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Abstract: We study the linear stability of a resting state for
flows of incompressible viscoelastic polymeric fluid in an infinite
cylindrical channel in axisymmetric perturbation class. We use
structurally-phenomenological Vinogradov-Pokrovski model as our
mathematical model.

We state several analytically equivalent spectral problems: two
for equation systems and another two for high-order equations we
can get from them. Our numerical experiments show that with
the growth of perturbations frequency along the channel axis there
appear eigenvalues with positive real part. Moreover it turns out
that one of the problems for the system gives more accurate results.
That guarantees linear Lyapunov instability of the resting state.
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1 Introduction

To study the flows of an incompressible viscoelastic polymeric fluid in an
infinite cylindrical channel we use structural-phenomenological Vinogradov-
Pokrovski model as a base [1, 2]. This model interprets polymeric medium
as a suspension of polymer macromolecules moving in an anysotropic fluid
consisting of, e.g., solvent and other macromolecules. The environment ef-
fects on a chosen macromolecule is approximated by the impact on a chain of
brownian particles, each of which is a sufficiently large part of the macromole-
cule. It turns out that the formulated physical model is an effective way of
describing slow relaxation processes in mediums with linear polymers. In
particular it is effective in numerical studies of polymer flows in areas with
complex boundary geometry which are common for technological processes
of making products from polymers.

Using a mechanical analogy we call the brownian particles "beads" and
the analogue of the elastic powers between the particles "springs". In the sim-
plest case when the macromolecule is modelled as a "dumbbell" ("dumbbell"
is two beads connected by a spring), we formulate the system of differential
correlations (Vinogradov-Pokrovski model):

ρ(
∂

∂t
vi + vl

∂

∂xl
vi) =

∂

∂xk
σil,

∂vi
∂xi

= 0, (1)

σil = −pδil + 3
η0
τ0

ail, (2)

d

dt
ail − vijajl − vljaji +

1 + (k − β)I

τ0
ail =

2

3
γil −

3β

τ0
aijajl, (3)

I = a11 + a22 + a33, γil =
vil + vli

2
, i, l = 1, 2, 3. (4)

Here ρ is polymer density, vi is i-th velocity component, σil is stress ten-
sor, p is pressure; η0, τ0 are initial values of shear viscosity and relaxation
time for viscoelastic component, vil is velocity gradient tensor ∇v, where
it’s components are calculated as follows: vil =

∂vi
∂xl

, i, l = 1, 2, 3; γil is sym-
metrized velocity gradient tensor; ail is symmetric anisotropy stress tensor;
k and β are phenomenological parameters that take into account the size and
the form of a macromolecule ball. Equations (1) are motion equation and
incompressibility condition, and equations (2)-(3) are rheological correlation,
that connects kinematic characteristics of the flow with its thermodynamic
parameters; for each component ail the sum of the first three terms in the left
part of equality (3) is the so called upper convective derivative or Oldroyd
derivative [3], d

dt =
∂
∂t + (v⃗,∇) is material derivative.

Note that the accepted physical representation of a polymeric medium al-
lows us to describe its main rheological properties: the decrease of viscosity
and the first difference of normal stresses with the growth of shear veloc-
ity, the growth of stretching viscosity to a certain limit with the growth of
deformation velocity.
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Moreover, unlike the known models FENE-R [4], FENE-CR [5] that take
into account additional physical mechanisms reflecting the behaviour features
of a studied material: boundedness and nonlinearity of a spring elongation,
connected to the finite length of a macromolecule and the existence of weaves
and engagements in it, which obstruct its uniform and infinite elongation
(instead of a Hooke law the nonlinear law of a spring elasticity is used); or
RHL-model [6] that takes into account potential barriers, that slow down the
transition from one equilibrium configuration to the other (additional force of
an inner resistance is introduced), the Pokrovski-Vinogradov model allows
us to acquire nonzero values of the second difference for normal stresses.
Specifically, it tries to take into account the anisotropy effect of the chosen
molecule environment that is caused by its elongation and orientation in
space during the flow process of its macromolecule chains.

Rheological properties, predicted by the Pokrovski-Vinogradov model with
parameters k = 1, 2β, that guarantee monotone of a flow curve, are qualitati-
vely and quantitatively agree with the experimental data for melts and so-
lutions of polymers [7, 8, 9].

A number of previous works by one of the authors [10, 11] studied the
linear Lyapunov stability of Poiseuille-type flows in an infinite plane channel
(the pressure drop on a segment doesn’t depend on time) for the model (1)-
(4), as well as for its generalization on the case of nonisothermic flow of
an incompressible weakly conducting polymeric fluid with the existence of
a negative space charge [12, 13, 14, 15] and on the case of nonisothermic
model with the additional external interaction of a uniform magnetic field
[16, 17, 18, 19].

