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Abstract: The paper provides sufficient conditions for the correct
solvability of the truncated Wiener-Hopf equation with a real symbol.
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1 Введение*

Рассматривается уравнение в свертках второго рода на конечном ин-
тервале, которое называют также усеченным уравнением Винера —Хопфа:

u(t)−
τ∫

0

k(t− s)u(s) ds = f(t), t ∈ (0, τ), (1)

где
k ∈ L1(R), f ∈ L1(0,∞), τ > 0. (2)

Легко видеть, что значения функции k(t) вне интервала (−τ, τ) и
функции f(t) вне интервала (0, τ) не влияют на решение уравнения (1).
Для удобства считаем, что k(t), f(t) — заданные функции при t ∈ (−τ, τ)
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и t ∈ (0, τ) соответственно, и произвольные при t /∈ (−τ, τ) и t > τ соот-
ветственно.

Решение уравнения (1) при условии (2) (решение задачи (1)–(2)) будем
искать в L1(0, τ).

Символом уравнения (1) называют функцию S:

S(x) := 1−Fk(x), x ∈ R, (3)

где F– преобразование Фурье,

Fk(x) =

∞∫
−∞

k(t)eixt dt, x ∈ R.

Уравнения типа свертки тесно связаны с различными приложениями.
Это задачи классической математической физики и ее обратные задачи,
задачи информатики, всевозможные задачи современной техники и эко-
номики: ядерной физики, автоматического управления, теории игр, мас-
сового обслуживания и другие [1, с. 6]. Заметим, что в [1] рассматрива-
ются приложения уравнений Винера —Хопфа, усеченные же уравнения
Винера —Хопфа имеют более широкую область применений. Например,
усеченные уравнения Винера —Хопфа лежат в основе одной из моди-
фикации метода Гельфанда–Левитана-Марченко-Крейна [2]–[3]. Метод
используется для решения множества обратных задач, таких как обрат-
ная задача рассеяния или обратные задачи для уравнений волнового
типа. Кроме того, в алгебре Винера порядка два задача факторизации
сводится к усеченному уравнению Винера —Хопфа [4]–[5].

К настоящему времени не существует общей теории уравнения (1) (в
отличие от уравнения Винера —Хопфа [1],[6]). Более того, не существует
теории корректности задачи (1)–(2) с обозримыми условиями коррект-
ности. Успех в исследовании задачи (1)–(2) достигнут лишь в частных
случаях:

В [7] задача (1)–(2) исследована при условии, что ядро имеет следую-
щий общий вид:

k(t) =

m∑
j=1

mj∑
l=1

clje
pj tl, t ∈ (−τ, τ),

где clj , pj — комплексные постоянные.
В [8, теорема 7.2] показано, что существует τ1 > 0, такое что при

всех τ > τ1 решение задачи (1)–(2) существует и единственно, если
выполнено следующее условие

S(x) ̸= 0, x ∈ R, IndS(x) :=
1

2π
∆R argS(x) = 0, (4)

где IndS(x)– индекс функции S.
В [9] приведены результаты исследования задачи (1)–(2) при выпол-

нении неравенства в (4) и условия

F−1{Fk(x)/S(x)}(t) = 0, t < −τ,
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где F−1– обратное преобразование Фурье.
Случай, когда функция k является периодической, с периодом τ , ис-

следован в [10].
Положим

k±(t) = θ(±t) k(t), t ∈ R,

где θ– функция Хевисайда.
Имеем

k(t) = k−(t) + k+(t), t ∈ R, Fk±(x) = F{θ(±t)k(t)}(x).
Хорошо известно, для уравнения типа свертках второго рода на по-

лубесконечном интервале (уравнения Винера —Хопфа) и для скаляр-
ной краевой задачи Римана существуют развитые теории (см., напри-
мер, [1],[6]). Взаимосвязь (эквивалентность) между уравнением Вине-
ра —Хопфа и скалярной краевой задачей Римана —Гильберта была най-
дена в середине прошлого века (см. исторические сведения в [1]).

