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1 Введение

При математическом моделировании процессов распространения про-
дольных волн в стержнях, длинных волн на воде, волн в плазме возни-
кает дифференциальное уравнение

(σ2∆− 1)
∂2u

∂t2
+ γ2∆u = 0, (*)

называемое уравнением Буссинеска [1]-[3]. Такое же уравнение (или бо-
лее общее) возникает в теории упругости; называют его уравнением
Буссинеска-Лява -см. [4]. В настоящей работе будет изучаться уравне-
ние, которое можно назвать обобщенным уравнением Буссинеска-Лява
- именно, уравнение вида (*), по с переменными коэффициентами и с
дополнительными младшими производными.

Для собственно уравнений Буссинеска, для обобщенных уравнений
Буссинеска-Лява разрешимость различных краевых и нелокально-краевых
задач представляется достаточно хорошо изученной- см. работы [3]-[15].
В основном в этих работах изучались классические локальные краевые
задачи, лишь в работах [10], [13], [15] изучались нелокальные задачи (то
есть такие задачи, в которых вместо обычных граничных условий зада-
ются условия, связывающие значения решения или (и) его производных
в граничных точках со значениями решения или (и) производных в иных
точках тех или других граничных или внутренних многообразий.

Именно нелокальные задачи в новых постановках и будут предметом
исследования в настоящей работе.

Более точно, в работе будет изучаться разрешимость нелокальных за-
дач для обобщенных уравнений Буссинеска-Лява с заданием условий по
переменной t, являющихся условиями Самарского-Ионкина. Ранее по-
добные задачи для уравнений вида (*) и для их обобщений не изучались.

Нелокальные краевые задачи с условиями, которые в настоящее вре-
мя называются условиями Самарского-Ионкина, впервые появились в
математической литературе в 1977 году в статье Н.И. Ионкина [16]. В
дальнейшем постановка [16] была обобщена А.А. Самарским в работе [17]
(именно поэтому нелокальные условия типа условий [16] и их обобще-
ний и называюся условиями Самарского-Ионкина). Разрешимость нело-
кальных задач с условиями Самарского-Ионкина для различных классов
дифференциальных уравнений изучалась во многих работах; библиогра-
фию этих работ и последние результаты можно найти в монографии [18],
статьях [19]-[21].

Как уже говорилось выше, в настоящей работе будут изучаться новые
нелокальные краевые задачи для обобщенных уравнений Буссинеска-
Лява.

Все построения и выкладки в работе будут основаны на свойствах
функций из пространств Лебега LP и Соболева Wp

l. Необходимые опре-
деление и описание требуемых свойств можно найти в монографиях [22]-
[24].
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Уточним, что целью работы является доказательство теорем суще-
ствования и единственности регулярных решений тех или иных задач-то
есть таких решений, которые имеют все обобщенные по Соболеву про-
изводные, входящие в соответствующее уравнение.

2 Постановка задач

Пусть Ω есть ограниченная область из пространства Rn переменных
x1, . . . , xn с гладкой (для простоты - бесконечно-дифференцируемой)
границей Γ, Q есть цилиндр Ω×(0, T ) конечной высоты T , S = Γ×(0, T )
- боковая границаQ. Далее, пусть aij(x), bij(x), cij(x), i, j=1, . . . , n, a0(x),
b0(x), c0(x) - заданные функции, определенные при x ∈ Ω, f(x, t) - за-
данная функция, определенная при x ∈ Ω, t ∈ [0, T ], γ - заданное дей-
ствительное число. Определим дифференциальные операторы A,B,C и
L по их действию на заданной функции v(x, t):

Av =
∂

∂xi
(aij(x)vxj ) + a0(x)v,

Bv =
∂

∂xi
(bij(x)vxj ) + b0(x)v,

Cv =
∂

∂xi
(cij(x)vxj ) + c0(x)v,

Lv = Avtt +Bvt + Cv

(здесь и далее подразумевается, что по повторяющимся индексам ведет-
ся суммирование в пределах от 1 до n).

