, 126, 128, 130, 132, 133, 135, 136, 140, 144
9 147, 150, 152, 153, 156, 160, 161, 162, 165, 168, 170, 171, 176, 180
10 182, 184, 187, 189, 190, 192, 195, 200, 204, 207, 209, 210, 220
11 224, 225, 228, 230, 231, 232, 238, 240, 242, 243, 247, 250, 252, 253,

260, 264
12 266, 272, 273, 275, 276, 279, 280, 285, 288, 290, 294, 297, 299, 300,

308, 312
13 315, 319, 320, 322, 323, 325, 330, 336, 338, 340, 341, 345, 348, 350, 351,

352, 364
14 368, 370, 372, 375, 377, 378, 380, 384, 385, 391, 392, 396, 400, 403, 405,

406, 408, 416, 420

функцию отображения (помечивания), порождённую укладкой цирку-
лянтного графа C(N ; s1, s2) на плоскости Z2:

l(x, y) = xs1 + ys2 (mod N) ∈ ZN .

Под l1-нормой точки решётки (x, y) понимается

∥(x, y)∥ = |x|+ |y|.

Введём множество всех нулей на плоскости, порождённых описанием
C(N ; s1, s2): X = {(x, y) ∈ Z2|l(x, y) = 0 ∈ ZN}. На множестве X (ну-
лей) выбираем два линейно независимых вектора a∗ и b∗, для которых
выполняется условие

max{∥a∗∥, ∥b∗∥} ≤ min{∥a∗ + b∗∥, ∥a∗ − b∗∥}. (6)

Такие векторы называются базовыми векторами множества X (packed
basis [22]). В [22] доказана следующая

Лемма 1. Пусть a∗, b∗ – базовые векторы множества нулей X, по-
рождённого описанием C(N ; s1, s2), и пусть [a∗, b∗] – параллелограмм
с диагоналями d1 и d2, где ∥d1∥ = min{∥a∗ + b∗∥, ∥a∗ − b∗∥}, ∥d2∥ =
max{∥a∗ + b∗∥, ∥a∗ − b∗∥}. Тогда диаметр графа C(N ; s1, s2) равен

width([a∗, b∗]) =

 ⌊∥d1∥/2⌋ − 1, если ∥d1∥ = ∥d2∥ > max{∥a∗∥, ∥b∗∥}
и ∥a∗∥, ∥b∗∥ – нечётные,

⌊∥d1∥/2⌋, в остальных случаях.
(7)
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Для доказательства оптимальности графов найденных серий требует-
ся для каждой серии найти базовые векторы соответствующего множе-
ства X, удовлетворяющие условию (6), определить диаметр графов по
формуле (7) и сравнить его с (1).

Теорема 2. Диаметр d любого циркулянтного графа C(N ; s1, s2) ∈
Si(d, k), где i = 2, 5, 6 и значения d, k определены в табл. 3, равен D(N).

Доказательство. Для серий S2(d, k), S5(d, k), S6(d, k) существуют об-
щие базовые векторы соответствующих множеств X:

a∗ = (a− p, b− q), b∗ = (0, b).

Докажем теорему для графов серии S2(d, k). Подстановкой значений
параметров a, b, p, q из табл. 2 получим

a∗ = (d+ k, d− k − 1), b∗ = (0, 2d− 2k − 1),

a∗ + b∗ = (d+ k, 3d− 3k − 2), a∗ − b∗ = (d+ k,−(d− k)), где d > k.

Следовательно,

∥a∗∥ = 2d− 1, ∥b∗∥ = 2d− 2k − 1,

∥a∗ + b∗∥ = 4d− 2k − 2, ∥a∗ − b∗∥ = 2d.

Учитывая соотношение между d и k из табл. 3 для серии S2(d, k),
получим

2d− 1 < min{4d− 2k − 2, 2d}.
Таким образом, условие (6) выполнено. Применим к графам серии
S2(d, k) формулу (7):

d(N ; s1, s2) = ⌊∥d1∥/2⌋ = ⌊2d/2⌋ = d.

В результате диаметры графов всех семейств серии S2(d, k) равны d.
Поскольку при всех допустимых d и k условие (5) выполнено для всех
графов серии, то d = D(N), и графы серии S2(d, k) оптимальны.

Для графов серии S5(d, k) имеем

a∗ = (d+ k, d− k), b∗ = (0, 2d− 2k + 1),

a∗ + b∗ = (d+ k, 3d− 3k + 1), a∗ − b∗ = (d+ k,−(d− k + 1)).