In particular, in work [10] it was proven that the Poiseuille-type flow for
the model (1)-(4) is linearly unstable in a perturbation class of generalized
functions from the Schwartz space S′ of the functions of slow growth with
respect to the x variable, that changes along the channel side [20, 21]. I.e. the
solution of a linearized problem is growing as an exponential function with
the power st, s = iξû+ 3

√
Q(y)ξ

2
3 + o(ξ

2
3 ), for |ξ| → ∞ (ξ is a dual variable

for variable x with respect to the Fourier transform, û is a component of
the base Poiseuille-type flow, Q(y) ̸= 0, is a function, that depends on the
problem parameters and its base solution, ”o” is small o).

The question of stability of the resting state for nonisothermic model of
the polymeric fluid flow in an infinite plane channel under the influence
of an external magnetic field was studied in works [22, 23, 24]. The main
result being that the resting state in the case of an absolute conductivity, i.e.
vanishing of the parameter inversly proportional to the magnetic Reynolds
number, and additionally vanishing of one of the dissipative coefficients is
linearly unstable by Lyapunov. The conducting walls of the channel can
be made from different materials: ebonite, aluminum, copper, platinum,
bismuth.

For the analysis of the applicability of mathematical models for the descrip-
tion of real flows of polymeric fluid of special interest is the question about
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the stability of the resting state of the model. From the physical point of
view this property is a necessary one.

The result of the work [25] was refined in the works [26, 27]. It states that
the spectrum of a linearized with respect to the resting state mixed problem
for the system (1)–(4) does not lie in an open right half-plane. One of the
main results of these works is that the mixed problem has solutions with
more than exponential growth eReλt, Reλ > 0, t → +∞.

Which means that the resting state for plane-parallel flows of polymeric
fluid in the Vinogradov-Pokrovski model is linearly unstable by Lyapunov.

In the current work we continue to study the location of the spectrum of
a linear problem about the flow of a polymeric fluid in an infinite cylindrical
channel. As a base solution we again chose the resting state and as a per-
turbation class we choose perturbations with axial symmetry and periodic
with respect to the variable varying along the channel axis.

Note that the study of the flows of fluids of different nature in domains
with cylindrical boundaries is fundamentally important not only from the
point of view of a boundary geometry influencing the formation of characteris-
tic features of the flow (alike the flows of viscous fluid (Navier-Stokes model)
between the two coaxial rotating cylinders in the classic Taylor work [28]),
but also to have the ability to experimentally check the picture of a flow
predicted by the model.

We got a number of results in [29] both for small values of parameters
Wi and Re, e.g. Wi = 1.1 · 10−6, Re = 10−2, and for large ones, e.g.
Wi = 3 · 103, Re = 5 · 103. In our numerical experiments for some values
of n, i.e. spacial frequency of perturbations, part of the spectrum lies in an
open right half-plane but with its growth there can be a sharp increase of the
maximum values of real parts of eigenvalues. This experiments were done
for the spectral problem for one longitudinal component of velocity. We got
this problem after transforming the initial spectral problem for the system
where boundary conditions are replaced with one asymptotic one.

Further we used the idea of reducing the spectral problem for the system
into the problem for only the radial component of the velocity in [30, 31,
32, 33], which study the linearized with respect to the resting state mixed
problem for flows of polymers in cylindrical channel under the effect of an
external uniform magnetic field both for the case of absolute conductivity
and in general case.

Of note is also the work [34] about the influence of the coefficient in the
representation of the pressure drop (it depends on time) and the boundary
condition for the temperature (the work considers nonisothermic case) on
the stability of a Poiseuille-type solution for flows of polymeric fluid in a
cylindrical channel.

In this work we continue the numerical study of spectral problems (38),
(39) and their analogues. They differ in a way they approximate boundary
conditions on the cylinder axis r = 0. We show that with the growth of
parameter n (the frequency of perturbations) part of the spectrum transits
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into the right half-plane which means linear instability of a resting state. The
results from studying the spectral problem for the original system statement
gives in our opinion a more reliable result.

2 Quasilinear and linearized models. Formulation of the
main results

Following the monographs [1, 2, 36, 37, 38] and works [30, 31], we formulate
the mathematical model for describing flows of an incompressible polymeric
fluid in an infinite cylinder channel with round section (see Fig. 1).

r = 1 z

u, v, w, p,

a   ,..., arr φz

Figure 1. Cylindrical channel and main parameters of the
polymeric fluid flow

We can write the model in a dimensionless form and in a cylindrical co-
ordinate system as follows:

divu =
1

r

∂(ru)

