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Abstract: The paper considers solutions with zero fronts to a
system of two degenerate nonlinear (quasilinear) parabolic equa-
tions. Such systems are used in mathematical biology to describe
population dynamics, specifically in the "predator-prey"models.
The study focuses on a special case, where the zero fronts of two
unknown functions, specified by the boundary conditions, move
in opposite directions. We prove a new theorem of the existence
and uniqueness of an analytical solution to the problem under
consideration and derive new exact solutions by reducing the origi-
nal system to a system of ordinary differential equations in a
particular case. A stepwise numerical algorithm based on the col-
location method and radial basis functions is proposed. Finally,
we conduct a qualitative and quantitative analysis of analytical
and numerical solutions, utilizing the exact solutions to verify the
numerical algorithm.
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1 Введение

Рассмотрим систему реакционно-диффузионного типа, состоящую из
двух квазилинейных уравнений второго порядка

ut − [(α1 + β1vx)u]x = f(u, v), vt − [(α2 − β2ux)v]x = g(v, u). (1)

Здесь u(t, x), v(t, x) — искомые функции; t (время) и x (пространствен-
ная координата) — независимые переменные; α1, α2, β1, β2 — констан-
ты, α1α2 > 0, β1 > 0, β2 > 0. Известные функции f(u, v), g(u, v) яв-
ляются достаточно гладкими. Система (1) была предложена в извест-
ной монографии [1, c. 10] в качестве модели популяционной динами-
ки «хищник-жертва». Можно видеть, что (1) имеет параболический тип
[2]. Отметим, что (1) существенно отличается от традиционных систем
реакции-диффузии, применяемых в математической биологии в каче-
стве моделей «хищник-жертва», которые характеризуются тем, что в
каждом из уравнений присутствуют производные только от одной иско-
мой функции [3, 4]. Более того, рассматриваемые системы обычно явля-
ются полулинейными [5, 6]. Вероятно, сложный характер нелинейностей,
которые присутствуют в системе, а также вырождение, имеющее место
при u = 0, v = 0, явились причиной того, что, к нашему большому
удивлению, работ, в которых рассматривались бы системы вида (1), нам
удалось найти очень мало (см. ниже). Некоторые авторы используют
близкие постановки, для которых либо проводят качественные исследо-
вания свойств системы [7, 8], либо решают ее численно [9, 10], при этом
в последних двух работах рассматриваются системы, в которых вырож-
дения при u = 0, v = 0 не происходит.

Тем не менее, приведем краткий исторический обзор близких по тема-
тике публикаций. Применение параболических уравнений диффузии и
систем реакции-диффузии для описания популяционной динамики име-
ет давнюю историю, которая началась в 1937 году с классических работ
[11, 12], где была предложена модель распространения доминантного ге-
на, имеющая вид полулинейного уравнения, получившего в дальнейшем
название «уравнение Колмогорова-Петровского-Пискунова» (КПП). За
этими работами последовало огромное количество других публикаций по
применению параболических уравнений и систем в математической био-
логии, среди которых большое внимание было уделено различным систе-
мам типа «хищник-жертва». Сколь-либо исчерпывающий обзор публи-
каций по этой тематике в рамках одной статьи дать невозможно. Укажем
здесь монографию [13], которая снабжена обширной библиографией.

В последние годы основное внимание исследователей уделяется нело-
кальным уравнениям реакции-диффузии. Результаты этих исследований
представлены в обзорной статье [14], в которой анализируются более ста
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работ, вышедших за последние полвека. Внимания также заслуживает
большая статья [15], в которой рассматривается нелокальная диффузия
при наличии препятствий с приложениями к биологии. Учитывают так-
же пространственную неоднородность (гетерогенность) ресурсов и видов
[16] и т.д.

Работ, в которых рассматривалась бы квазилинейная система «хищник-
жертва», сравнительно немного [3, 10, 17]. При этом в [3, 17] рассматри-
ваются более простые, по сравнению с (1), постановки, а в [10, 17] нет
вырождения.

Таким образом, традиционные модели, при всем их разнообразии, как
правило, разрешимы относительно старшей производной при любых зна-
чениях искомых функций, в отличие от системы (1), которая вырожда-
ется [18, 3] при u = 0, v = 0. Между тем, такое свойство квазилинейных
параболических уравнений и систем приводит к появлению интересного
класса решений, которые описывают возмущения, распространяющиеся
по нулевому фону с конечной скоростью (общеизвестно, что в линей-
ном и полулинейном случаях подобное возможно только при выполне-
нии условия гиперболичности [19]). Впервые решения такого рода были
обнаружены вскоре после II мировой войны [20] для уравнения нелиней-
ной теплопроводности, и изучались, в частности, в уральской школе по
математике и механике, основанной акад. А.Ф. Сидоровым [21], в част-
ности, в работах авторов [22, 23]. В зависимости от интерпретации, ука-
занные решения в литературе называют тепловыми, фильтрационными
или диффузионными волнами.

Для системы (1) изучение решений, имеющих тип диффузионной вол-
ны, начато работами [24]: в частном случае, когда функции f(u, v) и
g(u, v) квадратичные, т.е. имеет место нелинейность Лотки-Вольтерры,
и [25]: в более общей постановке при f(u, v) и g(u, v) общего вида. Были
доказаны теоремы существования и единственности и рассмотрены точ-
ные решения, в том числе, имеющие вид бегущей волны. В статье [26]
аналитические исследования впервые были дополнены численными.

Настоящая работа является продолжением [25] и [26]. Статья имеет
следующую структуру: в п. 2 обсуждается постановка задачи; в п. 3
формулируется и доказывается теорема существования аналитического
решения рассмотренной задачи; в п. 4 рассматриваются точные решения,
построение которых сводится к интегрированию системы обыкновенных
дифференциальных уравнений (ОДУ); в п. 5 приводится численный ме-
тод, который используется для выполнения расчетов в п. 6; наконец, в
п. 7 формулируются выводы по результатам исследований.
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2 Постановка задачи

Перепишем систему (1) в следующем эквивалентном виде:

ut = α1ux + β1(uvxx + uxvx) + f(u, v),

vt = α2vx − β2(vuxx + uxvx) + g(u, v).
(2)

Для системы (2) рассмотрим граничные условия

u|x=a(t) = 0, v|x=b(t) = 0, (3)

где a(t), b(t) — известные достаточно гладкие функции, удовлетворяю-
щие условиям a(0) = b(0) = 0, a(t) < 0, b(t) > 0 при t > 0. Будем ис-
кать классические решения системы (2), удовлетворяющие (3). Можно
видеть, что при f(0, 0) = g(0, 0) = 0 рассматриваемой задаче удовле-
творяет тривиальное решение u ≡ 0, v ≡ 0. Как будет показано ниже, в
данном случае имеются и нетривиальные решения.

