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Abstract: This paper studies the set Lp(Σ) of prefix-free languages
over some alphabet Σ. It is proved that Levi’s lemma holds for such
languages, and also that the theory of the algebra Lp(Σ) with
concatenation is undecidable. It is established that the algebra
Lp(Σ) without the empty language is elementarily equivalent to
the algebra of all words over an infinite alphabet.
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1 Введение

Известно, что теория конкатенации слов неразрешима, даже если ал-
фавит содержит только два символа. В [1] была исследована слабая тео-
рия конкатенации TC, определяемая следующим конечным множеством
аксиом (здесь α и β — константы, обозначающие символы алфавита):

TC1. x(yz) = (xy)z,
TC2. xy = zw → ((x = z ∧ y = w) ∨

∨ (∃u)((xu = z ∧ y = uw) ∨ (x = zu ∧ uy = w))),
TC3. ¬(α = xy),
TC4. ¬(β = xy),
TC5. ¬(α = β).
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В [1] было доказано, что теория TC неразрешима, а в [2] была доказа-
на существенная неразрешимость этой теории, то есть неразрешимость
любого её непротиворечивого расширения. Аксиомы TC3–TC5 утвер-
ждают, что α и β не представимы в виде конкатенации каких-либо слов
и различны. Двумя основными аксиомами теории TC являются TC1 и
TC2. Аксиома TC1 утверждает, что операция конкатенации ассоциатив-
на. Аксиома TC2 выражает лемму Леви (см. [3]): если некоторое слово
представлено в виде конкатенации двух слов двумя способами, то у этих
представлений имеется некоторая общая часть. Из аксиом TC3 и TC4
следует, что рассматриваются только непустые слова. Но, как показано
в [2], теории конкатенации слов с пустым словом и без него интерпрети-
руются друг в друге, поэтому результаты о существенной неразрешимо-
сти переносятся и на случай универсума, содержащего пустое слово.

Операцию конкатенации можно определить не только на отдельных
словах, но и на языках, и можно рассматривать теории конкатенации
алгебр, в которых основным множеством является некоторое семейство
языков в каком-нибудь фиксированном алфавите. Некоторые такие тео-
рии были исследованы в [4, 5]. В частности, было доказано, что теории
класса всех языков или класса всех регулярных языков алгоритмически
эквивалентны элементарной арифметике и, следовательно, неразреши-
мы. Эти результаты не являются следствием существенной неразреши-
мости теории TC, поскольку даже для множества всех конечных языков
лемма Леви не выполняется.

В настоящей статье мы продолжаем исследование теории конкатена-
ции для различных классов языков. Мы изучаем беспрефиксные языки,
то есть такие, в которых ни одно слово не является собственным пре-
фиксом другого. В доказательстве неразрешимости теории конкатена-
ции из [4, 5] существенным образом используются языки вида { ε, wmn } и
{ ε, wn, w2n, . . . , wmn }, не являющиеся беспрефиксными, поэтому описан-
ный в этих статьях метод доказательства неприменим, если рассматри-
вать только беспрефиксные языки. В [6] исследовался более узкий класс
языков, являющихся одновременно беспрефиксными и бессуффиксны-
ми, и был сформулирован результат о неразрешимости теории конкате-
нации этого класса языков.

Наш интерес к беспрефиксным языкам обусловлен тем, что они обла-
дают некоторыми свойствами, которые делают их полезными на прак-
тике. Например, в префиксных кодах (см. [7]) ни одно кодовое слово не
является префиксом другого, что позволяет однозначно декодировать
сообщения. Другое полезное свойство беспрефиксных языков связано с
задачей сопоставления с образцом. В [8] было доказано, что если ре-
гулярное выражение r длины m задаёт беспрефиксный язык, то поиск
всех подстрок строки s[1 . . . n], удовлетворяющих выражению r, может
быть выполнен за время O(mn), в то время как в случае произвольного r
временная сложность увеличивается до O(mn2). Беспрефиксные языки
обладают и интересными теоретическими свойствами. Так, любой язык,
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распознаваемый детерминированным МП-автоматом через опустошение
магазина, является беспрефиксным, а множество всех беспрефиксных
детерминированных КС-языков совпадает с множеством строгих детер-
минированных КС-языков (см. [9]).