Изучение уравнений типа свертки на конечном интервале с помощью
векторной краевой задачи Римана —Гильберта началось, по-видимому,
с работы [11]. Развитие этого направления исследования смотри в [12].

В работах автора (см., например, [4]–[5]) развивается направление, в
котором изучается векторная краевой задаче Римана —Гильберта (зада-
ча факторизации) с помощью уравнения типа свертки (1). Была полу-
чена формула взаимосвязи (и найдены условия эквивалентности) меж-
ду задачей (1)–(2) и краевой задачей Римана —Гильберта с матричным
коэффициентом, допускающим стандартную факторизацию в алгебре
Винера порядка 2. Показано [4], что широкий класс краевых задач Ри-
мана —Гильберта (задач факторизации) сводится к задаче (1)–(2).

В данной работе построена матрица-функция, которая допускает ка-
ноническую факторизацию в алгебре Винера порядка 2. Показано, что
задача Римана —Гильберта, коэффициент которой является построен-
ная матрица-функция, сводится к задаче (1)–(2) с вещественным симво-
лом. В виду того, что существование канонической факторизации матрицы-
функции гарантирует корректную разрешимость соответствующей кра-
евой задачи Римана —Гильберта (см. ниже теорему 1), то по доказанной
ниже теореме 2 были получены условия корректной разрешимости за-
дачи (1)–(2) с вещественным символом (см. ниже теоремы 3,4).

Прежде чем перейти непосредственно к краевой задаче Римана —
Гильберта и взаимосвязи этой задачи с усеченным уравнением Вине-
ра —Хопфа, введем следующие обозначения. Для 1 ≤ n,m ≤ 2 положим
Ln×m — пространство n × m матриц-функций с элементами из L1(R),
Ff — образ Фурье матрицы-функции f ∈ Ln×m. R – расширенная веще-
ственная прямая (R — вещественная прямая); Wn×n — алгебра Винера
непрерывных матриц-функций вида C+Ff , где C — постоянная матри-
ца порядка n и f ∈ Ln×n; Wn×n

+ (Wn×n
− ) — подалгебра в Wn×n, состоя-

щая из матриц-функций вида C +Ff таких, что f(t) = 0 при t < 0 (при
t > 0); при C=0 соответствующие алгебры и подалгебры будем снабжать
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нижним индексом 0 (Wn×n
0 , Wn×n

0± ). При n = 1 верхний индекс n× n при
W будем опускать. Если B — некоторая алгебра, то через GB обозначим
группу из обратимых элементов в B. Через Wn×1, Wn×1

± обозначим груп-
пы, состоящие из векторов столбцов матриц-функций из алгебр Wn×n,
Wn×n

± соответственно.

2 Краевая задача Римана —Гильберта

Рассмотрим краевую задачу Римана —Гильберта на расширенной пря-
мой R, в которой требуется найти вектор-функции Φ± := (Φ±

1 ,Φ
±
2 )

T ∈
W2×1

0± по краевому условию:

Φ+(x) = M(x)Φ−(x) + (0, q−(x))T , x ∈ R, (5)

где

M(x) =

(
1 eixτm−(x)

e−ixτm+(x) 1 +m22(x)

)
∈ GW2×2, (0, q−)T ∈ W2×1

0− , (6)

q−(x) =

0∫
−τ

q−(t)e
ixt dt, q− ∈ L1(−τ, 0), (7)

m± ∈ W0±, 1 +m22(x) = dM (x) +m+(x)m−(x), dM ∈ GW. (8)
Легко видеть, что определитель матрицы M равен dM (detM = dM ).

Считаем, что
κ := Ind dM (x) = 0.

Следовательно, справедлива следующая факторизация функции dM (x):

dM (x) = d+M (x) d−M (x), x ∈ R, где d±M ∈ GW±. (9)

Ниже приведем хорошо известные результаты из теории краевой за-
дачи Римана —Гильберта и факторизации матриц-функций (см., напри-
мер, [13, гл. I],[14, §7]).