Назовем нулевыми фронтами многообразия, на которых одна из иско-
мых функций обращается в нуль для решения, которое, вообще говоря,
является нетривиальным. Можно видеть, что в данном случае нулевые
фронты x = a(t) и x = b(t) движутся в противоположных направлениях.

Отметим, что система (2) может рассматриваться в качестве мате-
матической модели популяционной динамики только при неотрицатель-
ных u и v, поскольку численность популяции, очевидно, не может быть
отрицательной. Таким образом, в рамках настоящего исследования нас
интересуют решения, принимающие положительные значения для обе-
их искомых функций. Там, где одна из искомых функций отрицательна,
взаимодействие популяций прекращается, и рассматривать систему (2)
не имеет смысла, во всяком случае, с точки зрения предметной области.

Ранее в [25] был рассмотрен частный случай задачи (2), (3), когда
a(t) ≡ b(t). К сожалению, для полученных результатов не удалось пред-
ложить содержательную интерпретацию, поскольку выяснилось: полу-
ченные решения таковы, что функции u и v всюду, за исключением нуле-
вого фронта, принимают значения разных знаков. Настоящее исследова-
ние имеет своей целью найти решение указанной проблемы и получить
решения, которые в области, ограниченной нулевыми фронтами, поло-
жительны (обе искомых функции). При этом прохождение через нулевой
фронт приводит к смене знака одной из искомых функций (она становит-
ся отрицательной), и для сохранения «физичности» решения последняя
заменяется тождественным нулем, что приводит к появлению разрыва
производных при сохранении непрерывности самих функций.

3 Теорема существования

Будем искать решение задачи (2), (3) в классе аналитических функ-
ций, т.е. в виде рядов Тейлора. Отметим, что это далеко не единственный
возможный способ представления решений дифференциальных уравне-
ний в частных производных в виде рядов. Так, некоторые ученики А.Ф.
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Сидорова применяют специальные ряды [27], а в работе [28] функция
Грина для уравнения Колмогорова–Феллера строится в виде ряда, со-
стоящего из суммы сингулярной и регулярной компонент, причем при
некоторых соотношениях между параметрами ряд обрывается, что при-
водит к точному решению в виде конечной суммы.

Для задачи (2), (3) справедлива следующая

Теорема 1. Пусть
(1) a(t), b(t) — аналитические функции в окрестности точки t = 0;
(2) f(u, v), g(u, v) — аналитические функции в окрестности точки

u = 0, v = 0;
(3) a(0) = b(0), a′(0) = b′(0), f(0, 0) = g(0, 0) = 0.

Тогда задача (2), (3) имеет в некоторой окрестности точки t = 0, x =
0 два и только два аналитических решения, одно из которых является
тривиальным, а второе — нетривиальным.

Доказательство. Обоснование коректности теоремы проводится клас-
сическим методом мажорант [29]: формальное решение строится в виде
рядов Тейлора с рекуррентно определяемыми коэффициентами, сходи-
мость рядов доказывается посредством построения мажорантной зада-
чи. Подобное утверждение ранее было доказано нами в частном случае
[25], поэтому будем кратки в рассуждениях, останавливаясь более по-
дробно только на специфических особенностях, отличающих настоящую
работу от предшествующей.

Сделаем в уравнении (2) замену переменных

t′ = t, y = x− a(t). (4)

Задача (2), (3) в результате замены (4), которая, очевидно, является
невырожденной, примет следующий вид:

ut = [α1 + a′(t)]uy + β1(uvyy + vyuy) + f(u, v),

vt = [α2 + a′(t)]vy − β2(vuyy + uyvy) + g(v, u),
(5)

u|y=0 = 0, v|y=b(t)−a(t) = 0. (6)
Здесь и далее "штрих" у переменной t для упрощения обозначений опус-
кается.

Напомним, что, если a(t) ≡ b(t), то имеем случай, рассмотренный
ранее в работе [25]. Отметим, что можно было бы с равным успехом
сделать замену y = x− b(t), т.е. поменять ролями функции a(t) и b(t) (u
и v).

Решение задачи (5), (6) будем искать в виде

u(t, y) =

∞∑
k,l=0

uk,l
tk

k!

yl

l!
=

∞∑
k,l=0

uk,l
tk

k!

[x− a(t)]l

l!
, uk,l =

∂k+lu

∂tk∂yl

∣∣∣∣
t=0,
y=0

,

v(t, y) =
∞∑

k,l=0

vk,l
tk

k!

yl

l!
=

∞∑
k,l=0

vk,l
tk

k!

[x− a(t)]l

l!
, vk,l =

∂k+lv

∂tk∂yl

∣∣∣∣
t=0,
y=0

. (7)
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Коэффициенты рядов (7) определяются индукцией по суммарному по-
рядку дифференцирования n = k + l.

Из (6) следует, что
u0,0 = v0,0 = 0.

По условию теоремы имеем, что функции a(t) и b(t) можно разложить
в ряды Тейлора

a(t) =
∞∑
n=0

an
tn

n!
, an =

dna

dtn

∣∣∣∣
t=0

, b(t) =
∞∑
n=0

bn
tn

n!
, bn =

dnb

dtn

∣∣∣∣
t=0

.

Положим для удобства дальнейших преобразований c(t) = b(t) − a(t),
cn = bn − an, n = 0, 1, ... Из условия теоремы следует, что a1 = b1 = c0 =
c1 = 0.

Дифференцируя (6) по t, получаем

ut = 0, vt + c′(t)uy = 0,

полагая t = y = 0, имеем, что

u1,0 = 0, v1,0 = 0.

Обратимся теперь к системе (5). Подставляя в нее t = y = 0, а также
уже найденные значения, получаем

α1u0,1 + β1v0,1u0,1 = 0, α2v0,1 − β2v0,1u0,1 = 0. (8)

Система (8) имеет два решения

u0,1 = α2/β2, v0,1 = −α1/β1; u
∗
0,1 = 0, v∗0,1 = 0.

Можно без труда убедиться, что нулевому решению соответствует три-
виальное решение задачи (5), (6) (и исходной задачи (2), (3)). Поэтому
далее будем рассматривать ненулевой корень системы (8). Итак, все пер-
вые производные найдены.

Отметим здесь, что, если β1 ·β2 = 0, то система (8) имеет только одно,
нулевое, решение, откуда следует, что задача (5), (6) также имеет в этом
случае единственное, тривиальное, решение.