Настоящая статья содержит три основных раздела. В разделе 2 при-
водятся базовые определения. В разделе 3 мы доказываем наш главный
результат: в классе беспрефиксных языков выполняется лемма Леви, а
значит, к нему применимы результаты из [2]. В разделе 4 мы доказыва-
ем, что алгебра непустых беспрефиксных языков в алфавите, содержа-
щем хотя бы два символа, элементарно эквивалентна алгебре всех слов
в бесконечном алфавите.

2 Предварительные сведения

Алфавитом называется непустое множество символов. Слово в алфа-
вите Σ — это конечная последовательность символов из Σ. Число сим-
волов в слове w называется длиной слова w и обозначается |w|. Слово
длины 0 называется пустым и обозначается ε. Через Σ∗ обозначается
множество всех слов в алфавите Σ. Множество Σ∗ всегда бесконечно, а
если алфавит Σ тоже бесконечен, то Σ и Σ∗ равномощны. Конкатена-
цией слов u и v называется слово, которое получается приписыванием
слова v после u. Конкатенация слов u и v обозначается u · v или просто
uv. i-й степенью слова v называется слово vi = v · . . . · v︸ ︷︷ ︸

i раз

, в частности,

v0 = ε, v1 = v. Слово u называется префиксом слова v, если v = uw для
некоторого слова w. Слово u называется суффиксом слова v, если v = wu
для некоторого слова w. В этом определении допустимы случаи u = v
и u = ε. Префикс слова v называется собственным, если он не равен v.
Если u является префиксом слова v, то мы будем также говорить, что v
начинается на u или что v является продолжением u.

Язык L в алфавите Σ — это произвольное множество слов в Σ. Конка-
тенацией языков L1 и L2 называется язык L1·L2 = {uv : u ∈ L1, v ∈ L2 }.
Как и для слов, вместо L1 · L2 можно писать просто L1L2. i-я степень
языка L определяется аналогично степени слова: Li = L · . . . · L︸ ︷︷ ︸

i раз

, в част-

ности, L0 = { ε }, L1 = L. Язык L называется беспрефиксным, если не
существует двух различных слов x, y ∈ L, одно из которых является
префиксом другого. Непосредственно из определения следует, что если
L — беспрефиксный язык и ε ∈ L, то L = { ε }.

Теория T — это множество замкнутых формул первого порядка, за-
мкнутое относительно логического следования. Теория алгебраической
системы A — это множество всех замкнутых формул истинных в A. Две
алгебраические системы A и B элементарно эквивалентны, если A |= φ
тогда и только тогда, когда B |= φ для любой замкнутой формулы φ, то
есть их теории совпадают.
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3 Лемма Леви для беспрефиксных языков

Поскольку операция конкатенации языков ассоциативна, то из вы-
полнения леммы Леви для некоторого класса языков будет следовать
неразрешимость теории этого класса в силу существенной неразреши-
мости теории TC (если только существуют хотя бы два языка, не пред-
ставимых в виде конкатенации). Однако даже если алфавит содержит
только один символ, то для множества всех языков лемма Леви не вы-
полняется: из равенства L1L2 = L3L4 не следует существования языка
L5 такого, что L1L5 = L3, L5L4 = L2 или L3L5 = L1, L5L2 = L4. Пусть,
например, L1 = L4 = { a }, L2 = L3 = { ε, a }. Тогда справедливо равен-
ство { a } · { ε, a } = { ε, a } · { a }, однако язык L5 не существует. Действи-
тельно, равенство { a } = { ε, a } · L5 невозможно, так как язык в правой
части содержит не менее двух слов. Равенство { ε, a } = { a } · L5 также
невозможно, так как язык в правой части не содержит пустого слова.

Однако если рассматривать не все языки, а только некоторое их под-
множество, то ситуация может измениться. Например, очевидно, что
лемма Леви выполняется для множества всех языков, содержащих ровно
одно слово. В этом разделе мы докажем, что лемма Леви выполняется
также для множества всех непустых беспрефиксных языков в некотором
фиксированном алфавите Σ. Обозначим это множество через Lp(Σ).