Будем говорить, что матрица M ∈ GW 2×2 допускает стандартную (ле-
вую) факторизацию, если она представляется в виде следующего произ-
ведения матриц:

M(x) = M+(x)D(x)M−(x), x ∈ R,
где M± ∈ GW 2×2

± (M± — фактор-множители), D(x) - диагональная
матрица-функция,

D(x) =
{(x− i

x+ i

)κ1

,

(
x− i

x+ i

)κ2}
,

κ1 ≥ κ2 — частные индексы матрицы M (целые числа), κ =Ind det M(t) =
2∑

j=1
κj — суммарный индекс матрицы M .

Корректность краевой задачи Римана определяют частные индексы
ее матричного коэффициента. В частности, имеет место следующая
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Теорема 1. Пусть суммарный индекс матрицы M(t) равен нулю. То-
гда для устойчивости чисел p и l (где l – число линейно независимых
решений, p – число условий разрешимости задачи Римана —Гильберта
(5)–(6)) относительно элементов матрицы M(x) необходимо и доста-
точно, чтобы частные индексы матрицы M(x) были равны нулю. Кро-
ме того, если частные индексы матрицы M(x) равны нулю, то одно-
родная задача Римана —Гильберта (5)–(6) имеет только тривиальное
решение, а неоднородная задача корректно разрешима (решение суще-
ствует, единственно и устойчиво по отношению к коэффициентам за-
дачи M и q−).

3 Взаимосвязь между краевой задачей
Римана —Гильберта (5)–(6) и задачей (1)–(2)

Положим

w±
τ (x) := d±M (x)∓m±(x), Ff(x) :=

eixτq−(x)

w+
τ (x)

, (10)

S(x) :=
dM (x) +m+(x)m−(x)

w−
τ (x)w

+
τ (x)

, (11)

где
|w±

τ (z)| > 0, ±Im z ≥ 0
(
z = x+ iy

)
, (12)

S— символ уравнения (1).
Справедлива

Теорема 2. Пусть выполнены соотношения в (10)–(12). Тогда решение
u(t) (образ Фурье решения) усеченного уравнения Винера –Хопфа (1) при
ограничении (2) выражается через решение краевой задачи Римана (5)–
(9) по формуле:

Fu(x) = Φ+
1 (x) + eixτd−M (x)Φ−

2 (x). (13)

Доказательство. Перенесем вектор-столбец (0, q−)T в левую часть кра-
евого условия (5) и обозначим

ϕ2(x) := Φ+
2 (x)− q−.

Далее будем рассуждать также как при доказательстве [4, теоремы 3]
вплоть до равенства [4, (2.9)], в котором, в нашем случае

C2 = 0 = f̂ = 0, Ψ+
1 = Φ+

1 + eixτ d−MΦ−
2 .

Таким образом, равенство [4, (2.9)] будет иметь вид:

(1−Fk(x))Ψ+
1 (x)−

Φ+
2 (x)− q−(x)

w+
τ (x)

eixτ =
d−M (x)Φ−

1 (x)

w−
τ (x)

, x ∈ R. (14)
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Из равенства (14), с учетом второго равенства в (10) и соотношений в [4,
(2.10)–(2.13)] (при C2 = 0), получим исходное уравнение (1). В последнем

f(t) = −F−1{e
ixτq−(x)

w+
τ (x)

}(t), k(t) = F−1{1− S(x)}(t), (15)

где S – символ уравнения (1), который определен формулой (11).
□

Отметим, что выражения для символа уравнения в (11) имеет экви-
валентную форму [5, формула (1.7)]:

S(x) =
d+M (x)

w+
τ (x)

+
d−M (x)

w+
τ (x)

− 1. (16)

4 Условия для корректной разрешимости задачи
Римана —Гильберта (5)–(6)

Из теоремы 1 следует, что для корректной разрешимости задачи Ри-
мана —Гильберта (5)–(6) необходимо и достаточно существование ка-
нонической факторизации матрицы M(x) в (6). Найдем достаточные
условия для существования канонической факторизации матрицы M(x).
Справедлива

