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Abstract: We prove that any finite unar can be isomorphically
embedded into a unar of the remainders of the division by a prime
p with unary operation f(x) = xd mod p for suitable prime p and
natural number d.
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1 Введение

Представления алгебраических систем системами специального вида
– распространённая в математике практика. Она позволяет прояснить
строение алгебраической системы, установить некоторые её свойства.
Ярким примером является представление группы подстановками или
матрицами. В работе [1] было доказано существование изоморфного вло-
жения любого конечного унара в унар остатков от деления на n с опера-
цией f(x) = xa и в унар с операцией f(x) = xd, где n и a – подходящие
натуральные числа, а операции осуществляются по модулю n (параметр
d при этом может быть взят любым натуральным числом, бльшим 1).
В настоящей работе мы доказываем, что произвольный конечный унар
можно вложить в мультипликативную группу конечного простого по-
ля (порядка p), рассматриваемую как унар с операцией f(x) = xd при

Aidagulov, R.R., Kozhukhov, I.B., Letsko, V.A., Representations of unars
by the residues modulo a prime.

© 2025 Aidagulov R.R., Kozhukhov I.B., Letsko V.A..
Поступила 10 октября 2025 г., опубликована 9 декабря 2025 г.

1507



1508 Р.Р. АЙДАГУЛОВ, И.Б. КОЖУХОВ, В.А. ЛЕЦКО

подходящих d и p, причем простое число p можно выбрать бесконечным
количеством способов.

Унар (в другой терминологии – моноунарная алгебра) – это алгебра
с одной унарной операцией, т.е. множество U с заданным отображением
f : U → U . Унар можно рассматривать как полигон над бесконечной
циклической полугруппой S = {t, t2, t3, . . .} (см. [2, п. 3.4]) или как ав-
томат Мура с однобуквенным входным алфавитом. Интересующие нас
конечные унары также рассматривают как динамические системы или
функциональные графы.

Для произвольной полугруппы S и элемента a ∈ S можно рассмотреть
унар (S, ∗a), т.е. S с унарной операцией f(x) = xa для x ∈ S.

Для натуральных чисел n, a, d ≥ 2 пусть Zn = {0, 1, . . . , n− 1} – мно-
жество остатков от деления целых чисел на n, а (Zn, ∗a) и (Zn,

∧ d) –
унары с операциями f(x) = xa и f(x) = xd соответственно, где умно-
жение и возведение в степень осуществляются по модулю n. И пусть Z∗

n

– множество элементов из Zn, имеющих обратный элемент по умноже-
нию. Очевидно, (Z∗

n,
∧ d) является подунаром унара (Zn,

∧ d), а (Z∗
n, ∗a) –

подунаром унара (Zn, ∗a) в случае, когда a ∈ Z∗
n, т.е. когда a взаимно

просто с n.
Хорошо известно, что Zn является кольцом относительно операций

сложения и умножения по модулю n, а Z∗
n – группа относительно умно-

жения по модулю n. Однако, на элементы множества Zn можно смотреть
как на обычные целые числа, что мы и будем делать в вопросах, свя-
занных с делимостью, разложением на множители и т.д. Если a и n –
взаимно простые натуральные числа, то ordn(a) обозначает наименьшее
натуральное k такое, что ak ≡ 1 mod n (т.е. ordn(a) – порядок элемента
a в группе Z∗

n). Интересное применение имеют унары Zn с операцией
f(x) = xd + 1 mod n в вопросах факторизации чисел (см. [3]).

Основные сведения из теории унаров можно найти в [4], некоторые
определения и обозначения мы приведем в следующем разделе.

В работе [1] был приведен краткий обзор результатов по представле-
ниям унаров вычетами.