Нелокальная задача I. Найти функцию u(x, t), являющуюся в ци-
линдре Q решением уравнения

Lu = f(x, t) (1)

и такую, что для нее выполняются условия

u(x, t)|S = 0, (2)

u(x, 0) = γu(x, T ), ut(x, T ) = 0, x ∈ Ω. (3)
Нелокальная задача II. Найти функцию u(x, t), являющуюся в ци-

линдре Q решением уравнения (1) и такую, что для нее выполняются
условие (2), а также условие

ut(x, 0) = γut(x, T ), u(x, T ) = 0, x ∈ Ω. (4)

В нелокальных задачах I и II уравнение (1) есть обобщение уравне-
ния (*); именно поэтому авторы называют его обобщенным уравнением
Буссинеска-Лява. Далее, в случае γ = 0 нелокальные задачи I и II стано-
вятся эллиптическими задачами с граничными данными на всей границе
цилиндра Q, в случае γ = 1 нелокальные задачи I и II являются аналога-
ми задачи Ионкина работы [16], в более же общем случае произвольного
числа γ нелокальные задачи I и II будут задачами с обобщенным усло-
виям Самарского-Ионкина работы [17].
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Как уже говорилось выше, нелокальные задачи I и II для уравнений
(1) ранее не изучались.

3 Разрешимость нелокальной задачи I

Доказательство разрешимости нелокальной задачи I будет проведено
с помощью метода регуляризации и метода продолжения по параметру;
поскольку же и для применения метода регуляризации, и для примене-
ния метода продолжения по параметру требуются подходящие априор-
ные оценки, установим вначале их наличие.

Всюду ниже будем считать, что оператор A эллиптичен в Ω, оператор
B эллиптико - параболичен; и что оба оператора симметричны:

aij(x) = aji(x), i, j = 1, . . . , n, aij(x)ξiξj ≥ α0|ξ|2,

x ∈ Ω, ξ ∈ Rn, α0 > 0; (5)
bij(x) = bji(x), i, j = 1, . . . , n, bij(x)ξiξj ≥ 0, x ∈ Ω, ξ ∈ Rn. (6)

Далее, пусть d0 есть неотрицательное число такое, что выполняется
условие

−cij(x)ξiξj ≥ d0a
ij(x)ξiξj , d0 > 0, x ∈ Ω, ξ ∈ Rn. (7)

и пусть функции a0(x) и b0(x) таковы, что для некоторого неотрицатель-
ного числа β0 выполняется

|b0(x)|≤ β0|a0(x)|, x ∈ Ω, (8)

Определим линейеое пространство V и норму в нем:

V =

{
v(x, t) :

∂kv(x, t)

∂tk
∈ L2

(
0, T ;W 2

2 (Ω)
)
, k = 0, 1, 2

}
,

||v||V =

(
2∑

k=0

||∂
kv

∂tk
||2L2(0,T ;W 2

2 (Ω))

) 1
2

Именно это пространство и будет основым в настоящей работе.
Всюду ниже термин „регулярное решение нелокальной задачи I“будет

подразумевать решение из пространства V .
По заданному числу γ определим числа γ1 и γ2:

γ1 = max(1− γ2, 0), γ2 = γ1 + γ2 − 1.

Лемма 1. Пусть выполняются условия (5)-(8), а также условия

aij(x) ∈ C1(Ω), bij(x) ∈ C1(Ω), cij(x) ∈ C1(Ω),

cij(x) = cji(x), x ∈ Ω, i, j = 1, . . . , n;

a0(x) ≤ 0, b0(x) ≤ 0 |b0(x)| ≤ β0|a0(x)|, x ∈ Ω; (9)
bij(x)ξiξj ≤ β1a

ij(x)ξiξj , c0(x) ≥ c̄0|a0(x)|, c̄0 > 0, x ∈ Ω, ξ ∈ Rn;
(10)

T 2d0 − Tβ1 − γ2 > 0, (Tβ1 + γ2)
2 + 4(Tβ1 + γ2)− 4T 2d0 < 0,
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T 2c̄0 − Tβ0 − γ2 > 0, (Tβ0 + γ2)
2 + 4(Tβ0 + γ2)− 4T 2c̄0 < 0. (11)

Тогда для регулярных решений u(x,t) нелокальной задачи I имеет ме-
сто априорная оценка∫

Q

taijuxituxjt dx dt+

∫
Q

taijuxiuxjdxdt ≤M1

∫
Q

f2dxdt (12)

с постоянной M1, определяющейся лишь функциями aij(x), bij(x), cij(x),i,
j = 1, . . . , n, a0(x), b0(x), c0(x), а также числами γ и T.