∂r
+

1

r

∂v

∂φ
+

∂w

∂z
= 0, (5)

du

dt
− v2

r
+

∂p

∂r
=

1

Re

(
∂arr
∂r

+
1

r

∂arφ
∂φ

+
∂arz
∂z

+
arr − aφφ

r

)
, (6)

dv

dt
+

uv

r
+

1

r

∂p

∂φ
=

1

Re

(
∂arφ
∂r

+
1

r

∂aφφ
∂φ

+
∂aφz
∂z

+
2arφ
r

)
, (7)

dw

dt
+

∂p

∂z
=

1

Re

(
∂arz
∂r

+
1

r

∂aφz
∂φ

+
∂azz
∂z

+
arz
r

)
, (8)

darr
dt

− 2

(
Ar

∂u

∂r
+

arφ
r

∂u

∂φ
+ arz

∂u

∂z

)
+ Lrr = 0, (9)

daφφ
dt

+ 2

(
v

r
− ∂v

∂r

)
arφ − 2

(
1

r
(u+

∂v

∂φ
)Aφ + aφz

∂v

∂z

)
+ Lφφ = 0, (10)

dazz
dt

− 2

(
arz

∂w

∂r
+

aφz
r

∂w

∂φ
+Az

∂u

∂z

)
+ Lzz = 0, (11)
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darφ
dt

+

(
v

r
− ∂v

∂r

)
Ar +

(
arφ

∂w

∂z
− arz

∂v

∂z
− Aφ

r

∂u

∂φ
− aφz

∂u

∂z

)
+ Lrφ = 0,

(12)

darz
dt

−arz

(
∂u

∂r
+

∂w

∂z

)
−
(
Ar

∂w

∂r
+

arφ
r

∂w

∂φ
+

aφz
r

∂u

∂φ
+Az

∂u

∂z

)
+Lrz = 0,

(13)

daφz
dt

+

(
v

r
− ∂v

∂r

)
arz −

(
aφz

∂u

∂r
+Az

∂v

∂z
+ arφ

∂w

∂r
+

Aφ

r

∂w

∂φ

)
+ Lφz = 0.

(14)
In equations (5)–(14) t is time, u, v, w are components of a velocity vector

u in a cylindrical coordinate system; p is hydrodynamic pressure; arr, . . . , aφz
are components of a symmetrical anisotropy tensor Π of a second rank [1, 2];

Lrr = KIarr + β∥ar∥2, Lφφ = KIaφφ + β∥aφ∥2, Lzz = KIazz + β∥az∥2,
Lrφ = KIarφ+β(ar, aφ), Lrz = KIarz+β(ar, az), Lφz = KIaφz+β(aφ, az),

ar = (arr, arφ, arz), aφ = (arφ, aφφ, aφz), az = (arz, aφz, azz),

Ar = arr +Wi−1, Aφ = aφφ +Wi−1, Az = azz +Wi−1,

KI = Wi−1 + k̄I/β, I = arr + aφφ + azz, k̄ = k − β,

the square of the vector norm ∥ · ∥2 is the sum of squares of its components,
k, β, 0 < β < 1 are phenomenological parameters of a rheological model
[1, 2], Re = (ρuH l)/η0 is the Reynolds number, Wi = (τ0uH)/l is the Weis-
senberg number, ρ(= const) is the density of the medium, η0, τ0 are initial
values of shear viscosity and relaxation time [1, 2], l is the characteristic
length, uH is the characteristic velocity, △r,φ,z =

∂2

∂r2
+ 1

r2
∂2

∂φ2 +
1
r

∂
∂r +

∂2

∂z2
is

the Laplace operator, d
dt =

∂
∂t + u ∂

∂r +
v
r

∂
∂φ + w ∂

∂z .
The system (5)–(14) is written in a dimensionless form: variables t, r, z, u,

v, w, p, arr, . . . , aφz are related to l/uH , l, uH , ρu2H , Wi
3 correspondingly.

We state that the no-slip condition holds on the boundary r = 1

u = 0, (15)
and on the cylinder axis, i.e. for r = 0, there are boundedness conditions on
all the unknown variables u, v, w, p, αrr, . . . , αφz.

As a base solution we choose the resting state

u = 0, p = p0 − const, αrr = 0, . . . , αrφ = 0.

Linearizing the boundary problem (5)–(15) with respect to the chosen so-
lution results in a following problem (small perturbations of the components
of the solution are written the same as initial variables)

Ru+
1

r
vφ + wz = 0, (16)
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ut +Ωr =
1

r
(αrφ)φ + (αrz)z +

αrr − αφφ

r
, (17)

vt +
1

r
Ωφ = (αrφ)r +

1

r
(αφφ − αrr)φ + (αφz)z +

2αrφ

r
, (18)

wt +Ωz = (αrz)r +
1

r
(αφz)φ + (αzz − αrr)z +

αrz

r
, (19)

Λαrr = 2κ2ur, (20)

Λαφφ =
2

r
(u+ vφ)κ2, (21)

Λαzz = 2κ2uz, (22)

Λαrφ =
κ2

r
uφ − κ2

(v
r
− vr

)
(23)

Λαrz = κ2(wr + uz), (24)

Λαφz = κ2(vz +
wφ

r
). (25)

u = 0, for r = 1.

Here αrr = arr
Re , . . . , αφz =

aφz

Re , κ2 = 1
WiRe , R = ∂

∂r + 1
r , Λ = ∂

∂t +
1
Wi ,

Ω = p− αrr.