Следующая лемма утверждает, что множество Lp(Σ) замкнуто отно-
сительно конкатенации и потому образует алгебру (см. также [10]).

Лемма 1. Если L1 и L2 — беспрефиксные языки, то L1L2 — тоже
беспрефиксный язык.

Доказательство. Предположим, что языки L1 и L2 беспрефиксные, а
язык L1L2 — нет. Это значит, что существуют слова u, v ∈ L1, x, y ∈ L2

такие, что ux — собственный префикс vy, то есть vy = uxz для некоторо-
го слова z ̸= ε. Если |u| ̸= |v|, то одно из слов u, v является собственным
префиксом другого, что невозможно, так как L1 беспрефиксный. Сле-
довательно, |u| = |v|, u = v и y = xz. Но из z ̸= ε следует, что x —
собственный префикс y. Это противоречит, тому что язык L2 беспре-
фиксный. Значит, предположение неверно, и язык L1L2 также беспре-
фиксный. □

Дальше покажем, что на непустые беспрефиксные языки можно со-
кращать слева.

Лемма 2. Пусть L1 ̸= ∅ — беспрефиксный язык, L2 и L3 — произволь-
ные языки. Тогда L1L2 = L1L3 тогда и только тогда, когда L2 = L3.

Доказательство. Пусть x ∈ L2. Возьмём произвольное слово u ∈ L1,
тогда ux ∈ L1L2, а значит, ux ∈ L1L3. Следовательно, существуют слова
v ∈ L1, y ∈ L3 такие, что ux = vy. Но тогда u = v, так как в против-
ном случае одно из слов u, v было бы собственным префиксом другого.
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Поэтому x = y, x ∈ L3 и L2 ⊆ L3. Обратное включение доказывается
аналогично. □

Следующая лемма выражает «симметричное» свойство. Она утвер-
ждает, что допустимо сокращение справа на любой непустой язык, если
левые языки беспрефиксные.

Лемма 3. Пусть L1 и L2 — беспрефиксные языки, L3 ̸= ∅ — произволь-
ный язык. Тогда L1L3 = L2L3 тогда и только тогда, когда L1 = L2.

Доказательство. Предположим, что L1 ̸= L2, и рассмотрим кратчай-
шее слово u, входящее ровно в один из языков L1, L2. Без потери общ-
ности можно считать, что u ∈ L1, u /∈ L2. Пусть x — кратчайшее слово
из языка L3. Тогда ux ∈ L1L3, а значит, ux ∈ L2L3. Следовательно, су-
ществуют слова v ∈ L2, y ∈ L3 такие, что ux = vy. Если |u| > |v|, то
из v ∈ L2 следует v ∈ L1, поскольку u — кратчайшее слово, которым
различаются L1 и L2. Но тогда L1 содержит слово u и его собственный
префикс v, что невозможно, так как L1 беспрефиксный. Если |u| = |v|,
то u = v и u ∈ L2, что противоречит выбору u. Если |u| < |v|, то |y| < |x|,
поэтому x не является кратчайшим словом языка L3. Итак, во всех трёх
случаях получилось противоречие, следовательно, L1 = L2. □

Пусть для некоторых языков выполняется равенство L1L2 = L3L4.
Сначала рассмотрим случай, когда языки L1 и L3 имеют хотя бы одно
общее слово.

Лемма 4. Если L1L2 = L3L4, все Li непусты, языки L1 и L3 беспре-
фиксные и L1 ∩ L3 ̸= ∅, то L1 = L3, L2 = L4.

Доказательство. Пусть u ∈ L1 ∩ L3 — произвольное общее слово двух
языков. Докажем сначала, что L2 = L4. Пусть v ∈ L2. Тогда uv ∈ L1L2,
а значит, и uv ∈ L3L4. Поэтому uv = xy для некоторых слов x ∈ L3,
y ∈ L4. Если бы оказалось, что |u| ̸= |x|, то одно из слов u, x было бы
собственным префиксом другого. Но это невозможно, поскольку язык L3

беспрефиксный. Следовательно, |u| = |x|, u = x, v = y и v ∈ L4. Поэто-
му L2 ⊆ L4. Обратное включение L4 ⊆ L2 доказывается симметрично.
Следовательно, L2 = L4. Тогда по лемме 3 из равенства L1L2 = L3L2

следует, что L1 = L3. □

Остаётся рассмотреть случай, когда языки L1 и L3 не имеют общих
слов. Обозначим через m(L) длину кратчайшего слова из непустого язы-
ка L.