2 Основные определения и обозначения

Пусть (U, f) – унар. Для x ∈ U полагаем f0(x) = x, f1(x) = f(x) и
fn+1(x) = f(fn(x)) при n ≥ 1. Унар U можно считать ориентированным
графом с вершинами – элементами множества U и рёбрами (x, f(x)) для
x ∈ U . Унар называется связным, если его граф связен. Если унар U яв-
ляется объединением своих попарно не пересекающихсчя подунаров Ui

(i ∈ I), то мы будем говорить, что U является копроизведением (в другой
терминологии – прямой суммой) унаров Ui, и писать U =

∐
i∈I Ui. Ясно,

что любой унар являентся копроизведением своих компонент связно-
сти.
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Цикл из k элементов будем обозначать Ck. Элемент x называется цик-
лическим, если fk(x) = x при некотором k ≥ 1 (или, что эквивалентно,
элемент, лежащий в каком-нибудь цикле). Через ⟨x⟩ обозначаем поду-
нар, порождённый элементом x, т.е. ⟨x⟩ = {fn(x)|n ≥ 0}. Пусть x ∈ U
таков, что ⟨x⟩ – конечное множество. Тогда найдутся такие h ≥ 0 и
t > 0, что fh+t(x) = fh(x). Если h и t – наименьшие числа с этим свой-
ством, то они называются соответственно глубиной h(x) и периодом p(x)
элемента x. Ясно, что в конечном унаре каждый элемент имеет глуби-
ну и период. Степень degx элемента x унара – это мощность полного
прообраза: degx = |f−1(x)|. Элемент степени 0 назовём минимальным.
Минимальных элементов может и не быть.

Для конечного унара U полагаем h(U) = max{h(x)|x ∈ U}, r(U) =
max {deg x|x ∈ U}.

Хорошо известно, что бинарное отношение, заданное по правилу x ∼
y ↔ ∃s, t f s(x) = f t(y), является конгруэнцией унара U . Очевидно,
классы эквивалентности этой конгруэнции являются компонентами связ-
ности унара U . Также ясно, что каждая компонента связности конечного
унара содержит ровно один цикл.

Для натурального числа n рассмотрим множество Zn = {0, 1, . . . , n−
1} всех остатков от деления на n. Множество Zn с операцией умножения
по модулю n является конечной коммутативной полугруппой, обозна-
чим её (Zn, ∗). Если зафиксировать какое-либо a ∈ Zn, то отображение
Zn → Zn, x 7→ x · a, будет являться унарной операцией. Соответствую-
щий унар обозначим так: (Zn, ∗a). Другой унар возникает на множестве
Zn относительно операции возведения в степень: Zn → Zn, x 7→ xd. Обо-
значим этот унар следующим образом: (Zn,

∧d).
В настоящей работе через Z∗

n мы будем обозначать мультипликатив-
ную группу кольца вычетов Zn. Она состоит в точности из элементов
кольца Zn, имеющих обратный элемент по умножению, или, что экви-
валентно, взаимно простых с n. Всюду в работе (a, b) будет обозначать
наибольший общий делитель чисел a и b, а [a, b] – наименьшее общее

кратное этих же чисел. Далее, a
... b и c | d обозначают соответственно "a

делится на b" и "c делит d".

3 Утверждение о выборе числа с заданными порядками

В этом разделе мы докажем наличие числа, имеющего заданные по-
рядки по модулям подходящих простых чисел.

Приведём некоторые алгебраические определения, нужные нам для
дальнейшего. Многочлен называется унитарным, если его старший ко-
эффициент равен 1.Для простого числа p и любого натурального числа
a положим

νp(a) = max{t : pt | a}.
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Для натурального числа n круговой многочлен Φn(x) определяется сле-
дующим образом (см. [5, §13]):

Φn(x) =
∏

(i,n)=1, 0≤i<n

(x− θi),

где θ – первообразный корень n-й степени из 1. Известно, что Φn(x) –
унитарный многочлен с целыми коэффициентами со свободным членом,
равным 1 или −1. Имеет место следующее разложение многочлена xn−1
на неприводимые множители над полем Q:

xn − 1 =
∏
d |n

Φd(x).

Лемма 1. Если p – простой делитель числа am − 1, то ordp(a) |m.

Доказательство. Так как am − 1
... p, то am = 1 в группе Z∗

p. Следова-
тельно, ordp(a)|m. □

Лемма 2. Если d|m и p – простой делитель числа am/d − 1, причём
p ̸ | d, то νp(a

m − 1) = νp(a
m/d − 1).