Найдем теперь вторые производные. Дважды дифференцируя (6) по
t, получаем

utt = 0, vtt + 2c′(t)uty + [c′(t)]2uyy + c′′(t)uy = 0,

и полагая t = y = 0, имеем, что

u2,0 = 0, v2,0 = −c2u0,1 = −c2α2/β2.

Обратимся далее к системе (5). Продифференцировав уравнения (5) по
t и положив t = y = 0, получим равенства

u2,0 = α1u1,1+a2u0,1+β1(u1,0v0,2+u0,0v1,2+u0,1v1,1+u1,1v0,1)+f1,0, (9)

v2,0 = α2v1,1+a2v0,1−β2(v1,0u0,2+v0,0u1,2+u0,1v1,1+u1,1v0,1)+g1,0, (10)
где

f1,0 = [f(u, v)]t| t=0,
y=0

= fu(0, 0)u1,0 + fv(0, 0)v1,0 = 0,
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g1,0 = [g(u, v)]t| t=0,
y=0

= gu(0, 0)u1,0 + gv(0, 0)v1,0 = 0.

Используя ранее найденные значения, из (9), (10) можно выразить ко-
эффициенты

u1,1 =
a2
β2

− v2,0
β2v0,1

=
a2
β2

− c2β1α2

β22α1
, v1,1 = −a2

β1
.

Продифференцировав уравнения (5) по y и положив t = y = 0, полу-
чим, что

u1,1 = α1u0,2 + β1(u0,1v0,2 + u0,0v0,3 + u0,1v0,2 + u0,2v0,1) + f0,1, (11)

v1,1 = α2v0,2 − β2(v0,1u0,2 + v0,0u0,3 + u0,1v0,2 + u0,2v0,1) + g0,1, (12)
где

f0,1 = [F (u, v)]y| t=0,
y=0

= fu(0, 0)u0,1 + fv(0, 0)v0,1,

g0,1 = [g(u, v)]y| t=0,
y=0

= gu(0, 0)u0,1 + gv(0, 0)v0,1.

Используя ранее найденные значения, получим из (11), (12), что

u0,2 =
g0,1 − v1,1
2β2v0,1

, v0,2 =
u1,1 − f0,1
2β1u0,1

.

Вторые производные найдены. База индукции установлена.
Пусть найдены uk,l, vk,l при k + l = 0, 1, ..., n, т.е. до порядка n вклю-

чительно. Найдем коэффициенты порядка n+ 1.
Из первого условия (6) имеем, что un+1,0 = 0. Для определения vn+1,0

продифференцируем второе условие (6) n+1 раз по переменной t. При-
меняя двумерный аналог формулы Фаа-Ди-Бруно [30, 31], получим сле-
дующее равенство: ∑

k1+2k2+...+(n+1)kn+1=n+1

(n+ 1)!Ξk1
1 Ξk2

2 ...Ξ
kn+1

n+1

k1!k1!...kn+1!

 v(t, y) = 0, (13)

где

Ξ1 =
∂

∂t
+ c′(t)

∂

∂y
, Ξi =

c(i)(t)

i!

∂

∂y
, i ≥ 2; kj ≥ 0.

Положив в (13) t = y = 0, получим равенство, содержащее коэффици-
енты vk,l, k + l = 1, 2, ..., n+ 1. Явный вид данного выражения здесь не
приводится, поскольку он отличается крайней громоздкостью и не имеет
принципиального значения. Существенно здесь то, что все коэффициен-
ты порядка n + 1, которые порождаются действием оператора Ξn+1

1 , за
счет наличия множителя c1 обращаются в нуль. Исключением являет-
ся vn+1,0, множитель перед которым равен 1. Таким образом, получаем,
что

vn+1,0 = −

 ∑
k1+2k2+...+(n+1)kn+1=n+1,

k1≤n

(n+ 1)!Ξk1
1 Ξk2

2 ...Ξ
kn+1

n+1

k1!k1!...kn+1!

 v(t, y)

∣∣∣∣∣∣∣∣
t=0,
y=0

.
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Итак, un+1,0, vn+1,0 найдены. Для определения un,1, vn,1 применим к каж-
дому уравнению системы (5) оператор ∂n/∂tn

∣∣
t=0,
x=0

. Получим равенства

un+1,0 = α1un,1 +
n∑

i=1

Ci
nai+1un−i,1+

+β1

(
n∑

i=0

Ci
nui,0vn−i,2 +

n∑
i=0

Ci
nvi,1un−i,1

)
+ fn,0, (14)

vn+1,0 = α2vn,1 +
n∑

i=1

Ci
nai+1vn−i,1−

−β2

(
n∑

i=0

Ci
nvi,0un−i,2 +

n∑
i=0

Ci
nui,1vn−i,1

)
+ gn,0, (15)

где

fn,0 =
∂nf(u, v)

∂tn

∣∣∣
t=0,
x=0

, gn,0 =
∂ng(v, u)

∂tn

∣∣∣
t=0,
x=0

,

и вычисляются с помощью обобщенной формулы Фаа-Ди-Бруно.
Можно убедиться, что в каждом из уравнений (14), (15) содержится

только одна неизвестная величина, уединяя которую, получаем, что

vn,1 = − Fn,0

β1u0,1
, un,1 =

vn+1,0 −Gn,0

β2v0,1
.

Здесь величины Fn,0, Gn,0 известны в силу предположения индукции и
вычисляются по формулам

Fn,0 =
n∑

i=1

Ci
nai+1un−i,1 + β1

(
n∑

i=2

Ci
nui,0vn−i,2 +

n−1∑
i=1

Ci
nvi,1un−i,1

)
+ fn,0,

Gn,0 =

n∑
i=1

Ci
nai+1vn−i,1 − β2

(
n∑

i=2

Ci
nvi,0un−i,2 +

n−1∑
i=1

Ci
nui,1vn−i,1

)
+ gn,0.

Пусть найдены un−i+1,i, vn−i+1,i при i = 0, 1, ..., k. Для нахождения
un−k,k+1, vn−k,k+1 применим к каждому уравнению системы (5) оператор
∂n/∂tn−kxk

∣∣
t=0,
y=0

. Получим

un−k+1,k = α1un−k,k+1 +
n−k∑
i=1

Ci
n−kai+1un−k−i,k+1+

+β1

n−k∑
i=0

k∑
j=0

Ci
n−kC

j
kui,jvn−k−i,k−j+2 +

n−k∑
i=0

k∑
j=0

Ci
n−kC

j
kui,j+1vn−k−i,k−j+1

+

+fn−k,k, (16)

vn−k+1,k = α2vn−k,k+1 +

n−k∑
i=1

Ci
n−kai+1vn−k−i,k+1−
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−β2

n−k∑
i=0

k∑
j=0

Ci
n−kC

j
kvi,jun−k−i,k−j+2 +

n−k∑
i=0

k∑
j=0

Ci
n−kC

j
kui,j+1vn−k−i,k−j+1

+

+gn−k,k. (17)
Здесь

fn−k,k =
∂nf(u, v)

∂tn−k∂xk

∣∣∣
t=0,x=0

, gn−k,k =
∂ng(v, u)

∂tn−k∂xk

∣∣∣
t=0,x=0

.