Лемма 1. В следующих двух случаях матрица M(x) в (6) допускает
каноническую факторизацию (задача Римана —Гильберта (5)–(6) кор-
ректно разрешима):

(i) m+ = m−, d±M = 1;

(ii) m+ = −m−, d±M = 1±m±,

d−M (x) = 1−m−(x) ̸= 0, m−(x) +m−(x) < 1, x ∈ R. (17)

Доказательство. Доказательство начнем со случая (i). Легко видеть,
что в этом случае матрица-функция M(x) положительно определенная.
Тогда матрица-функция M(x) допускает каноническую факторизацию
[15].

Перейдем к доказательству случая (ii). В этом случае матрица-функция
M(x) имеет следующий вид:

M(x) =

(
1 eixτm−(x)

−e−ixτm−(x) 1−m−(x)−m−(x)

)
.

Имеем

MR(x) :=
M(x) +M∗(x)

2
=

{
1, 1−m−(x)−m−(x)

}
,

где
M∗(x) = MT (x), T − знак транспонирования.

Из второго неравенства в (17) следует, что detMR(x) ̸= 0, x ∈ R.Таким
образом, эрмитова матрица-функция MR(x) положительно определена.
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Тогда по [14, теорема 8.1] получим, что матрица-функция M(x) допус-
кает каноническую факторизацию в случае (ii). □

5 Уравнение (1) с вещественным символом

Имеет место

Теорема 3. Пусть выполнено неравенство

||k−||1 =
∞∫

−∞

|k−(t)| dt < 1. (18)

Если символ уравнения (1) вещественен и для него справедливо нера-
венство

S(x) = 1−Fk−(x)−Fk−(x) > 0, x ∈ R, (19)

то уравнение (1) корректно разрешимо в L1(0, τ) для любой его правой
части f ∈ L1(0, τ).

Доказательство. Поставим в соответствие задаче (1)–(2) краевую за-
дачу Римана —Гильберта (5)–(6) так, чтобы выполнялись теорема 2 и
лемма 1 с условием (ii). Для этого положим

m− := Fk−, m+ := −m−, d±M := 1±m± (dM = |1−Fk−|2). (20)

Тогда из (10)–(11) получим

w±
τ (x) = 1, Ff(x) = eixτq−(x), S(x) = dM (x) +m+(x)m−(x). (21)

Легко видеть, что условия теорема 2 и лемма 1 (с условием (ii)) выпол-
нены. Следовательно, по лемме 1 краевая задача Римана —Гильберта
(5)–(6) корректно разрешима.Тогда из теоремы 2 и равенств в (15) сле-
дует, что решение задачи (1)–(2) существует, единственно и справедлива
оценка:

||u||1 ≤ ||Φ+
1 ||W + ||d−M (x)||W ||Φ−

2 ||W , (22)

где ||.||W – норма в алгебре Винера. Из оценки (22) вытекает, что задача
(1)–(2) устойчива. Из последнего равенства в (21) имеем

S(x) = 1−Fk−(x)−Fk−(x). (23)

□

Рассмотрим другой случай, когда символ уравнения (1) вещественен
и задан формулой

S(x) =
1

1 +m−(x)
+

1

1 +m−(x)
− 1, где ||m−||W < 1. (24)

Имеет место
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Теорема 4. Пусть для символа уравнения (1) выполняется условие
(24), а для функций f и k справедливы равенства в (15), где

w+
τ = 1−m−.

Тогда уравнение (1) корректно разрешимо в L1(0, τ) для любой его пра-
вой части f ∈ L1(0, τ).

Доказательство. Доказательство теоремы аналогично доказательству
теоремы 3. Поставим в соответствие задаче (1)–(2) краевую задачу Ри-
мана —Гильберта (5)–(6) так, чтобы выполнялись теорема 2 и лемма 1
с условием (i). Для этого положим

m+ := m−, d±M = dM := 1.