Remark 1. For the function Ω, i.e. generalized "pressure" , the following
correlation holds

D0Ω =

(
1

r2
∂2

∂φ2
− 1

r

∂

∂r

)
(αφφ − αrr)+

+ 2R

(
∂

∂z
αrz +

1

r

∂

∂φ
αrφ +

2

r

∂

∂φ

(
∂

∂z
αφz +

1

r
αrφ

))
, (26)

where D0 = △ = ∂2

∂r2
+ 1

r
∂
∂r +

1
r2

∂2

∂φ2 + ∂2

∂z2
= R2 + 1

r2
∂2

∂φ2 + ∂2

∂z2
.

We will be looking for a solution of the problem (16)–(25) in the special
form:

u(t, r, φ, z) = u(r) exp{λt+ inz + imφ}, . . . ,
αφz(t, r, φ, z) = αφz(r) exp{λt+ inz + imφ},

(27)

where λ = η + iξ, ξ, η ∈ R1, n,m ∈ Z are some parameters.
Then for the components of the anisotropy tensor under the additional

condition

λ ̸= − 1

Wi
(28)
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we get the following:

αrr =
u′

λ̂
, αφφ =

u+ imv

rλ̂
, αzz =

inu

λ̂
,

αrφ =
1

2λ̂

{
imu

r
+ v′ − v

r

}
, αrz =

w′ + inu

2λ̂
,

αφz =
i(nv + 1

rmw)

2λ̂
, λ̂ =

λ+Wi−1

2κ2
.

(29)

The other four equations of the system (16)–(25) are rewritten as follows:

Ru+ i(
m

r
v + nw) = 0, (30)

Ω′ = −
(
m2 + 2

2r2λ̂
+

n2

2λ̂
+ λ

)
u+

1

rλ̂
u′ +

im

2λ̂r
(v′ − 3v

r
) +

in

2λ̂
w′, (31)

R2v −
(
n2 +

1 + 3m2

r2
+ 2λλ̂

)
v =

2nm

r
w − 4im

r2
u+

2imλ̂

r
Ω, (32)

R2w −
(
n2 +

m2

r2
+ 2λλ̂

)
w = 2inλ̂Ω+ 2mnv + 2n2u− 2inu

r
. (33)

From (17), (26) and (29) it follows that

d0Ω =

(
−m2

r2
− 1

r

d

dr

)(
u+ imv

rλ̂
− u′

λ̂

)
+

+R

(
in

w′ + inu

λ̂
+

im

r

imu
r + v′ − v

r

λ̂

)
+

+
im

r

(
−n

nv + 1
rmw

λ̂
+

1

r

imu
r + v′ − v

r

λ̂

)
− n2

(
inu

λ̂
− u′

λ̂

)
,

(34)

Ω̃′ =
imv′

2λ̂
− inw′

2λ̂
for r = 1, (35)

where

Ω̃ = Ω− u

rλ̂
− in

λ̂
w. (36)

Here

d1 = d0 −
1

r2
, d0 =

d2

dr2
+

1

r

d

dr
− m2

r2
− n2 = R2 − m2

r2
− n2.

In an axisymmetric case, when m = 0, which is the main interest to us, the
system (30)–(33) is simplified by splitting into two independent subsystems.
That and the boundary conditions (25) leads us to the following two spectral
boundary problems:
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
(d1 − 2λλ̂)v = 0,

v = 0 for r = 1,

|v(0)| < ∞;

(37)



Ru+ inw = 0,

(d0 − 2λλ̂)w − 2inλ̂Ω̌− 2n2u+ n2w = 0,

Ω̌′ +
2λλ̂+ n2

2λ̂
u = 0,

u = w = 0 for r = 1,

|u(0)| < ∞, |w(0)| < ∞.

(38)

Here

d1 = R2 − n2 − 1

r2
, d0 = R2 − n2, Ω̌ = Ω̃ +

in

2λ̂
w,

function Ω̃ can be represented through Ω due to (35). The correlation (34)
takes the following form:

d0Ω̃ =
in3

λ̂
(w − u).

Assume the parameter n is non-zero. Then by differentiating the second
equation from the system (38) and replacing Ω̌′ by using the third equation
from the system (38) we can also replace w using the first equation and get
to the spectral problem for one component u:

uIV +
2

r
u′′′ + u′′

(
− 3

r2
− 2λλ̂

)
+ u′

(
3

r3
− 2λλ̂

r
+ 2in3

)
+

+ u

(
− 3

r4
+

2λλ̂

r2
+ n2(2λλ̂+ n2)

)
= 0,

|u(0)| < ∞,

∣∣∣∣(u′ + 1

r
u)
∣∣
r=0

∣∣∣∣ < ∞,

u(1) = 0, u′(1) + u(1) = 0.

(39)

Remark 2. The transition from the spectral problem (38) to the spectral
problem (39) is the main idea of work [29]. It also studied the special cases
where λ = − 1

Wi , n = 0. There the spectrum points lie in a left complex
half-plane Reλ ≤ −σ < 0 but can have multiplicity greater than one.

In [29] we have proven the following theorem.