Доказательство. Умножим (1) на функцию tu(x, t) и проинтегрируем
по цилиндру Q. После несложных преобразований получим равенство∫

Q

taij(x)uxituxjtdxdt+
1− γ2

2

∫
Ω

aij(x)uxi(x, T )uxj (x, T )dx

−
∫
Q

ta0(x)u
2
tdxdt+

1

2

∫
Q

[2tc0(x)−b0(x)]u2dxdt−
1

2

∫
Ω

Tbij(x)uxi(x, T )uxj (x, T )dx

−1− γ2

2

∫
Ω

a0(x)u
2(x, T )dx+

T

2

∫
Ω

b0(x)u
2(x, T )dx

+
1

2

∫
Q

[bij(x)− 2tcij(x)]uxiuxjdxdt =

∫
Q

tfudxdt (13)

Имеют место неравенства∫
Ω

aij(x)uxi(x, T )uxj (x, T )dx ≤ δ21
T

∫
Q

taij(x)uxituxjtdxdt+

1

T 2
(
T

δ21
+ 2)

∫
Q

taijuxiuxjdxdt (14)

∫
Ω

|a0(x)|u2(x, T )dx ≤ δ22
T

∫
Q

t|a0(x)|u2tdxdt+
1

T 2
(
T

δ22
+ 2)

∫
Q

t|a0(x)|u2dxdt

(15)
(δ1 и δ2 - произвольные положительные числа; доказательство этих нера-
венств будет приведено ниже).

Вернемся к равенству (13). Используя условия леммы, а также нера-
венства (14) и (15), нетрудно от (13) перейти к оценке∫

Q

taij(x)uxituxjtdxdt+ d0

∫
Q

taij(x)uxiuxjdxdt+

∫
Q

t|a0(x)|u2tdxdt

+c̄0

∫
Q

t|a0(x)|u2dxdt ≤
δ21
2T

(Tβ1 + γ2)

∫
Q

taij(x)uxituxjtdx+
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1

2T 2
(Tβ1+γ2)(2+

T

δ21
)

∫
Q

taij(x)uxiuxjdxdt+
δ22
2T

(Tβ0+γ2)

∫
Q

t|a0(x)|u2tdxdt+

1

2T 2
(Tβ0 + γ2)(2 +

T

δ22
)

∫
Q

t|a0(x)|u2dxdt+ |
∫
Q

tfudxdt|. (16)

Чтобы из этой оценки вытекала требуемая априорная оценка (12), необ-
ходимо, чтобы для чисел δ1 и δ2 выполнялись неравенства

1− δ21
2T

(Tβ1 + γ2) > 0, (17)

d0 −
1

2T 2
(Tβ1 + γ2)(2 +

T

δ21
) > 0, (18)

1− δ21
2T

(Tβ0 + γ2) > 0, (19)

c̄0 −
1

2T 2
(Tβ0 + γ2)(2 +

T

δ21
) > 0. (20)

Существование требуемых чисел δ1 и δ2 обеспечивается условием (11).
Действительно, первые два условия (11) означают, что выполняются
неравенства

T (Tβ1 + γ2)

4T 2d0 − 4(Tβ1 + γ2)
<

2T

Tβ1 + 2γ2
Выберем число δ1 так, чтобы выполнялось

δ21 ∈ (
T (Tβ1 + γ2)

4T 2d0 − 4(Tβ1 + γ2)
,

2T

Tβ1 + 2γ2
)

Очевидно, что для данного числа δ1 выполняются неравенства (17) и
(18).