Следовательно,
∥a∗∥ = 2d, ∥b∗∥ = 2d− 2k + 1,

∥a∗ + b∗∥ = 4d− 2k + 1, ∥a∗ − b∗∥ = 2d+ 1.

Имеем
2d < min{4d− 2k + 1, 2d+ 1}.

Таким образом, условие (6) выполнено. Применение (7) к графам серии
S5(d, k) даёт:

d(N ; s1, s2) = ⌊∥d1∥/2⌋ = ⌊(2d+ 1)/2⌋ = d.

Аналогично, применив указанный метод доказательства к графам се-
рии S6(d, k), получим требуемый результат. □
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Теорема 3. Диаметр d любого циркулянтного графа C(N ; s1, s2) ∈
Si(d, k), где i = 1, 3, 4 и значения d, k определены в табл. 3, равен D(N).

Доказательство. Для серии S1(d, k) базовые векторы X равны

a∗ = (a− p, b) = (d+ k − 2, d− k), b∗ = (−(2p− a), 2b) = (−3, 2d− 2k).

Для серии S3(d, k)

a∗ = (a,−q) = (d+ k,−(d− k − 1)), b∗ = (0, b) = (0, 2d− 2k).

Для серии S4(d, k)

a∗ = (a, b− q) = (d− k, d+ k), b∗ = (2a,−(2q − b)) = (2d− 2k,−1).

Докажем теорему для графов серии S1(d, k). Имеем

a∗ + b∗ =

{
(−1, 3d− 3) при k = 1,
(d+ k − 5, 3d− 3k) при k > 1,

a∗ − b∗ = (d+ k + 1,−(d− k)), где d > k.

Следовательно,

∥a∗∥ = 2d− 2, ∥b∗∥ = 2d− 2k + 3,

∥a∗ + b∗∥ =

{
3d− 2 при k = 1,
4d− 2k − 5 при k > 1,

∥a∗ − b∗∥ = 2d+ 1.

Из соотношения между d и k из табл. 3 следует (6):

2d− 2 <

{
min{3d− 2, 2d+ 1} при k = 1,
min{4d− 2k − 5, 2d+ 1} при k > 1.

Применим к графам серии S1(d, k) формулу (7):

d(N ; s1, s2) = ⌊∥d1∥/2⌋ = ⌊(2d+ 1)/2⌋ = d.

В результате диаметры графов всех семейств серии S1(d, k) равны d.
Поскольку при всех допустимых d и k условие (5) выполнено для всех
графов серии, то d = D(N), и графы серии S1(d, k) оптимальны. Дока-
зательства для графов серий S3(d, k) и S4(d, k) аналогичны. □

Следует отметить, что при фиксированном k диаметры графов се-
мейств, принадлежащих S3(d, k), имеют чётные значения при k чёт-
ном и нечётные – в противном случае. Таким образом, в отличие от
семейства из [23] с N = 2d2 − 2, существующего при диаметрах d =
A2 + A − 2, где A ≥ 2, в данной работе найдено новое семейство опти-
мальных графов серии S3(d, 1), существующее при тех же N и любом
нечётном d > 1. Дополнительно отметим, что графы семейства с опи-
санием C(2d2 − 2; d, d + 1) и нечётных диаметрах d > 1 также имеют
прямоугольный контур укладки на плоскости с параметрами a = d+ 1,
b = 2d− 2, p = 0, q = d.
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5 L-масштабируемость семейств графов найденных
серий с прямоугольным контуром

Графы всех найденных в данной работе серий семейств обладают
ещё одним свойством, полезным с точки зрения реализации алгоритмов
маршрутизации в сетях на кристалле – L-масштабируемостью семейств
графов [24]. Данное свойство состоит в том, что при укладке на плос-
кости Z2 члены семейства образуют последовательность L-контуров (a)
с параметрами a, b, p, q, описываемыми линейными функциями от диа-
метра d графов, и (b) все параметры N , s1, s2, a, b, p, q графов семейства,
как функции от d, удовлетворяют системе сравнений [13, 14], определя-
ющей расположение нулей при укладке графов на плоскости:{

as1 − qs2 ≡ 0 (mod N),
−ps1 + bs2 ≡ 0 (mod N).