Лемма 5. Если L1L2 = L3L4 и все Li непусты, то m(L1) ⩽ m(L3)
тогда и только тогда, когда m(L2) ⩾ m(L4).

Доказательство. Пусть wi — кратчайшее слово языка Li для 1 ⩽ i ⩽ 4.
Тогда w1w2 и w3w4 — кратчайшие слова языков L1L2 и L3L4, поэто-
му их длины равны. Следовательно, из неравенства |w1| ⩽ |w3| следует
неравенство |w2| ⩾ |w4| и наоборот. □
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Следующая техническая лемма утверждает, что мы можем удалить
из языка L1 все кратчайшие слова, а из L3 — их продолжения, и при
этом равенство L1L2 = L3L4 по-прежнему будет выполняться.

Лемма 6. Пусть L1L2 = L3L4, все Li непусты, языки L1 и L3 беспре-
фиксные, L1 ∩ L3 = ∅ и m(L1) ⩽ m(L3). Пусть L0 — множество всех
кратчайших слов языка L1, а L′

0 — множество всех слов из L3, для
которых какое-нибудь слово из L0 является префиксом. Тогда выполня-
ется равенство (L1 \ L0) · L2 = (L3 \ L′

0) · L4.

Доказательство. Если w ∈ (L1 \L0) ·L2, то w = uv для некоторых слов
u ∈ L1\L0, v ∈ L2. Так как uv ∈ L1L2, то существуют такие слова x ∈ L3,
y ∈ L4, что uv = xy. Предположим, что x имеет вид x1x2, где x1 ∈ L0,
x2 ∈ Σ∗, так что uv = x1x2y. Так как x1 ∈ L0, u ∈ L1 \L0, то |x1| < |u|, а
значит, x1 является собственным префиксом слова u. Это противоречит
тому, что язык L1 беспрефиксный. Поэтому x не начинается ни на какое
слово из L0, а значит, x ∈ L3 \ L′

0 и w ∈ (L3 \ L′
0) · L4.

Наоборот, пусть w ∈ (L3 \ L′
0) · L4, то есть w = xy для некоторых

x ∈ L3 \ L′
0, y ∈ L4. Так как xy ∈ L3L4, то xy = uv для некоторых

u ∈ L1, v ∈ L2. Если u ∈ L0, то |u| ⩽ |x|, так как m(L1) ⩽ m(L3). Но
тогда u является префиксом слова x, а значит, x ∈ L′

0 и x /∈ L3 \ L′
0.

Снова получилось противоречие. □

Теперь мы можем доказать лемму Леви для случая, когда языки L1

и L3 не имеют общих слов.

Лемма 7. Пусть L1L2 = L3L4, все Li непусты, языки L1 и L3 беспре-
фиксные, L1 ∩ L3 = ∅ и m(L1) ⩽ m(L3). Тогда существует единствен-
ный язык L5 такой, что L1L5 = L3, L2 = L5L4. При этом L5 является
беспрефиксным.

Доказательство. По лемме 5 справедливо неравенство m(L2) ⩾ m(L4).
Сначала докажем, что любое слово u ∈ L1 является собственным пре-
фиксом некоторого слова из L3. Пусть L0 и L′

0 определены так же, как
в формулировке леммы 6. Проведём индукцию по |u| −m(L1).

Базис индукции. Пусть |u| = m(L1), то есть u ∈ L0. Пусть v — про-
извольное слово из L2, тогда uv ∈ L1L2, а значит, uv ∈ L3L4, то есть
uv = xy для некоторых x ∈ L3, y ∈ L4. Так как m(L1) ⩽ m(L3) и
L1 ∩ L3 = ∅, то u является собственным префиксом слова x.