Аналогично показывается, что при выполнении третьего и четвертого
неравенств условия (11) можно выбрать число δ2 так, чтобы выполня-
лись неравенства (19) и (20).

Используя указанный выше выбор чисел δ1 и δ2, оценивая последнее
слогаемое правой части (16) с помощью неравенства Юнга и элементар-
ных оценок для нормы функции u(x, t) в пространстве L2(Ω), нетрудно
получить требуемую оценку (12).

Лемма доказана.

Следствие 1. Пусть выполняются все условия леммы 1. Тогда для
регулярных решений u(x, t) нелокальной задачи I имеет место оценка

n∑
i=1

∫
Q

u2xi
dxdt ≤M2

∫
Q

f2dxdt (21)

с постоянной M2, определяющейся лишь функциями aij(x), bij(x), cij(x),
i, j = 1, . . . , n, a0(x), b0(x), c0(x), а также числами γ и T.
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Доказательство оценки (21) проводится применением к правой части
равенство ∫

Q

u2xi
dxdt = −2

∫
Q

tuxiuxitdxdt− T

∫
Ω

u2xi
(x, T )dx

неравенства Юнга и оценок (12) и (14).
Для получения следующих оценок потребуется вспомогательное нера-

венство для операторов A,B и −C.

Лемма 2. Пусть выполняются все условия леммы 1, и пусть для опе-
ротора B имеем место представление

B = a1A+B1. (22)

Тогда для регулярных решений u(x, t) нелокальной задачи I имеют
место оценки

−
∫
Q

tAu(x, t) · Cu(x, t)dxdt ≥ k0

∫
Q

t[Au(x, t)]2dxdt−K0, (23)

∫
Q

t[B1ut(x, t)]
2dxdt ≤ k1

∫
Q

t[Aut(x, t)]
2dxdt+K1, (24)

в которых t ∈ [0, T ], числа k0, k1,K0 и K1 положительны и определя-
ются функциями aij(x), bij(x), cij(x), i, j = 1, . . . , n, a0(x), b0(x), c0(x),
f(x, t), числами γ и T, а также областью Ω.

Доказательство. Требуемые оценки (23) и (24) нетрудно вывести, ис-
пользуя второе основное неравенство для эллиптических операторов -
см.[23, гл. III, § 8], а также используя оценки (12) и (21).

Положим

γ20 = γ2 + Ta1, T0 =
γ20T

2(T 2k0 − γ20)
, T1 =

2T

γ20
,

φ(θ) = 4(1− θγ20
2T

)(k0 − (2 +
T

θ
)
γ20
2T 2

) (θ > 0)

Лемма 3. Пусть выполняются все условия леммы 1 и 2, а также
условия

a1 ≥ 0, T 2k0 − γ20 > 0, γ220 + 4γ20 < 4T 2k0, k1 < min(φ(T0), φ(T1)).

Тогда для регулярных решений u(x,t) нелокальной задачи I имеет ме-
сто априорная оценка∫

Q

[t(Aut)
2 + t(Au)2]dxdt ≤M3

∫
Q

f2dxdt (25)

с постоянной M3, определяющейся лишь функциями aij(x), bij(x), cij(x),i,
j = 1, . . . , n, a0(x), b0(x), c0(x), f(x, t), числами γ и T, а также обла-
стью Ω.
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Доказательство. Умножим уравнение (1) на функцию −tAu(x, t) и про-
интегрируем по цилиндру Q. Получим равенство∫

Q

t[Aut(x, t)]
2dxdt−

∫
Q

tAu(x, t)Cu(x, t)dxdt+
a1
2

∫
Q

[Au(x, t)]2dxdt

+
γ1
2

∫
Ω

[Au(x, t)]2dx =
γ20
2

∫
Ω

[Au(x, T )]2dx+

∫
Q

tAu(x, t)B1ut(x, t)dxdt

−
∫
Q

tf(x, t)Au(x, t)dxdt (26)