(8)

Геометрически это означает, что длины соответствующих сторон L-кон-
туров укладки графов семейства увеличиваются линейно при росте диа-
метра графа. Одна из них при этом может сохранять свою длину (как в
нашем случае p = 0 или q = 0). Соответственно, сложность O(logN) [14]
решения проблемы определения параметров L-контуров для L-масшта-
бируемых семейств сокращается до O(1).

Теорема 4. Серии Si(d, k), где i ∈ 1, 6 и значения d, k определены в
табл. 3, состоят из L-масштабируемых семейств циркулянтных гра-
фов.

Доказательство. Выполнение условия (a) для всех серий Si(d, k) сле-
дует из табл. 2. Проверим выполнение (b) с помощью непосредственной
подстановки в (8).

Для серии S1(d, k) сравнения (8) имеют место при любых d и k:{
(2d+ 2k − 1)(d− k) = N ≡ 0 (mod N),
−(d+ k + 1)(d− k) + (d− k)(d+ k + 1) = 0 ≡ 0 (mod N).

Для серии S2(d, k) сравнения (8) имеют место при любых d и k:{
d+ k − (d− k)(2d+ 2k) = −N ≡ 0 (mod N),
(2d− 2k − 1)(2d+ 2k) = 2N ≡ 0 (mod N).

Для графов семейств серии S3(d, k) сравнения (8) выполняются при
любых d и k одинаковой чётности:{

d+ k − (d− k − 1)(d2 − d− k2 − k) = 2−d+k
2 N ≡ 0 (mod N),

(2d− 2k)(d2 − d− k2 − k) = (d− k − 1)N ≡ 0 (mod N).

Для серии S4(d, k) сравнения (8) имеют место при любых d и k:{
d− k − (d+ k + 1)(2d− 2k) = −N ≡ 0 (mod N),
(2d+ 2k + 1)(2d− 2k) = 2N ≡ 0 (mod N).

Для остальных серий справедливость (8) при любых допустимых d и k
проверяется аналогичным образом. □
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Так как все найденные серии циркулянтов состоят из L-масштабируе-
мых семейств с масштабируемыми по диаметру параметрами укладки
графов на плоскости, то для таких графов при любых больших диа-
метрах параметры a, b, p, q рассчитываются по простым формулам и,
соответственно, можно использовать эффективный бестабличный слож-
ности O(1) алгоритм маршрутизации из [24], основанный на их приме-
нении при расчётах кратчайших путей в графах.

6 Заключение

В настоящей работе найдены новые циркулянтные топологии степе-
ни четыре, представимые в виде прямоугольных решётчатых структур,
аналогичные решёткам и двумерным торам, стандартно используемым в
сетях на кристалле, но с лучшими структурными и коммуникативными
свойствами для масштабных сетей на кристалле. Решена задача суще-
ствования и предложен метод построения новых семейств оптимальных
циркулянтных графов степени четыре с минимумом диаметра и прямо-
угольным контуром укладки на плоскости. Представлен процесс кон-
струирования бесконечных серий таких семейств графов. Показано, что
мощность множества найденных графов увеличивается с ростом диамет-
ра графов. Найдены формулы для параметров укладки графов на плос-
кости, которые могут применяться при организации алгоритмов марш-
рутизации. Доказанные свойства масштабируемости найденных графов
и ограниченной длины соединений при росте числа вершин актуаль-
ны при проектировании масштабных сетей на кристалле. Дальнейшее
исследование предложенных циркулянтных структур предполагает их
апробацию в качестве топологий сетей на кристалле и реализацию алго-
ритмов маршрутизации для них.

Автор выражает благодарность к.т.н. Монахову О. Г. и д.т.н. Романо-
ву А. Ю. за полезные обсуждения данной работы.
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Suitable topologies for on-chip multiprocessors, Int. J. Parallel Program., 34:3 (2006),
193–211. Zbl 1103.68423

[11] K.-J. Pai, J.-S. Yang, G.-Y. Chen, J.-M. Chang, Configuring protection routing via
completely independent spanning trees in dense Gaussian on-chip networks, IEEE
Trans. Netw. Sci. Eng., 9:2 (2022), 932–946. MR4401314

[12] E.A. Monakhova, On the analytic representation of optimal two-dimensional
Diophantine structures of homogeneous computing systems, Vychisl. Sist., 90 (1981),
81–91. Zbl 0532.68055

[13] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local
networks and data alignment, IEEE Trans. Comput., 36 (1987), 702–713.

[14] F.K. Hwang, A complementary survey on double-loop networks, Theor. Comput. Sci.,
263:1-2 (2001), 211–229. Zbl 0974.68003
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