Доказательство. Пусть l = νp(a
m/d − 1). По условию l ≥ 1. Имеем:

am/d − 1 = plc, где p ̸ |c. Далее получаем:

am − 1 = (1 + plc)d − 1 = dplc+
d∑

j=2

Cj
dp

ljcj .

Так как p ̸ |d, c, то νp(dp
lc) = l, в то время как νp(C

j
dp

ljcj) ≥ lj > l при
j ≥ 2, поэтому νp(a

m − 1) = l. □

Следствие 1. Если простое число p | am/d−1 и p ��| d, то (am−1)/(am/d−

1) �
�... p.

Лемма 3. Если p – простое число, a ≥ 2, p |Φn(a) и p ��|n, то ordp(a) = n.

Доказательство. Предположим, что это не так, т.е. ordp(a) ̸= n. По
лемме 1 ordp(a) = n/d, где d|n и d > 1. Так как p ̸ |n, то p ̸ |d. По
следствию из леммы 2 (an − 1)/(an/d − 1) не делится на p. Имеем:

an − 1 =
∏
t|n

Φt(a) = Φn(a) · (an/d − 1) ·
∏

t|n,t̸|n/d

Φt(a).

Отсюда видно, что (an − 1)/(an/d − 1)
... p. Мы получили противоречие, а

значит, ordp(a) = n. □
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Лемма 4. Если (n, k) = 1, то Φk(x) |Φk(x
n).

Доказательство. Пусть θ – первообразный корень k-й степени из 1. То-
гда Φk(x) =

∏
(i,k)=1(x− θi). Так как Φk(x) не имеет кратных корней, то

достаточно доказать, что все корни многочлена Φk(x) являются корня-
ми многочлена Φk(x

n). Возьмём произвольный корень многочлена Φk(x).
Он имеет вид θi, где (i, k) = 1. Так как (n, k) = 1, то θni = θj при неко-
тором j таком, что (j, k) = 1 и 0 ≤ j < k. Следовательно, θi – корень
многочлена Φk(x

n). □

Следствие 2. Для любого целого числа a при (n, k) = 1 имеет место
соотношение Φk(a) |Φk(a

n).

Доказательство. Действительно, так как Φk(x) и Φk(x
n) – унитарные

многочлены и Φk(x) |Φk(x
n), то Φk(x

n) = Φk(x) · f(x), где f(x) – много-

член с целыми коэффициентами. Поэтому Φk(a
n)

...Φk(a). □

Лемма 5. Числа a и Φn(a) взаимно просты.

Доказательство. Многочлен Φn(x) является многочленом с целыми ко-
эффициентами со старшим коэффициентом 1 и со свободным членом
±1, поэтому Φn(a) = am + α1a

m−1 + . . . + αm−1a ± 1, где α1, . . . , αm−1 –
целые числа. Следовательно, (Φn(a), a) = 1. □

Обозначим через rad(a) произведение всех простых делителей числа
a.

Лемма 6. Если n, a ≥ 2 – натуральные числа, то Φn(a) ≥ 2.

Доказательство. Имеем: Φn(a) =
∏

(i,n)=1(a−θi). Так как |a−θi| > 1 при
(i, n) = 1, то |Φn(a)| > 1. Но Φn(a) – натуральное число. Следовательно,
Φn(a) ≥ 2. □

Предложение 1. Пусть k1, . . . , ks ≥ 2 – натуральные числа, необяза-
тельно различные. Тогда существуют различные простые числа p1, . . . , ps
и число b такие, что ordpib = ki при i = 1, . . . , s.

Доказательство. Перенумеруем числа k1, . . . , ks так, чтобы первые не-
сколько чисел k1, . . . , kt были различны, а каждое из остальных совпада-
ло с одним из k1, . . . , kt. Пусть ki (1 ≤ i ≤ t) входит в набор k1, . . . , ks ров-
но li раз. Положим l = max(l1, . . . , lt). Возьмём число u такое, что 2u > l.
Далее, возьмём какие-либо различные простые числа q1, . . . , qu��|rad(k1 . . . kt).
Положим m = q1 . . . qu, a = m · rad(k1 . . . kt) и b = am.