Используя условия леммы, оценку∫
Ω

[Au(x, T )]2 ≤ δ21
T

∫
Q

t[Aut(x, t)]
2dxdt+

1

T 2
(2 +

T

δ21
)

∫
Q

t[Au(x, t)]2dxdt

(27)
(δ1 - произвольное положительное число), а также неравенство Гельдера,
нетрудно от (26) перейти к неравенству(

1− δ21γ20
2T

)∫
Q

t[Aut(x, t)]
2dxdt+

[
k0 −

γ20
2T 2

(2 +
T

δ21
)

] ∫
Q

t[Au(x, t)]2dxdt

≤ k
1
2
1

∫
Q

t[Au(x, t)]2dxdt


1
2
∫

Q

t[Aut(x, t)]
2dxdt


1
2

+

∫
Q

tf2dxdt


1
2
∫

Q

t[Au(x, t)]2dxdt


1
2

+K2 (28)

с постояннойK2, определяющейся лишь функциями aij(x), bij(x), cij(x),i,
j = 1, . . . , n, a0(x), b0(x), c0(x), f(x, t), числом T, а также областью Ω.

Зафиксируем число δ1 так, чтобы выполнялось T0 < δ21 < T1. Заме-
тим, что при таком выборе числа δ1 числа 1 − δ21γ20

2T и k0 − γ20
2T 2 (2 + T

δ21
)

будут положительными. Далее, при указанном выборе числа δ1 и при
выполнении условий леммы квадратичная форма(

1− δ21γ20
2T

)
ξ2 − k

1
2
1 ξη +

(
k0 −

γ20
2T 2

(2 +
T

δ21
)

)
η2

будет положительно определена. Тогда из (28) и из неравенства Юнга и
будет вытекать требуемая оценка (25).

Лемма доказана.
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Следствие 2. Пусть выполняются все условия леммы 3, и пусть число
a1 положительно. Тогда для регулярных решений u(x, t) нелокальной
задачи I справедлива оценка

n∑
i,j=1

∫
Q

u2xixj
dxdt ≤M4

∫
Q

f2dxdt (29)

с постоянной M4, определяющейся лишь функциями aij(x), bij(x), cij(x),
i, j = 1, . . . , n, a0(x), b0(x), c0(x), числами γ и T, а также областью
Ω.

Доказательство. Требуемую оценку нетрудно получить, если в допол-
нение к рассуждениям, проведенным при доказательстве леммы 4, при-
менить второе основное неравенство для эллиптических операторов к
третьему слагаемому левой части равенства (26).

Лемма 4. Пусть выполняются все условия леммы 3, и пусть допол-
нительно число a1 положительно

Тогда для регулярных решений u(x,t) нелокальной задачи I имеет
место априорная оценка∫

Q

[Autt(x, t)]
2dxdt+

∫
Q

[Aut(x, t)]
2dxdt ≤M5

∫
Q

f2dxdt,

постоянная M5 в которой определяется лишь функциями aij(x), bij(x),
cij(x),i, j = 1, . . . , n, a0(x), b0(x), c0(x), числами γ и T, а также обла-
стью Ω.

Доказательство. Умножим уравнение (1) на функцию Autt(x, t) и про-
интегрируем по цилиндру Q. Используя элементарное неравенство∫

Q

v2t dxdt ≤ δ

∫
Q

v2ttdxdt+ C(δ)

∫
Q

v2dxdt

в котором δ есть произвольное положительное число, и используя также
оценку (29) и неравенство Юнга, нетрудно получить требуемую оценку.

Лемма доказана.

Перейдем непосредственно к доказательству разрешимости нелокаль-
ной задачи I.

Теорема 1. Пусть выполняются все условия лемм 1-4. Тогда для лю-
бой функции f(x, t) из пространства L2(Q) нелокальная задача I имеет
регулярное решение, причем ровно одно.