Theorem 1. Let λ ̸= − 1
Wi . Then the spectral equation for the eigenvalues

of the boundary problem (39) has the following form

u′2(1)u1(1)− u′1(1)u2(1) = 0,
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the functions u1(r) and u2(r) are defined through recurrent formulas

u1 =

∞∑
k=0

akr
k+3 = a0r

3 + a1r
4 + a2r

5 + . . . , (40)

a0 = 1, a1 = 0, a2 =
1

24
λλ̂, a3 = − 2

175
in3,

ak =
2λλ̂

(k + 2)(k + 4)
ak−2 −

2in3

(k + 2)2(k + 4)
ak−3−

− n2(2λλ̂+ n2)

k(k + 2)2(k + 4)
ak−4, k = 4, 5, 6, . . . ;

(41)

u2 =

∞∑
k=0

ckr
k+1 = c0r + c1r

2 + c2r
3 + . . . , (42)

c0 = 1, c1 = 0, c2 = 0, c3 = − 2

45
in3,

ck =
2λλ̂

k(k + 2)
ck+2−

2in3

k2(k − 2)
ck−3 −

n2(2λλ̂+ n2)

k2(k − 2)(k + 2)
ck−4, k = 4, 5, 6 . . .

(43)
In its turn the solution to the spectral problem (37) can be found in an
explicit way:

v = J1(i
√
2λλ̂r),

λ1,2 =
− 1

Wi ±
√

1
Wi2

− 4κ2(µ2
k + n2)

2
,

where J1(µk) = 0, and J1(ξ) is a Bessel function of the first kind [35].

Remark 3. Obviously Reλ1,2 ≤ −σ1 < 0.

3 Clarified spectral problems (38), (39) and their
discretization

Denoting Ω̂ = 2λ̂Ω̌ and µ = 2λλ̂ the system from the spectral problem
(38) can be rewritten as

u′ = −1

r
u− inw,

w′′ = −1

r
w′ + µw + inΩ̂ + 2n2u,

Ω̂′ = −(µ+ n2)u,

(44)

linear with respect to the new spectral parameter µ.
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Making the following variables change ũ = ru, w̃ = rw, gives us system
ũ′ = −inw̃,

w̃′′ =
1

r
w̃′ +

(
µ− 1

r2

)
w̃ + inrΩ̂ + 2n2ũ,

rΩ̂′ = −(µ+ n2)ũ.

(45)

Elimination of variables leads to equations

uIV +
2

r
u′′′ + u′′

(
− 3

r2
− µ

)
+ u′

(
3

r3
− µ

r
+ 2in3

)
+

+ u

(
− 3

r4
+

µ

r2
+ n2(µ+ n2)

)
= 0, (46)

ũIV − 2

r
ũ′′′ + ũ′′

(
3

r2
− µ

)
+ ũ′

(
− 3

r3
+

µ

r
+ 2in3

)
+

+ ũ

(
n2(n2 + µ)− 2in3

r

)
= 0. (47)

Systems and equations need to be completed by boundary conditions. On
the cylinder surface (r = 1) we set the non-slip conditions:

u(1) = w(1) = 0, (48)

which together with the first equation from system (44) also gives us

u′(1) = 0. (49)

On the cylinder axis (r = 0) the most general would be the boundedness
condition

|u(0)| < ∞, |w(0)| < ∞ (50)
and correspondingly

|u′(0)| < ∞. (51)
These conditions were used in [29].

From the construction of the functions ũ, w̃ it follows that:

ũ(1) = ũ′(1) = w̃(1) = 0, (52)

ũ(0) = u′(0) = w̃(0) = 0. (53)
Theoretically speaking these conditions are enough to state spectral prob-
lems. But in case of systems we can add conditions on function Ω̂:

|Ω̂(0)| < ∞, |Ω̂(1)| < ∞. (54)

From a mathematical point of view these conditions are excessive but from
the physics point of view are rather natural. Adding these conditions does
not lead to overdefinition of problems (44), (45) since solutions have to satisfy
them anyways.

We are studying formulated above problems numerically. Note that in
literature there are examples where using different discretization methods
led to spectrum of very different structure (see e.g. [40]). Besides, the
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discretization can lead to appearance of eigenvalues that do not converge to
spectral points of differentiation operator with the growth of the dimensions
of discrete approximation. Usually such "parasitic" eigenvalues correspond
to saw-like eigenfunctions.

To discretize the problem we will use pseudospectral method with collo-
cation nodes at points

rj =
ξj + 1

2
,

where ξj = cos π(N−j)
N , j = 0, 1, . . . , N, are Gauss-Lobatto points. We will

denote a collocation matrix as D ≈ d

dr
(see. [39]).

D =


d00 d01 . . . d0N
d10 d11 . . . d1N
...

...
. . .

...
dN0 dN1 . . . dNN

 .