Конкретные значения также могут быть получены с помощью обобщен-
ной формулы Фаа-Ди-Бруно.

В каждом из уравнений (16), (17) содержится только одна неизвестная
величина, уединяя которую, получим, что

vn−k,k+1 =
un−k+1,k − Fn−k,k

(k + 1)β1u0,1
, un−k,k+1 =

vn−k+1,k −Gn−k,k

(k + 1)β2v0,1
.

Здесь величины Fn−k,k, Gn−k,k известны в силу предположения индук-
ции и вычисляются по формулам

Fk,n−k = fn−k,k +
n−k∑
i=1

Ci
n−kai+1un−k−i,k+1+

+β1


n−k∑
i=0

k∑
j=0︸ ︷︷ ︸

i+j≥2

Ci
n−kC

j
kui,jvn−k−i,k−j+2 +

n−k∑
i=0

k∑
j=0︸ ︷︷ ︸

1≤i+j≤n

Ci
n−kC

j
kui,j+1vn−k−i,k−j+1

 ,

Gk,n−k = gn−k,k +
n−k∑
i=1

Ci
n−kai+1vn−k−i,k+1−

−β2


n−k∑
i=0

k∑
j=0︸ ︷︷ ︸

i+j≥2

Ci
n−kC

j
kvi,jun−k−i,k−j+2 +

n−k∑
i=0

k∑
j=0︸ ︷︷ ︸

1≤i+j≤n

Ci
n−kC

j
kui,j+1vn−k−i,k−j+1

 .

Формальное решение в виде рядов (7) построено, причем их коэф-
фициенты определяются однозначно и, следовательно, нетривиальное
решение является единственным.

Сходимость построенных рядов доказывается методом мажорант с ис-
пользованием стандартной процедуры. При этом вид системы позволяет
построить общую мажоранту для обеих искомых функций и свести до-
казательство к классической теореме Коши-Ковалевской [29] для одно-
го уравнения. Обоснование подобных утверждений ранее неоднократно
проводилось авторами [32], в данном случае доказательство проводится
аналогично. □
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4 Редукция к системе обыкновенных
дифференциальных уравнений (СОДУ)

Пусть в системе (2) α1 = α2 = α, а слагаемые, не содержащие произ-
водные, являются степенными функциями и имеют вид

f(u, v) = A1v
λuθ−λ −A2u

θ, g(v, u) = B1u
µvθ−µ −B2v

θ, (18)

где A1, A2, B1, B2, λ, µ, θ – неотрицательные константы, причем
θ > λ > 0, θ > µ > 0. Системы со свободными членами подобного
вида встречаются в моделях диффузии в двукомпонентных средах, ко-
торые также имеют вид квазилинейных параболических систем второго
порядка [33], и по своим свойствам близки к рассматриваемой здесь за-
даче популяционной биологии.

С учетом (18), система (2) принимает следующий вид:

ut = αux + β1(uvxx + uxvx) +A1v
λuθ−λ −A2u

θ,

vt = αvx − β2(vuxx + uxvx) +B1u
µvθ−µ −B2v

θ.
(19)

Выполним в системе (19) разделение переменных. Пусть

u = ψ(t)p(z), v = ψ(t)q(z), z =
x+ αt

φ(t)
. (20)

Здесь ψ(t), φ(t) – достаточно гладкие функции, φ(0) ̸= 0. Способ зада-
ния переменной z позволяет за счет выбора φ(t) записать уравнение, по
крайней мере, одного нулевого фронта в виде z = const. Аналогичные
замены ранее использовались авторами для нелинейных диффузионных
уравнений [23, 34] и систем «реакция-диффузия» [35].

После подстановки (20), приведения подобных слагаемых и умноже-
ния обеих частей на [φ(t)/ψ(t)]2 система (19) примет вид

β1(pq
′′ + q′p′) +

φφ′z
ψ

p′ − φ2ψ′

ψ2 p+A1ψ
θ−2φ2qλpθ−λ −A2ψ

θ−2φ2pθ = 0,

−β2(qp′′ + p′q′) +
φφ′z
ψ

q′ − φ2ψ′

ψ2 q +B1ψ
θ−2φ2pµqθ−µ −B2ψ

θ−2φ2qθ = 0.

(21)
Система (21) становится СОДУ, если выполнены следующие условия:

φφ′

ψ
= const,

φ2ψ′

ψ2
= const, ψθ−2φ2 = const. (22)

Система (22) содержит три уравнения относительно двух искомых функ-
ций, т.е. является переопределенной. Покажем, что она, тем не менее,
разрешима в содержательных случаях.

Разделив 2-е уравнение системы (22) на 3-е, получим обыкновенное
дифференциальное уравнение с разделяющимися переменными ψ′/ψθ =

const. В свою очередь, из 1-го и 3-го уравнений (22) имеем, что φθ/(θ−2)φ′ =
const. Полученные уравнения легко интегрируется в квадратурах, при
этом необходимо отдельно рассмотреть три различных подслучая: а) θ =
1; б) θ ̸= 1, θ ̸= 2; в) θ = 2.
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Очевидно, что ψ и φ могут быть константами только одновременно.
Вначале предположим, что они константами не являются.