Доказательство. Рассмотрим вначале случай γ < 1.
Для чисел λ из отрезка [0,1] рассмотрим краевую задачу: найти функ-

цию v(x, t), являющуюся в цилиндре Q решением уравнения

Lv = f − λγ

1− λγ
Cv(x, T ) (30)
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и такую, что для нее выполняются условия

v(x, 0) = vt(x, T ) = 0, x ∈ Ω. (31)

В этой задаче уравнение (30) при λ ̸= 0 является “нагруженным” в тер-
минологии работ [25], [26] уравнением. При λ ̸= 0 краевые задачи (30),
(2), (31) ранее не изучались, но при λ = 0 разрешимость этой задачи в
классе регулярных решений очевидна - см., например работы [11, 12, 13].
Если теперь привлечь теорему о методе продолжения по параметру [27,
гл. III, § 14], то задача (30), (2), (31) будет разрешима в классе регуляр-
ных решений для всех λ из отрезка [0,1] при наличии для всевозможных
решений v(x, t) этой задачи равномерной по λ априорной оценки

||v||V ≤ R0||f ||L2(Q) (32)

Чтобы установить наличие искомой оценки, определим функцию u(x, t):

u(x, t) = v(x, t) +
λγ

1− λγ
v(x, T ) (33)

Для этой функции выполняются уравнение (1), условие (2), а также
условия

u(x, t) = λγu(x, T ), ut(x, T ) = 0, x ∈ Ω.

Повторяя для функции u(x, t) доказательство лемм 1-4, нетрудно уста-
новить наличие априорной оценки

||u||V ≤ R̃0||f ||L2(Q) (34)

с постояной R̃0, определяющейся лишь функциями aij(x), bij(x), cij(x),
i, j = 1, . . . , n, a0(x), b0(x) и c0(x), числами γ и T, а также областью
Ω. Учитывая далее представление v(x, t) = u(x, t)− λγu(x, T ), получим,
что для функции v(x, t) имеет место требуемая оценка (32).

Из оценки (32), из разрешимости в пространстве V краевой задачи
(30), (2), (31) при λ = 0 и из теоремы о методе продолжения по парамет-
ру следует, что существует функция v(x, t), принадлежащая простран-
ству V и являющая решением задачи (30), (2), (31) при λ = 1. Опре-
деленная формумой (33) при λ = 1 функция u(x, t) и будет искомым
решением нелокальной задачи I в случае γ < 1.

Рассмотрим теперь случай γ = 1. Положим γm = 1− 1
m , m = 1, 2, . . .,

и рассмотрим семейство задач: найти функцию u(x, t), являющуюся в
цилиндре Q решением уравнения (1) и такую, что для нее выполняются
условие (2), а также условия

u(x, t) = γmu(x, t), ut(x, T ) = 0, x ∈ Ω. (35)

Как следует из доказанного выше, нелокальная задача (30), (2), (35)
имеет решение um(x, t), принадлежащее пространству V . Для семейства
функций

{
um(x, t)}∞m=1 имеет место равномерная поm априорная оценка

(34). Используя далее свойство рефлексивности гильбертова простран-
ства (точнее говоря, используя возможность выбора слабо сходящейся
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в V подпоследовательности
{
umk

(x, t)}∞k=1, нетрудно показать, что су-
ществует принадлежащее пространству V решение u(x, t) нелокальной
задачи I при γ = 1.

Наконец, пусть выполняется γ > 1.
Пусть λ есть число из отрезка [0,1] Положим

ψ(t) =
t2 − 2tT

T 2

Рассмотрим задачу: найти фукцию v(x, t), являющуюся в цилиндре Q
решением уравнения

Lv = f(x, t) +
λ(γ − 1)

1 + λ(γ − 1)
L(ψ(t)v(x, T )) (36)

и такую, что для нее выполняются условие (2), а также условия

v(x, 0)− v(x, T ) = 0, vt(x, T ) = 0, x ∈ Ω. (37)

В этой задаче уравнение (36) при λ ̸= 0 вновь есть нагруженное урав-
нение. Далее, при λ = 0 задача (36), (2), (37) представляет собой нело-
кальную задачу I в случае λ = 1; как показано выше, задача (36), (2),
(37) при λ = 0 имеет решение v(x, t), принадлежащее пространству V .
Вновь согласно теореме о методе продолжения по параметру, для раз-
решимости задачи (36), (2), (37) при всех λ из отрезка [0,1] достаточно
установить наличие оценки (33). Покажем, что при выполнении всех
условий теоремы нужная оценка действительно имеет место.