Индукционный шаг. Пусть |u| > m(L1). Пусть L′
1 = L1 \ L0, L′

3 =
L3 \ L′

0. Тогда по лемме 6 L′
1L2 = L′

3L4, а по лемме 5 m(L′
1) ⩽ m(L′

3).
Кроме того, m(L′

1) > m(L1) и u ∈ L′
1. Следовательно, по индукционному

предположению u является собственным префиксом некоторого слова из
L′
3, а значит, и из L3.
Из доказанного непосредственно следует, что любое слово из L3 яв-

ляется продолжением некоторого слова из L1 и притом только одного.
Действительно, если x ∈ L3, y ∈ L4, то xy = uv для некоторых u ∈ L1,
v ∈ L2. Если |x| ⩽ |u|, то согласно доказанному выше язык L3 содержит
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некоторое слово x′, собственным префиксом которого является u. Но то-
гда x является собственным префиксом слова x′, что невозможно, так
как язык L3 беспрефиксный. Если бы слово x ∈ L3 было продолжением
разных слов u1, u2 ∈ L1, то одно из слов u1, u2 было бы собственным
префиксом другого, что противоречит тому, что язык L1 беспрефикс-
ный.

Теперь докажем главное утверждение леммы. Через A⊔B будем обо-
значать объединение множеств A и B при условии, что A∩B = ∅. Рас-
смотрим произвольное слово x ∈ L3. Для него существует единственное
слово u ∈ L1 такое, что x = uz для некоторого z ∈ Σ∗. Поэтому язык L3

можно представить в виде

L3 =
⊔

u∈L1

uL3,u (1)

для некоторых языков L3,u. Тогда конкатенация L3L4 может быть запи-
сана в виде

L3L4 =
( ⊔
u∈L1

uL3,u

)
· L4 =

⊔
u∈L1

u(L3,uL4).

Эта запись корректна, поскольку языки u(L3,uL4) не имеют общих слов.
Действительно, если бы выполнялось равенство u1w1 = u2w2 для неко-
торых u1, u2 ∈ L1, w1 ∈ L3,u1L4, w2 ∈ L3,u2L4, то одно из слов u1, u2
было бы собственным префиксом другого. Конкатенацию L1L2 можно
записать в виде

L1L2 =
⊔

u∈L1

uL2.

Следовательно, равенство L1L2 = L3L4 принимает вид⊔
u∈L1

uL2 =
⊔

u∈L1

u(L3,uL4),

откуда uL2 = uL3,uL4 для всех u ∈ L1. Сокращая слева на слово u,
получаем L2 = L3,uL4 для всех u ∈ L1. Так как левые части всех ра-
венств одинаковы, то L3,uL4 = L3,vL4 для всех u и v. Кроме того, все
языки L3,u являются беспрефиксными. Действительно, если бы некото-
рый язык L3,u содержал слова w и wz, где z ̸= ε, то L3 содержал бы
слова uw и uwz, а значит, не был бы беспрефиксным. Следовательно,
по лемме 3 получается, что все языки L3,u равны. Теперь возьмём в ка-
честве L5 язык L3,u. Непосредственно из равенства L2 = L3,uL4 следует
L2 = L5L4. Из (1) получаем

L3 =
⊔

u∈L1

uL5 =
( ⊔
u∈L1

{u }
)
· L5 = L1L5.

Теперь докажем единственность языка L5. Если существует другой
язык L′

5 такой, что L1L
′
5 = L3, то L1L5 = L1L

′
5. Но тогда L5 = L′

5 по
лемме 2. □
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Объединяя частные случаи, мы получаем главный результат.

Теорема 1 (Лемма Леви для беспрефиксных языков). Пусть L1L2 =
L3L4, где все Li непусты, L1 и L3 — беспрефиксные языки. Тогда суще-
ствует единственный язык L5 такой, что L1L5 = L3, L5L4 = L2 или
L3L5 = L1, L5L2 = L4. При этом L5 является беспрефиксным.