а) При θ = 1 имеем, что φ(t) = d2e
d1t, где d1, d2 здесь и далее — произ-

вольные ненулевые константы. Тогда из 1-го уравнения (22) получаем,
что ψ(t) = φφ′ = d1d

2
2e

2d1t. Можно убедиться, что 2-е и 3-е уравнения
(22) в данном случае являются верными равенствами. Таким образом,
найдено решение

u = d1d
2
2e

2d1tp

(
x+ αt

d2ed1t

)
, v = d1d

2
2e

2d1tq

(
x+ αt

d2ed1t

)
. (23)

Функции p(z) и q(z) в (23) удовлетворяют системе

β1(pq
′′ + p′q′) + zp′ − 2p+A3q

λp1−λ −A4p = 0,

−β2(qp′′ + p′q′) + zq′ − 2q +B3p
µq1−µ −B4q = 0,

(24)

где A3 = A1/d1, B3 = B1/d1, A4 = A2/d1, B4 = B2/d1.
б) При θ ̸= 1, θ ̸= 2 имеем, что φ(t) = (d1t + d2)

(θ−2)/(2θ−2), тогда из
1-го уравнения (22) получаем, что ψ(t) = φφ′ = [d1(θ− 2)/(2θ− 2)](d1t+

d2)
1/(1−θ), 2-е и 3-е уравнения (22) также выполнятся. Итак, в данном

случае решение имеет следующий вид:

u =
d1(θ − 2)
2θ − 2

(d1t+ d2)
1/(1−θ)p

(
x+ αt

(d1t+ d2)
(θ−2)/(2θ−2)

)
,

v =
d1(θ − 2)
2θ − 2

(d1t+ d2)
1/(1−θ)q

(
x+ αt

(d1t+ d2)(θ−2)/(2θ−2)

)
.

(25)

Функции p(z) и q(z) в (25) удовлетворяют системе

β1(pq
′′ + p′q′) + zp′ − 2p

2−θ +A3q
λpθ−λ −A4p

θ = 0,

−β2(qp′′ + p′q′) + zq′ − 2q
2−θ +B3p

µqθ−µ −B4q
θ = 0,

(26)

где A3 = A1[(θ − 2)/(2θ − 2)d1]
θ−2, B3 = B1[(θ − 2)/(2θ − 2)d1]

θ−2, A4 =
A2[(θ − 2)/(2θ − 2)d1]

θ−2, B4 = B2[(θ − 2)/(2θ − 2)d1]
θ−2.

Отметим, что система (24) является частным случаем (26) при θ = 1.
в) При θ = 2 у системы (22), очевидно, нет решений, которые не яв-

ляются константами.
Рассмотрим теперь случай φ,ψ = const. Тогда система (21) имеет вид

β1(pq
′′+p′q′)+A3q

λpθ−λ−A4p
θ = 0, −β2(qp′′+p′q′)+B3p

µqθ−µ−B4q
θ = 0.

(27)
Здесь A3 = A1ψ

θ−2φ2, B3 = B1ψ
θ−2φ2, A4 = A2ψ

θ−2φ2, B4 = B2ψ
θ−2φ2.

Можно убедиться, что, используя представление (27), невозможно полу-
чить решения искомого вида, удовлетворяющие задаче (2), (3).
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5 Численное решение

Численное решение нелинейных параболических уравнений и систем
основано, как правило, на дискретизации по времени и выборе подхо-
дящего метода решения пространственной задачи. Наиболее популярны
среди них метод конечных разностей (МКР) [36] и метод конечных эле-
ментов (МКЭ) [37, 38], однако они более подходят к задачам, в которых,
в отличие от рассматриваемой в настоящей работе, область решения не
меняется с течением времени. Отметим, что в упомянутых выше работах
[9, 10] используется МКР. Решения МКР и МКЭ не являются гладки-
ми по пространственным переменным. Последнего недостатка лишен ме-
тод граничных элементов (МГЭ), который для решения неоднородных и
нелинейных задач используется в совокупности с методом двойственной
взаимности (МДВ) [39, 40, 41]. МДВ относится к бессеточным методам
[42], применение которых быстро развивается в последние десятилетия.
Отметим среди них также метод коллокаций [43, 44] и метод фунда-
ментальных решений [45]. Подчеркнем, что основным критерием выбо-
ра метода решения для авторов является получение в качестве искомых
функций непрерывно дифференцируемых по пространственным пере-
менным выражений, что существенно упрощает верификацию решений,
а также дает возможность проведения их количественного и качествен-
ного анализа. В своих предыдущих работах [46, 32, 35] мы использовали
разностную дискретизацию по времени, а пространственную задачу ре-
шали с помощью МГЭ в сочетании с МДВ либо методом коллокаций.
В обоих случаях основой решения является аппроксимация радиальны-
ми базисными функциями (РБФ) [43, 47]. Отметим, что алгоритмически
эти два подхода очень близки, однако опыт показал, что при решении
систем лучшую сходимость обеспечивает метод коллокаций.

Решение задачи (2), (3) будем искать в области ненулевых значений
двух искомых функций, x ∈ [a(t), b(t)]. Разрешим уравнения системы (2)
относительно старших производных,

uxx =
α2vx − β2uxvx − vt + g(u, v)

β2v
, vxx =

−α1ux − β1uxvx + ut − f(u, v)

β1u
,

(28)
и будем строить решение задачи (28), (3) по шагам по времени.

Для корректной постановки задачи в произвольный момент време-
ни сформулируем дополнительные граничные условия для производных
искомых функций. Возьмем в условиях (3) полные производные по вре-
мени:

(ut + uxa
′(t))|x=a(t) = 0, (vt + vxb

′(t))|x=b(t) = 0. (29)

Выразив из соотношений (29) значения производных по времени, и под-
ставив их в систему (2), получим новые граничные условия, связыва-
ющие значения искомых функций и их пространственных производных
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на нулевых фронтах
[(α1 + a′(t))ux(t, x) + β1ux(t, x)vx(t, x) + f(0, v(t, x))] |x=a(t) = 0,

[(α1 + b′(t))vx(t, x)− β2ux(t, x)vx(t, x) + g(u(t, x), 0)] |x=b(t) = 0.
(30)

Предполагая разностную дискретизацию по времени, на каждом шаге
tk = kh, где h — размер шага, будем строить решение краевой задачи
(28), (3), (30) на отрезке x ∈ [lk, Lk], lk = a(tk), Lk = b(tk), в следующем
виде:

u(tk, x) = up(x) + uh(x), v(tk, x) = vp(x) + vh(x). (31)
Здесь up(x), vp(x) — частное решение системы (28), uh(x), vh(x) — ре-
шение соответствующей задачи для однородной системы,

u′′h = 0, v′′h = 0,

uh|x=lk = −up(lk), vh|x=Lk
= −vp(Lk). (32)

Если частное решение найдено, то решение задачи (32), очевидно, имеет
вид

uh = u′h(x− lk)− up(lk), vh = v′h(x− Lk)− vp(Lk), (33)
При этом значения u′h, v

′
h могут быть определены из условий (30).

Поскольку найти частное решение прямыми методами в общем случае
невозможно, решение будем строить итерационно. На начальной итера-
ции примем, что частное решение является нулевым

up(0) ≡ 0, vp(0) ≡ 0. (34)

Далее, на каждой n-й итерации, n ≥ 0, при известном частном решении
up(n), vp(n), решение задачи (32) имеет вид (33)

uh(n) = u′h(n)(x− lk)− up(n)(lk), vh(n) = v′h(n)(x− Lk)vp(n)(Lk)− vp(n)(lk).