Mapping boundary conditions to the structure of collocation matrices
derivatives is an important element of stating the discrete spectral prob-
lem. The easiest one is the homogeneous Dirichlet condition. To count it
in we delete corresponding columns from the matrix (if further calculations
allow for rectangular matrices) or simultaneously rows and columns (see [29],
[39]). Below we will denote the collocation matrix derivative that satisfies
Dirichlet condition for r = 0 and r = 1 as D0 and D0 correspondingly. If
the function satisfies Dirichlet condition on both boundaries, we will denote
it D0

0.
One of the possible approaches to mapping other boundary conditions is

to reduce them to Dirichlet condition. For example a function satisfying dual
Dirichlet-Neumann condition u(0) = u′(0) = 0 has a form u(r) = r · v(r),
where v(0) = 0. Hence, u′ = v + rv′, which gives us expression for the
corresponding matrix derivative: D00 = (I + diag(rj)D0)diag

(
1
rj

)
, where I

is a unity matrix (see [29], [39] and other works).
By analogy to this approach we can represent a bounded function |u(0)| <

∞ as a product u(r) = 1
r · v(r), where v(0) = 0. Then the derivative is

u′ = − 1
r2
v + 1

rv
′ and it’s discrete representation is D<∞ = diag

(
1
rj

)
(−I +

D0diag(rj)). We will call this approach a method of function multiplication.
It was already used earlier in [32, 33].

To map conditions such as boundedness of eigenfunctions of the spectral
problem we can also use asymptotic method (see [29, 32, 33]). Its essence is
as follows. We write equation as

(L1 − µL2)u = 0, 0 ≤ r ≤ 1,
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where Lj(r, d/dr) are linear differential operators and eigenfunctions of the
equation satisfy conditions

|u(0)| < ∞, |u′(0)| < ∞, u(1) = u′(1) = 0.

We assume that the function u0(r), which is an asymptotic of eigenfunctions
in zero, is known

lim
r→0

u(r)

u0(r)
= 1,

and satisfies equation

(L3 − µL4)u0 = 0, 0 ≤ r ≤ 1.

For example, for equation (46) operators L1, L2 have a form

L1 =
d4

dr4
+

2

r

d3

dr3
− 3

r2
d2

dr2
+

(
3

r3
+ 2in3

)
d

dr
+

(
− 3

r4
+ n4

)
L2 =

d2

dr2
+

1

r

d

dr
−
(

1

r2
− n2

)
= 0.

In paper [29] we showed that the first terms of the asymptotic expansion in
zero of eigenfunctions of the problem (46), (48), (49), (50), (51) are a linear
combination

u0 = αr + βr3.

Hence, operators L3, L4 are defined as:

L3 = r2
d2

dr2
− 3r

d

dr
+ 3, L4 = 0.

We discretize both equations taking into account the right boundary con-
dition and get matrix beams

A1 − µB1 = L1(diag(rj), D00)− µL2(diag(rj), D00),

A0 − µB0 = L3(diag(rj), D00)− µL4(diag(rj), D00).

If vector u = (u1, . . . , uN−1)
T , uj = u(rj), approximates eigenfunction u(r),

then the vector correlation (A1 −µB1)u = 0 holds for every component (i.e.
everywhere in [0, 1]). And from correlations (A0 − µB0)u = 0 only the first
(i.e. near zero) is approximately fulfilled. We glue these beams as follows:

Aas =

(
Ā0

A1

)
, Bas =

(
B̄0

B1

)
,

where Ā0, B̄0 are first rows of matrices A0, B0, A1, B1 are rows of matrices
A1, B1, starting from the second and ending with the last. After that we
solve an algebraic spectral problem for the matrix beam Aas − µBas.

Thus to solve the spectral problem we can either use its original form as
a system or transform it to a high-order equation. Both approaches have
their advantages and disadvantages. The discretization of systems leads to
matrix beams of large sizes where the matrix for spectral parameter is always
singular. It means that the matrix beam has infinite eigenvalues which on
one side makes the discrete operator even more similar to the differential
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one which also has a series of eigenvalues converging to infinity. But due
to computational errors instead of infinite eigenvalues we get ones with a
large module which leads to a "cloud" surrounding the infinite point. This
gives us a criterion to exclude such eigenvalues from further consideration.
Besides with an unlucky use of collocation matrix derivatives we can even
get singular matrix beams which should be avoided. However the norms of
matrix beams remain rather small which allows for more accurate calculation
of eigenvalues.

The norms of matrices we get after the discretization of equations can be
rather large when using a fine computational grid which lowers the accuracy
of calculating eigenvalues. As an advantage we can note that transforming
the system into equation excludes the variable connected to pressure and
anisotropy tensor which in turn eliminates the dependence of the decision
on the choice of boundary conditions for these functions.

Here is a short description of the approach used to separate "true" eigen-
values from "parasitic" ones. The calculations were done for three dimensions
N1 < N2 < N3. After that for each eigenfunction v

[N1]
j we find eigenfunctions

closest to it
v
[N1]
j ≈ v

[N2]
j ≈ v

[N3]
j , j = 1, . . . , N1.

For that we interpolate eigenfunctions for dimensions N2, N3 on the grid for
the dimension N1 and compare them to each other in the nodes of the grid.
Based on the correspondence between eigenfunctions we get the correspon-
dence between spectrum points λ

[N1]
j ≈ λ

[N2]
j ≈ λ

[N3]
j .