Тогда из (10)–(11) получим

w±
τ (x) = 1∓m±, Ff(x) = eixτ

q−(x)

w+
τ (x)

.

Легко видеть, что условия теорема 2 (с равенством (16)) и леммы 1 (с
условием (i)) выполнены. Следовательно, по лемме 1 краевая задача
Римана —Гильберта (5)–(6) корректно разрешима.Тогда по теореме 2, с
учетом оценки (22), корректно разрешима и задача (1)–(2).

□

6 Примеры

1. Пусть символ уравнения (1) имеет вид (23) и справедливо неравен-
ство

||k−||1 < 1/2.

Тогда
k(t) = k−(t) + k−(−t), ||k||1 < 1.

Из последнего неравенства по теореме Банаха об обратном операторе
следует, что решение задачи (1)–(2) существует, единственно и предста-
вимо в виде абсолютно сходящегося ряда Неймана, т.е. устойчиво. Полу-
чим ниже такой же результат по теореме 3. Другими словами покажем,
что в условиях примера теорема 3 выполняется. Легко видеть, что доста-
точно показать выполнение неравенства в (19). Для этого рассмотрим
очевидную цепочку неравенств:

|Fk−(x) + Fk−(x)| ≤ 2|Fk−(x)| ≤ 2||k−||1 < 1.

Следовательно, Fk−(x)+Fk−(x) < 1, и неравенство в (19) выполняется.
2. Пусть выполнены условия теоремы 3 или теоремы 4. Можно ви-

деть, что выполняется и условие (4). Тогда по [8, теорема 7.2] существует
τ1 > 0, такое что при всех τ > τ1 решение задачи (1)–(2) существует и
единственно. Что также следует из теоремы 3 или теоремы 4.



1496 А.Ф. ВОРОНИН

References

[1] F. D. Gakhov and Yu. I. Cherskii, Equations of Convolution Type [in Russian], Nauka,
Moscow, 1978.

[2] V.G. Romanov, On justification of the Gelfand-Levitan-Krein method for a two-
dimensional inverse problem, Sib. Math. J., 67:3 (2021), 908–924. Zbl 1501.65056

[3] S.I. Kabanikhin, M.A. Shishlenin, N.S. Novikov, N.M. Prokhoshin, Spectral,
Scattering and Dynamics: Gelfand-Levitan-Marchenko-Krein Equations,
Mathematics, 11:21 (2023), 4458–4468.

[4] A.F. Voronin, On the method of factorization of matrix-functions in the Wiener
algebra of order 2, J. Appl. Ind. Math., 16:2 (2022), 365-–376. Zbl 1547.16023

[5] A.F. Voronin, Construction of a factorization of a certain class of matrix functions
in the Wiener algebra of order two, Russ. Math., 67:3 (2023), 32-–41.

[6] M.G. Krein, Integral equations on the half-line with kernel depending on the difference
of the arguments, Uspekhi Mat. Nauk,13:5 (1958), 3–120. Zbl 0088.30903

[7] M.P. Ganin, On a Fredholm integral equation whose kernel depends on the difference
of the arguments, Izv. Vyssh. Uchebn. Zaved. Mat., 2 (1963), 31–43. Zbl 0178.14404

[8] I. Gohberg, I.A. Feldman, Convolution Equations and Projection Methods for Their
Solution, Nauka, Moscow, 1971 (in Russian). Zbl 0278.45008

[9] A.F. Voronin, A class of second-order convolution equations on an interval, Differ.
Equ., 36:10 (2000), 1521–1528. Zbl 0990.45001

[10] A.F. Voronin, Analysis of a convolution integral equation of the second kind with
periodic kernel on a finite interval, J. Appl. Industr. Math., 4:2 (2010),282–289.

[11] V.Yu. Novokshenov, Convolution equations on a finite segment and factorization of
elliptic matrices, Math. Notes, 27:6 (1980), 449–455. Zbl 0464.45003

[12] A.F. Voronin, Truncated Wiener-Hopf equation and matrix function factorization,
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