(35)
Тогда

u(n) = up(n)(x) + u′h(n)(x− lk)− up(n)(lk),

v(n) = vp(n)(x) + v′h(n)(x− Lk)vp(n)(Lk)− vp(n)(lk). (36)

В уравнениях (34), (35), (36) u(n), up(n), uh(n), v(n), vp(n), vh(n) — n-е
итерации решений.

Чтобы найти неизвестные значения u′h(n), v
′
h(n), подставим решение

(36) в граничные условия (30). Получим систему двух алгебраических
уравнений относительно этих величин:

[α1 + a′(t)]
[
u′p(n)(lk) + u′h(n)

]
+ β1

[
u′p(n)(lk) + u′h(n)

] [
v′p(n)(lk) + v′h(n)

]
+

+f(0, vp(n)(lk)) + v′h(n)[lk − Lk]− vp(n)(Lk)) = 0,

[α2 + b′(t)]
[
v′p(n)(Lk) + v′h(n)

]
− β2

[
u′p(n)(Lk) + u′h(n)

] [
v′p(n)(Lk) + v′h(n)

]
+

+g(up(n)(Lk), 0) + u′h(n)(Lk − lk)− up(n)(lk) = 0. (37)
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Подстановка решения системы (37) в (36) даст нам окончательный вид
n-й итерации решения задачи (28), (3), (30).

После этого находим следующую, n + 1-ю, итерацию частного реше-
ния системы (28), подставив в правые части уравнений найденную n-ю
итерацию:

u′′p(n+1) =
α2v

(n)
x − β2u

(n)
x v

(n)
x − v

(n)
t + g(u(n), v(n))

β2v(n)
,

v′′p(n+1) =
−α1u

(n)
x − β1u

(n)
x v

(n)
x + u

(n)
t − f(u(n), v(n))

β1u(n)
.

(38)

Система (38) может быть решена методом коллокаций [43] через раз-
ложение правых частей по системе радиальных базисных функций:

α2v
(n)
x − β2u

(n)
x v

(n)
x − v

(n)
t + g(u(n), v(n))

β2v(n)
=

N∑
i=1

c
(n+1)
i Φi(x),

−α1u
(n)
x − β1u

(n)
x v

(n)
x + u

(n)
t − f(u(n), v(n))

β1u(n)
=

N∑
i=1

d
(n+1)
i Φi(x).

(39)

где Φi(x) = Φi (|x− xi|) — РБФ, x1, x2, . . . , xN – точки коллокации, рас-
положенные на отрезке [lk, Lk]. Для каждой функции Φi существует
функция Ψi, такая что Φi = Ψ′′

i . Коэффициенты c
(n+1)
i , d

(n+1)
i , i = 1, ..., N ,

определяются из решения двух систем линейных алгебраических урав-
нений,

α2v
(n)
x − β2u

(n)
x v

(n)
x − v

(n)
t + g(u(n), v(n))

β2v(n)

∣∣∣∣
x=xj

=
N∑
i=1

c
(n+1)
i Φi(xj);

−α1u
(n)
x − β1u

(n)
x v

(n)
x + u

(n)
t − f(u(n), v(n))

β1u(n)

∣∣∣∣
x=xj

=

N∑
i=1

d
(n+1)
i Φi(xj),

j = 1, ..., N. (40)

Производные по времени в левых частях (40) вычисляются методом ко-
нечных разностей, с использованием результатов решения на предыду-
щем шаге. С учетом того, что область решения с течением времени из-
меняется, разностная формула зависит от положения точки коллокации:
1) если xj < a(tk−1),

∂u(n)(tk, xj)

∂t
=

u(n)(tk, xj)

tk − a−1(xj)
,

∂v(n)(tk, xj)

∂t
=
v(n)(tk, xj)− v(tk−1, a(tk−1))− vx(tk−1, a(tk−1))[xj − a(tk−1)]

h
;
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2) если a(tk−1) ≤ xj ≤ b(tk−1),

∂u(n)(tk, xj)

∂t
=
u(n)(tk, xj)− u(tk−1, xj)

h
,

∂v(n)(tk, xj)

∂t
=
v(n)(tk, xj)− v(tk−1, xj)

h
;

3) если xj > b(tk−1),

∂u(n)(tk, xj)

∂t
=
u(n)(tk, xj)− u(tk−1, b(tk−1))− ux(tk−1, b(tk−1))[xj − b(tk−1)]

h
,

∂v(n)(tk, xj)

∂t
=

v(n)(tk, xj)

tk − b−1(xj)
.

Здесь t = a−1(x) – функция, обратная к x = a(t), t = b−1(x) – обратная к
x = b(t). Таким образом, a−1(xj) – это момент времени, когда функция
u(t, x) равна нулю в точке xj , b−1(xj) – момент, когда функция v(t, x)
равна нулю в точке xj .

Решив (40), мы найдем следующую итерацию частного решения си-
стемы (28):

up(n+1) =
N∑
i=1

c
(n+1)
i Ψi(x), vp(n+1) =

N∑
i=1

d
(n+1)
i Ψi(x). (41)

Итерационный процесс (34)–(41) останавливается, если (n+ 1)-я итера-
ция достаточно близка к n-й. В результате мы получим решение задачи
(2), (3) в момент времени t = tk, непрерывное по x на отрезке x ∈ [lk, Lk]:

u(tk, x) = up(n+1)(x)+uh(n+1)(x), v(tk, x) = vp(n+1)(x)+vh(n+1)(x). (42)

6 Вычислительный эксперимент

В данном разделе проведен качественный и количественный анализ
аналитических решений в виде отрезков рядов, построенных в доказа-
тельстве теоремы, а также выполнены расчеты с помощью предложен-
ного численного алгоритма, для верификации которых использованы
невязки уравнений системы (2) и точные решения. Далее приводятся и
обсуждаются результаты расчетов.

Пример 1. Теорема 1 обеспечивает существование аналитического
решения задачи (2), (3) вблизи начального момента времени. Оценить
радиус сходимости построенных рядов, а также возможность использо-
вания полученного решения в практических или тестовых целях априори
невозможно. В связи с этим исследуем свойства отрезков рядов (7)

uan(t, x) =
∑

k+l≤n

uk,l
tk[x− a(t)]l

k!l!
, van(t, x) =

∑
k+l≤n

vk,l
tk[x− a(t)]l

k!l!
, (43)
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а также аналогичных, построенных по степеням [x− b(t)],

ubn(t, x) =
∑

k+l≤n

uk,l
tk[x− b(t)]l

k!l!
, vbn(t, x) =

∑
k+l≤n

vk,l
tk[x− b(t)]l

k!l!
. (44)

Для примера рассмотрим случай нелинейности Лотки-Вольтерры, когда
f(u, v) = (γ1 − η1v)u, g(u, v) = (γ2u− η2)v.