Then we calculate values of a number of criterions. Among them are:
proximity of corresponding eigenvalues

|λ[N1]
j − λ

[N2]
j |, |λ[N2]

j − λ
[N3]
j |;

proximity of corresponding eigenfunctions

∥v[N1]
j − v

[N2]
j ∥, ∥v[N2]

j − v
[N3]
j ∥,

where we can use both Euclidean norm and maximum absolute value as a
norm; the variation of eigenfunctions

var v[N1]
j , var v[N2]

j , var v[N3]
j ,

defined for example as

var v[N1] =

N−1∑
k=1

|vk+1 − vk|.

Values of each of the criterions or their combination is sorted in ascending
order. We then calculate the maximal relative difference between the sorted
neighboring criterions, i.e. "jump". This "jump" delimits eigenvalues that
we consider "true" from the ones we stop considering. Thus we eliminate
points that do not converge for either eigenvalues or eigenfunctions or which
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Figure 2. Spectrum of the problem (47), (52), (53) before
the use of criterions (left). Eigenfunction for the rightmost
eigenvalue and spectrum after the use of criterions (right).
Colour highlights the rightmost eigenvalue.

eigenfunctions have s distinct saw-like structure. Numerical results and their
analysis is given in the next part.

4 Results of numerical experiments

First of all note that as stated above to find pairings of eigenvalues to
eigenfunctions that doesn’t change with the growth of grid nodes count we
use three values of N . For further examples these values are N1 = 100,
N2 = 150, N3 = 200. For graphs of eigenfunctions for different values of N ,
we use the following colours: blue is for N1, green is for N2, red is for N3,
the solid line is for the real part of the function, the dashed line is for the
imaginary part of the function. For the spectrum points circles correspond
to N1, triangles to N2, stars to N3.

Let Re=500, Wi=0.3, n=1.
The left part of fig. 2 illustrates the way the calculated spectrum changes

with the use of criterions for eigenvalues. In the right part of graphs of fig. 2
we can see that for the problem (47), (52), (53) there is a weak convergence
of eigenvalues and eigenfunctions. Note that the situation is similar for the
problem (45), (52), (53) (see fig. 3).

The results of computations for the problem (44),(48), (50) without the
additional condition (54) and with it are presented in fig. 4. We can see that
the additional condition doesn’t change the result. But the existence of the
condition simplifies the construction of the discrete operator by allowing us
to use the same grids and the same sized collocation matrix derivatives for
all three unknown functions.

Fig. 5 shows results of computations for equation (46) with conditions
(48), (50). Here we use two methods of mapping boundedness conditions to
the structure of matrix derivatives. We also see a pronounced consistency of
results among themselves.
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Figure 3. Eigenfunction for the rightmost eigenvalue and
spectrum after the use of criterions (right) for the problem
(45), (52), (53).

Figure 4. Components of the eigenfunction for the right-
most eigenvalue and spectrum after the use of criterions for
the system (44) with conditions (48), (50) without the condi-
tion on the function Ω̂ (left) and with additional conditions
(54) (right).

Note that the rightmost eigenvalues for the system and for the equation
are in the left half-plane but their values differ. Corresponding eigenfunctions
exhibit similar behaviour but have some difference in imaginary parts.

Let Re=500, Wi=0.3, n=10.
With the growth of parameter n the rightmost eigenvalues move to the

right half-plane. Fig. 6 shows the situation where for the system this value
is still in the left half-plane but for the equation is already in the right half-
plane. Also note that the components u of corresponding eigenfunctions
for the equation and for the system are significantly different. The overall
structure of the spectrum for the equation and for the system also differs.
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Figure 5. Eigenfunction for the rightmost eigenvalue and
spectrum after the use of criterions for the problem (46), (48),
(50). To the left boundary conditions are discretized using
the function multiplication method, to the right boundary
conditions are discretized using the asymptotic method.

Figure 6. Components of the eigenfunction for the right-
most eigenvalue for the system (44) (left) and the equation
(46) (right) with conditions (48), (50).

Let Re=500, Wi=0.3, n=20.
For these parameters both the system and the equation have one eigen-

value in the right half-plane. The difference in spectrum structure and in
eigenfunction keeps growing (fig. 7).

Finally let Re=500, Wi=0.3, n=50.
For these parameters one eigenvalue is again in the right half-plane. Note

that the eigenvalue for the equation is situated significantly further to the
right than the eigenvalue for the system. Their imaginary parts also differ.
Also of note is the fact that convergence process for the equation eigenvalue is
still ongoing despite rather large values of N . The general spectrum structure
and eigenfunctions keep being significantly different (fig. 8).

Since the most important question for us is the question of stability we
study the behaviour of a number of eigenvalues with the largest real part
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Figure 7. Components of the eigenfunction for the right-
most eigenvalue for the system (44) (left) and the equation
(46) (right) with conditions (48), (50).