Определим функцию u(x, t):

u(x, t) = v(x, t) +
λ(γ − 1)ψ(t)v(x, T )

1 + λ(γ − 1)

Для этой функции выполняются уравнение (1) и условие (2), а также
условие

u(x, 0) = [1 + λ(γ − 1)]u(x, T ) (38)
Другими словами, функцие u(x, t) есть решение нелокальной задачи I с
коэффициентом γ∗ = 1+λ(γ− 1) в нелокальном условии (3). Поскольку
для числа γ∗ выполняются 0 < γ∗ ≤ γ, то для функции u(x, t) будет
справедлива равномерная по λ априорная оценка в пространстве V . Но
тогда для функции v(x, t) будет иметь место оценка (32). Как уже гово-
рилось выше, из разрешимости в пространстве V краевой задачи (36),
(2), (37) при λ = 0 и из априорной оценки (32) следует, что краевая за-
дача (36), (2), (37) будет разрешима в пространстве V при всех λ - то
есть и при λ = 1. Решение же v(x, t) задачи (36), (2), (37) дает требуемое
решение u(x, t) нелокальной задачи I.

Единственность решения нелокальной задачи I в пространстве V при
выполнении всех условий теоремы очевидным образом следует из дока-
занных априорных оценок.

Теорема полностью доказана.
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4 Разрешимость нелокальной задачи II

Задача II будет изучена в случае B = 0. Основой для ее исследования
будет теорема 1 о разрешимости нелокальной задачи I в пространстве
V .

Теорема 2. Пусть выполняются все условия теоремы 1. Тогда для
любой функции f(x, t) такой, что f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),
f(x, T ) = 0 при x ∈ Ω нелокальная задача II для уравнения

Autt + Cu = f(x, t)

имеет единственное регулярное решение u(x, t) такое, что u(x, t) ∈ V ,
ut(x, t) ∈ V.

Доказательство. Рассмотрим задачу: найти функцию w(x, t) такую, что
для нее выполняются уравнения

Awtt + Cw = ft(x, t)

а также условия (2) и (3). Согласно теореме 1 эта задача имеет решение
w(x, t), принадлежащее пространству V . Определим фуцкцию u(x, t) как
решение задачи

ut(x, t) = w, u(x, T ) = 0, x ∈ Ω.

Эта функция и будет искомым решением нелокальной задачи II.
Единственность решений очевидна.
Теорема доказана.

5 Дополнение

1. Специальный вид операторов A,B и C - именно, самосопряженный,
а также независимость их коэффициентов от переменной t, не являются
существенными. Случай общих операторов A,B и C с младшими члена-
ми и коэффициентами, зависящими от всех переменных, исследуется в
целом аналогично изложенному в основной части работы, но выкладки
и условия при этом станут существенно более громоздкими.

2. Покажем, что неравенства (14) и (15) действительно имеют место
Имеет место равенство∫

Ω

aij(x)uxi(x, T )uxj (x, T )dx = 2

∫
Q

taij(x)uxiuxjdxdt

+2

∫
Q

t2aij(x)uxituxjdxdt

используя неравенства Гельдера и Юнга, а также неравенство t2 ≤ tT ,
нетрудно получить оценку (14).

Аналогично доказывается справедливость неравенства (15).
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3. Аналогично выше изложенному можно изучить разрешимость и по-
лучить теоремы существования и единственности решений нелокальных
задач I и II с заменой условий (3) или (4) на условия

u(x, 0) = γu(x, T ), ut(x, T ) + µu(x, T ) = 0, x ∈ Ω,

ut(x, 0) = γut(x, T ) + µu(x, T ), u(x, T ) = 0, x ∈ Ω

соответственно.
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