Корректность приближенных решений (43) будем оценивать невязка-
ми уравнений (2),

δa1 = max
x∈[a(t),b(t)]

|uat − α1u
a
x − β1(u

avaxx + uaxv
a
x)− f(ua, va)|,

δa2 = max
x∈[a(t),b(t)]

|vat − α2v
a
x + β2(v

auaxx + uaxv
a
x)− g(ua, va)|, (45)

а также погрешностью выполнения второго условия (3),

δa3 = |va(t, b(t))| , (46)

Аналогично, для отрезков рядов (44) будем оценивать значения

δb1 = max
x∈[a(t),b(t)]

|ubt − α1u
b
x − β1(u

bvbxx + ubxv
b
x)− f(ub, vb)|,

δb2 = max
x∈[a(t),b(t)]

|vbt − α2v
b
x + β2(v

bubxx + ubxv
b
x)− g(ub, vb)|, (47)

δb3 =
∣∣∣ub(t, a(t))∣∣∣ . (48)

Проиллюстрируем расчеты, произведенные при следующих парамет-
рах задачи: α1 = 7, α2 = 5, β1 = 3, β2 = 4, γ1 = η1 = γ2 = η2 = 1,
a(t) = −0.15t2, b(t) = 0.1t2.

На рис. 1 показаны графики отрезков рядов (43), (44) при n = 20.
Значения невязок, приведенные в табл. 1, показывают, что ряды (43),
(44) сходятся по крайней мере на отрезке x ∈ [0, 1]. При этом с течени-
ем времени для решения (43) растет погрешность выполнения второго
условия (3), а для (44) – первого. Например, при t = 1 функция ub20(t, x)
обращается в нуль в точке x = −0.1444901464, тогда как a(1) = −0.15;
va20(t, x) = 0 в точке x = 0.1022829333, при этом b(1) = 0.1. Таким обра-
зом, функции (43) (или (44)) при достаточно больших n можно считать
приближенными решениями задачи (2), (3) лишь вблизи начального мо-
мента времени.

Представляет эмпирический интерес использовать в качестве прибли-
женного решения задачи (2), (3) пары функций uan(t, x), vbn(t, x), для
которых априори будут выполнены условия (3). Точность выполнения
уравнений (2) можно оценить невязками

∆1 = max
x∈[a(t),b(t)]

|uat − α1u
a
x − β1(u

avbxx + uaxv
b
x)− f(ua, vb)|,

∆2 = max
x∈[a(t),b(t)]

|vbt − α2v
b
x + β2(v

buaxx + uaxv
b
x)− g(ua, vb)|. (49)

В момент t = 1 при n = 5: ∆1 = 2.2 · 10−2, ∆2 = 1.4 · 10−2; при n = 10:
∆1 = 2.2 ·10−2, ∆2 = 1.8 ·10−2; при n = 20: ∆1 = 2.1 ·10−2, ∆2 = 1.7 ·10−2.
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Рис. 1. Отрезки рядов (43), (44) при t = 1: 1 – ua20(t, x),
2 – va20(t, x), 3 – ub20(t, x); 4 – vb20(t, x).

Таблица 1. Невязки уравнений и погрешности нулевых
фронтов для решений (43), (44)

t n δa1 δa2 δa3 δb1 δb2 δb3
0.1 5 3.3 · 10−9 2.7 · 10−8 7.8 · 10−6 8.5 · 10−9 4.6 · 10−9 4.5 · 10−6

0.1 10 1.4 · 10−9 1.1 · 10−8 7.8 · 10−6 3.4 · 10−9 1.6 · 10−9 4.5 · 10−6

0.1 20 1.4 · 10−9 6.1 · 10−9 7.8 · 10−6 3.4 · 10−9 1.6 · 10−9 4.5 · 10−6

0.5 5 6.9 · 10−6 1.1 · 10−4 7.6 · 10−4 1.4 · 10−5 7.7 · 10−6 7.5 · 10−4

0.5 10 1.4 · 10−8 2.1 · 10−8 7.6 · 10−4 3.9 · 10−9 7.7 · 10−9 7.5 · 10−4

0.5 20 1.3 · 10−9 6.9 · 10−9 7.6 · 10−4 1.8 · 10−9 3.0 · 10−9 7.5 · 10−4

1 5 1.0 · 10−3 3.6 · 10−3 5.1 · 10−3 1.3 · 10−3 2.8 · 10−3 7.3 · 10−3

1 10 1.3 · 10−7 2.5 · 10−6 5.2 · 10−3 2.8 · 10−6 2.1 · 10−6 7.3 · 10−3

1 20 6.7 · 10−9 2.2 · 10−8 5.2 · 10−3 1.9 · 10−9 3.2 · 10−9 7.3 · 10−3

При тех же параметрах задача (2), (3) была решена численно с помо-
щью алгоритма, описанного в предыдущем разделе. Точность решения
оценивалась невязками δ1, δ2 уравнений системы (2), аналогично (43),
(44). Производные по времени при этом вычислялись разностно. Приве-
денные в табл. 2 данные демонстрируют сходимость алгоритма относи-
тельно шага по времени h и числа точек коллокаций N .