Пусть D – множество всех делителей d числа m таких, что d > 1.
Очевидно, |D| = 2u − 1, и по ранее обусловленному 2u ≥ l. Для i ≤ t и
d ∈ D рассмотрим Φkid(a). По лемме 6 Φkid(a) ≥ 2. Пусть pi,d – какой-
либо простой делитель числа Φkid(a):

pi,d |Φkid(a) (i = 1, . . . , t, d ∈ D).
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Так как |D| ≥ li при всех i ∈ {1, . . . , t}, то нам достаточно будет доказать,
что числа pi,d различны и ordpi,db = ki при всех i, d.

Применяя несколько раз теорему 13.5 из [5], получим, что Φkid(x) |Φki(x
d),

а так как m/d и ki взаимно просты, то по лемме 4 Φki(x
d) |Φki(x

m). Та-
ким образом, Φkid(x) |Φki(x

m). Так как все эти многочлены унитарные,
то

pi,d |Φkid(a) |Φki(a
d) |Φki(a

m) = Φki(b).

Докажем, что pi,d��| kid. Предположим, что pi,d | kid. Так как pi,d – про-
стое, то либо pi,d | ki, либо pi,d | d. Разберём эти случаи в отдельности.

1-й случай: pi,d | ki. Тогда pi,d |a. Но соотношения pi,d | a и pi,d |Φkid(a)
противоречат друг другу, так как по лемме 5 числа a и Φn(a) взаимно
просты.

2-й случай: pi,d | d. Так как d – произведение каких-либо из чисел
q1, . . . , qu, то pi,d = qj при некотором j. Следовательно, pi,d | a. Мы снова
получаем, что pi,d | a и pi,d |Φkid(a), т.е. противоречие с леммой 5.

Таким образом, pi,d ��| kid. Так как pi,d |Φkid(a) и pi,d ��| kid, то по лемме 3
ordpi,da = kid. Отсюда ясно, что все pi,d различны.

Осталось доказать, что ordpi,db = ki. Действительно, мы ранее дока-
зали, что pi,d |Φki(b). Так как pi,d – простые и pi,d ��| ki, то по лемме 3
ordpi,db = ki. □

4 Вложение конечного унара в унар (Z∗
p,

∧d)

Теперь мы готовы доказать основной результат.

Теорема 1. Для каждого конечного унара существует точное его пред-
ставление в (Z∗

p,
∧d) при подходящих натуральном d и простом p.

Доказательство. Пусть конечный унар U характеризуется следующими
параметрами:

r(U) = r – максимум степеней элементов;
h(U) = h – максимальная глубина элементов;
l – количество петель;
c1, . . . , ct – длины циклов компонент связности, не содержащих петель.
Пусть натуральные числа d, n1, . . . , nt таковы, что d ≥ r, d − 1 ≥ l

и для всех i ∈ {1, . . . , t} ordnid = ci. Существование такоих чисел га-
рантируется предложением 1. Рассмотрим арифметическую пргрессию
1+ i ·dh[d−1, n1, . . . nt] (i = 1, 2, . . .). По теореме Дирихле о простых чис-
лах в арифметической прогрессии (см., например, [6, глава V, §3, теорема
3]) в этой прогрессии бесконечно много простых чисел. Возьмём любое
из них и обозначим его чероез p.

Докажем, что U изоморфно вкладывается в унар (Z∗
p,

∧d). В самом
деле, (Z∗

p, ·) ∼= (Zp−1,+). Поэтому достаточно обосновать наличие требу-
емых характеристик у унара (Zp−1, ∗d).

Согласно лемме 1 из работы [1] все элементы (Zp−1, ∗d), не являющие-
ся минимальными, имеют степень d, которая по построению не меньше r.
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По лемме 3 из той же работы [1] минимальные элементы унара (Zp−1, ∗d)
имеют глубину, не меньшую h.