Figure 8. Components of the eigenfunction for the right-
most eigenvalue for the system (44) (left) and the equation
(46) (right) with conditions (48), (50).

and its dependences of n. Further we assume that eigenvalues are numbered
right to left, i.e. the rightmost eigenvalue has the number 1. Below we study
the behaviour of λ1, λ2, λ3.

To start we consider the problem (46), (48), (49), (50), (51), discretized
by using the information about asymptotic behaviour near zero which was
presented earlier in [29]. However here we use different approaches and the
study itself is much deeper.

We construct graphs that show the dependence of the real part of λj ,
j = 1, 2, 3, on n for N1 = 100, N2 = 150, N3 = 200 and different values of
Weissenberg and Reynolds numbers (fig. 9).

Take note of some significant moments. The rightmost eigenvalue (blue
colour) demonstrates weak convergence by N or even no convergence for
relatively large n. To have this value shown on graphs we had to turn off
automatic filtration of the computed spectrum by the criterion of the con-
vergence of eigenvalues. But even without it the filtering by eigenfunctions



1466 D.L. TKACHEV, E.A. BIBERDORF

Figure 9. Graphs of real parts of eigenvalues for the prob-
lem (46), (48), (49), (50), (51), discretized by asymptotic
method.

also sometimes leads to excluding this eigenvalues from the set of "true" ones
and then blue graphs "collapse" with graphs of other eigenvalues (see fig. 9,
two upper graphs).

In every example shown so far for small values of n the spectrum alway
lies in the left half-plane.

For most graphs represented in fig. 9 eigenvalues λ1, λ2, λ3 go into the
right half-plane in order with the growth of n. The transition through the
imaginary axis happens when graphs form an edge pointed down, i.e. loga-
rithm goes to −∞. After its transition the value λ1 continues to move away
from the imaginary axis while values of λ2, λ3 either stabilizes on a certain
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distance or move away much slower (see fig. 9, left vertical row and middle
horizontal raw).

If the Weissenberg number is significantly smaller than the Reynolds num-
ber (upper and lower right graphs) then there is only one eigenvalue that goes
to the right half-plane. Morever interestingly for large values of Reynolds
eigenvalue λ1 comes back to the left half-plane (lower right graph). For
different values of N it happens for significantly different values of n.

Now we want to check how much difference the way we take into account
left boundary condition creates in properties of the spectrum (46), (48),
(49), (50), (51). We discretize it using the function multiplication method.
The spectrum of a problem discretized in this way contains four horizon-
tal branches directed to the right and to the left. With the growth of N
these branches move significantly while containing eigenvalues correspond-
ing to the high-frequency eigenfunctions. This means that these branches
are "artifacts" of discretization. Automatic filtration of the spectrum we
are making allows to throw away these eigenvalues. However there is a high
probability of also throwing away the rightmost eigenvalue. It can be seen
on all graphs from fig. 10, where for n > 10 graphs for λ1 are exactly like
graphs for λ2, λ3. Aside from this feature all graphs from fig. 10 are very
similar to graphs from fig. 9.

Now we consider the problem (44), (48), (50), discretized using the func-
tion multiplication method. On fig. 11 we can see the location of three right-
most eigenvalues of the system. The fact that there is a good convergence by
N attracts attention: curves corresponding to N1 = 100, N2 = 150, N3 = 200
merge completely. All three of considered eigenvalues for some values of n
transit from the left half-plane to the right one and then continue to move
away from the imaginary axis with the growth of n. The transition happens
even for those values of Wi and Re, that for equation resulted in only one
eigenvalue being in the right half-plane but for significantly larger n. If we
continue the comparison to eigenvalues of the equation we can notice the
following: the growth of the real part of the system eigenvalues is less than
the growth of the real part of the first eigenvalue of the equation but more
than the growth of the real part of the second and third eigenvalues of the
equation.

5 Conclusion

In the computational part of this work we carried out a numerical study of
spectral problems. We used different variants of the mathematical statement
of the problem and different ways of discretization. It turns out that the use
of different boundary conditions on Ω̂ does not influence the numerical result
but significantly simplifies working with the discrete differential operator.

All approaches demonstrate that for small n all spectrum is in the left
half-plane but with the growth of n one or several eigenvalues transit to the
right half-plane.
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Figure 10. Graphs of real part of eigenvalues for the prob-
lem (46), (48), (49), (50), (51), discretized by function mul-
tiplication method.

We establish that two different ways of taking into account boundary
conditions during discretization (asymptotic method and function multipli-
cation method) give identical results. At the same time the critical i.e. the
rightmost eigenvalue converges weakly if at all for large values of n so its
connection to the spectrum of the original differential operator is rather du-
bious.

On the other hand the spectrum we calculated for the system converges
well and behaves in a predictable way. However the most unexpected are
results pointing to the difference between spectrums acquired for the discrete
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Figure 11. Graphs of real part of eigenvalues for the prob-
lem (44), (48), (50), discretized by function multiplication
method.

system and the discrete equation derived from it. But noticing that the
spectrum of the system is computed more accurately with the growth of N
and converges better means that this approach is preferable. The reasons
for such significant difference require additional research.
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