Пример 2. Рассмотрим теперь пример построения точного решения
системы (19) и его использования для верификации алгоритма численно-
го решения. Рассмотрим случай б), когда решение имеет вид (25). Решим
для этого систему ОДУ (26) на некотором отрезке z ∈ [z1, z2] с краевыми
условиями

p(z1) = 0, q(z2) = 0, (50)
которым из (26) соответствуют краевые условия на производные:

p′(z2) =
z2
β2
, q′(z1) = − z1

β1
. (51)
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Таблица 2. Невязки уравнений (2) для численных решений

t h N δ1 δ2
0.5 0.1 10 1.3 · 10−3 2.5 · 10−3

0.5 0.1 20 2.0 · 10−4 6.0 · 10−4

0.5 0.05 10 1.1 · 10−3 1.5 · 10−3

0.5 0.05 20 1.7 · 10−4 4.7 · 10−4

1 0.1 10 2.3 · 10−3 2.2 · 10−3

1 0.1 20 4.9 · 10−4 8.8 · 10−4

1 0.05 10 5.9 · 10−4 2.0 · 10−3

1 0.05 20 4.3 · 10−4 7.2 · 10−4

Получить решение задачи (26), (50), (51) в конечной форме вряд ли воз-
можно, поэтому воспользуемся итерационным подходом, предложенным
в предыдущем разделе. Решение будем строить в виде p(z) = p1(z) +
p2(z), q(z) = q1(z) + q2(z), где p1(z), q1(z) – частное решение системы
(26), p2(z), q2(z) – решение краевой задачи для однородной системы

p′′2 = 0, p2(z1) = 0, p′2(z2) =
z2
β2
,

q′′2 = 0, q2(z2) = 0, q′2(z1) = − z1
β1
. (52)

Итерационная процедура имеет вид

p1(0) ≡ 0, q1(0) ≡ 0, (53)

p2(n) =
z2
β2

(z − z1), q2(n) = − z1
β1

(z − z2), (54)

p(n) = p1(n) + p2(n), q(n) = q1(n) + q2(n), (55)

p′′1(n+1) = −p′(n)q
′
(n) +

1

β2q(n)

(
zq′(n) −

2q(n)

2− θ
+B3p

µ
(n)q

θ−µ
(n) −B4q

θ
(n)

)
,

q′′1(n+1) = −p′(n)q
′
(n) −

1

β1p(n)

(
zp′(n) −

2p(n)

2− θ
+A3q

λ
(n)p

θ−λ
(n) −A4p

θ
(n)

)
.

(56)
Здесь p(n), q(n), pi(n), qi(n), i = 1, 2, – n-е итерации решений. Система
(56) может быть решена аналогично (39) и (40).

Итерационный процесс останавливается при выполнении следующего
критерия, соответствующего краевым условиям,

max {|p(n+1)(z2)− p(n)(z2)|, |q(n+1)(z1)− q(n)(z1)|} < ε, (57)

где ε > 0 – заданное число.
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Оценку точности алгоритма (53) – (57) проведем с помощью интегра-
лов от невязок уравнений системы (26),

I1 =

∫ z2

z1

∣∣∣∣β1(pq′′ + p′q′) + zp′ − 2p

2− θ
+A3q

λpθ−λ −A4p
θ

∣∣∣∣ dz,
I2 =

∫ z2

z1

∣∣∣∣−β2(qp′′ + p′q′) + zq′ − 2q

2− θ
+B3p

µqθ−µ −B4q
θ

∣∣∣∣ dz. (58)

В табл. 3 приведены значения интегралов (58) в зависимости от числа то-
чек коллокации N при следующих значениях параметров: α = 3.5, β1 =
β2 = 2, A1 = A2 = B1 = B2 = 0.2, θ = 0.2, λ = 0.1, µ = 0.1, d1 =
1, d2 = 0, z1 = 3, z2 = 4, ε = 10−10. Полученные результаты говорят о
сходимости предложенного алгоритма и достаточной точности решения
задачи (26), (50), (51).

Таблица 3. Погрешности (58) уравнений системы (26)

N I1 I2
10 9.8 · 10−3 8.9 · 10−3

20 5.3 · 10−3 4.9 · 10−3

40 2.3 · 10−3 2.1 · 10−3

80 1.1 · 10−3 1.0 · 10−3

Решение задачи (26), (50), (51) на отрезке z ∈ [z1, z2] позволяет по-
строить решение системы (19) вида (25) в произвольный момент време-
ни t > 0 в области x ∈ [z1φ(t) − αt, z2φ(t) − αt]. Таким образом, най-
денное решение может быть использовано как тестовое для численно-
го решения задачи (2), (3), когда (2) имеет вид (19), и в условиях (3)
a(t) = z1φ(t)− αt, b(t) = z2φ(t)− αt.

Задача при тех же значениях параметров была решена с помощью
предложенного численного алгоритма. Сравнение результатов расчетов
с точным решением, показанное на рис. 2, еще раз подтверждает кор-
ректность алгоритма.

7 Заключение

Данной работой авторы продолжили изучение квазилинейной пара-
болической системы второго порядка, предложенной Д. Мюрреем в ка-
честве модели взаимодействия популяций «хищник-жертва». При этом
основное внимание уделяется рассмотрению решений с нулевыми фрон-
тами, на которых система вырождается. Важнейшей целью на настоя-
щем этапе исследований стал поиск таких случаев, для которых в обла-
сти, ограниченной нулевыми фронтами, обе искомые функции положи-
тельны, т.е. допускающих осмысленную интерпретацию с точки зрения
предметной области.
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Рис. 2. Сравнение точного и численного решений, t =
0.6: 1 – u(t, x), точное, 2 – v(t, x), точное, 3 – u(t, x), чис-
ленное, 4 – v(t, x), численное; t = 1: 5 – u(t, x), точное, 6 –
v(t, x), точное, 7 – u(t, x), численное, 8 – v(t, x), численное.

Основным фундаментальным результатом работы является доказа-
тельство теоремы существования у рассмотренной системы в случае раз-
личных нулевых фронтов для двух искомых функций нетривиального
решения типа диффузионной волны, при этом последнее представлено в
виде степенных рядов с рекуррентно определяемыми коэффициентами,
и рекурсия основана на использовании обобщения классической фор-
мулы Фаа-ди-Бруно. Конструктивность доказательства позволила про-
вести качественный и количественный анализ приближенных решений
задачи в виде отрезков степенных рядов и сделать содержательные вы-
воды об их применимости.

Для частного случая найден новый класс точных решений системы,
построение которого посредством обобщенного разделения переменных
сводится к интегрированию систем обыкновенных дифференциальных
уравнений. Показано, что, по крайней мере, в некоторых случаях ре-
шения обладают искомым свойством: существует непустая область, в
которой обе искомые функции положительны.

Предложен пошаговый численный алгоритм с разностной дискрети-
зацией по времени. На каждом шаге итерационно строится непрерывное
по пространственной переменной решение на основе метода коллокаций
и аппроксимации радиальными базисными функциями. Эффективность
и сходимость алгоритма продемонстрирована с помощью оценки невязок
уравнений системы и сравнением с построенным точным решением.

Таким образом, проведено комплексное исследование рассмотренной
системы, при этом все полученные результаты имеют смысл с точки зре-
ния предметной области. Дальнейшие исследования в данном направ-
лении могут быть связаны как с ослаблением требований к гладкости
входных данных в теореме 1, так и с рассмотрением иных, отличных от
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(3), граничных условий, порождающих решения с искомыми свойствами
(нулевыми фронтами).
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