Для каждого ni (1 ≤ i ≤ t) в группе (Zp−1, ∗) существует подгруппа,
в которой мультипликативный порядок элемента d равен ci. Поэтому
по лемме 4 из работы [1] соответствующая компонента унара (Zp−1, ∗a)
имеет, по крайней мере, один цикл длины ci. Требуемое число петель
обеспечено тем, что d− 1 | p − 1, откуда следует, что в Z∗

p имеется d − 1

элементов x, для которых xd = x. □

Замечание 1. Значительный произвол в выборе простых чисел в дока-
зательстве предложения 1, а также бесконечность множества про-
стых чисел в арифметической прогрессии с взаимно простыми первым
членом и разностью показывают, что существует бесконечно много
пар чисел d и p, для которых данный конечный унар изоморфно вклады-
вается в (Z∗

p,
∧d).

Замечание 2. Отметим, что числа ni не обязаны быть ни просты-
ми (как в предложении 1), ни даже взаимно простыми. На практике
это позволяет существенно уменьшить подходяшие d и p. Насколько
радидакально это уменьшение, показывает приведенный ниже пример.

Пример 1. Пусть требуется вложить в (Z∗
p,

∧d) унар, характеризу-
ющийся следующими параметрами (в обозначениях теоремы 1): r = 4,
h = 2, l = 3, c1 = 5, c2 = 6, c3 = 8, c4 = 10. Непосредственная про-
верка показывает, что в качестве d можно взять число 5. Поскольку
ord11(5) = 5, ord9(5) = 6, ord32(5) = 8, ord33(5) = 10, можно поло-
жить n1 = 11, n2 = 9, n3 = 32, n4 = 33. Уже при i = 1 число
1+i ·52[5−1, 11, 9, 32, 33] = 79201 явлется простым, и его можно взять
в качестве p. Разумеется, в получаемом унаре возникают и "лишние"
компоненты. В данном случае к 7 требуемым компонентам добавятся
еще 119. Точнее, в cоответствующем унаре глубина минимальных эле-
ментов равна 2, степени остальных элементов равны 5, а компоненты
связности характеризуются списком ⟨1, 4⟩, ⟨2, 10⟩, ⟨4, 6⟩, ⟨5, 8⟩, ⟨6, 8⟩,
⟨8, 6⟩, ⟨10, 20⟩, ⟨12, 4⟩, ⟨20, 12⟩, ⟨24, 4⟩, ⟨30, 16⟩, ⟨40, 12⟩, ⟨60, 8⟩, ⟨120, 8⟩.
Здесь первые числа в каждой паре означают длину цикла, а вторые –
количество компонент, имеющих цикл этой длины.

Таким образом, нам удалось обойтись числами d = 5 и p = 79201,
в то время как минимальное d, определяемое предложением 1, равно
204204017017 (в десятичной записи этого числа более 100 000 знаков), и
простое число p также запредельно большое.
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Zbl 1181.08001

[5] V.V. Prasolov, Polynomials, Springer, 2004. Zbl 1063.12001
[6] Z.I. Borevich, I.R. Shafarevich, Number Theory, Academic Press, New York and

London, 1966. Zbl 0145.04902

Rustem Rimovich Aidagulov
Lomonosov Moscow State Univ.,
Leninskiye Gory, 1,
119991, Moscow, Russia
Email address: a_rust@bk.ru

Igor Borisovich Kozhukhov
National Research Univ. MIET,
Shokin square, 1,
124498, Moscow, Russia
Lomonosov Moscow State Univ.,
Leninskiye Gory, 1,
119991, Moscow, Russia
Email address: kozhuhov_i_b@mail.ru

Vladimir Alexandrovich Letsko
Volgograd State Soc.-Ped. Univ.,
prosp. V.I. Lenina, 27,
400005, Volgograd, Russia
Email address: val-etc@yandex.ru

https://doi.org/10.1007/s10958-023-06287-3
https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.1007/978-3-642-03980-5

	Введение
	Основные определения и обозначения
	Утверждение о выборе числа с заданными порядками
	Вложение конечного унара в унар (Zp,d)