Доказательство. Если L1 ∩ L3 ̸= ∅, то L1 = L3, L2 = L4 по лемме 4,
поэтому можно положить L5 = { ε }. Если L1∩L3 = ∅, то справедливость
утверждения следует из леммы 7. □

Заметим, что языки L2 и L4 могут не быть беспрефиксными. Пусть,
например, L1 = { a, b }, L2 = {w ∈ { a, b }∗ : |w| ⩾ 2 }, L3 = { aa, ab, ba, bb },
L4 = {w ∈ { a, b }∗ : |w| ⩾ 1 }. Тогда L1L2 = L3L4, L5 = { a, b }, однако
ни L2, ни L4 не является беспрефиксным. Отметим также, что беспре-
фиксности только одного из языков L1, L3 может быть недостаточно.
Рассмотрим снова пример из начала этого раздела: L1 = L4 = { a },
L2 = L3 = { ε, a }. Язык L1 беспрефиксный, однако лемма Леви не вы-
полняется.

Для языка L5 можно записать и явное выражение с использованием
операции деления языков (см. [3]). Левое частное языков L1 и L2 опре-
деляется как

L−1
1 L2 = {w ∈ Σ∗ : uw ∈ L2 для некоторого u ∈ L1 }.

Мы не используем обозначение L1\L2, чтобы отличать частное от раз-
ности множеств.

Лемма 8. В условиях леммы 7 L5 = L−1
1 L3.

Доказательство. Пусть w ∈ L−1
1 L3. Тогда существует слово u ∈ L1 та-

кое, что uw ∈ L3. Так как L3 = L1L5, то uw ∈ L1L5. Если w /∈ L5,
то uw = u1w1 для некоторых u1 ∈ L1, w1 ∈ L5, при этом w1 ̸= w. Но
тогда одно из слов u, u1 является собственным префиксом другого, что
невозможно. Следовательно, w ∈ L5 и L−1

1 L3 ⊆ L5.
Обратно, пусть w ∈ L5. Возьмём произвольное слово u ∈ L1. Тогда

uw ∈ L1L5, а значит, uw ∈ L3. По определению получаем w ∈ L−1
1 L3,

поэтому L5 ⊆ L−1
1 L3. □

Аналогично левому частному можно определить и правое частное как

L1L
−1
2 = {w ∈ Σ∗ : wu ∈ L1 для некоторого u ∈ L2 }.

Однако симметричная формула L5 = L2L
−1
4 может не иметь места.

Пусть L1 = { a }, L2 = { aib : i > 0 }, L3 = { aa }, L4 = { aib : i ⩾ 0 }.
Тогда L1L2 = L3L4, L−1

1 L3 = { a }, но L2L
−1
4 = { ai : i ⩾ 0 }.

Лемма Леви справедлива и для бессуффиксных языков, то есть для
таких, в которых ни одно слово не является собственным суффиксом
другого слова.
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Теорема 2 (Лемма Леви для бессуффиксных языков). Пусть L1L2 =
L3L4, где все Li непусты, L2 и L4 — бессуффиксные языки. Тогда суще-
ствует единственный язык L5 такой, что L1L5 = L3, L5L4 = L2 или
L3L5 = L1, L5L2 = L4. При этом L5 является бессуффиксным.

Доказательство. Обозначим через wR обращение слова w: если w =
a1a2 . . . an, то wR = an . . . a2a1. Через LR обозначим обращение языка L,
то есть множество обращений всех слов из L: LR = {wR : w ∈ L }. Непо-
средственно из определений следует, что язык L является беспрефикс-
ным тогда и только тогда, когда LR является бессуффиксным, а также
что (L1L2)

R = LR
2 L

R
1 . Поэтому равенство L1L2 = L3L4 эквивалентно

равенству LR
2 L

R
1 = LR

4 L
R
3 . По теореме 1 существует язык L′

5 такой, что
либо LR

2 L
′
5 = LR

4 , L′
5L

R
3 = LR

1 , либо LR
4 L

′
5 = LR

2 , L′
5L

R
1 = LR

3 . Пола-
гая L5 = (L′

5)
R и применяя обращение к этим равенствам, мы получим

утверждение теоремы. □

По аналогии с леммой 8 можно доказать, что в этом случае L5 =
L4L

−1
2 , если m(L2) ⩽ m(L4).

4 Неразрешимость теории конкатенации

С помощью леммы Леви легко доказать неразрешимость теории кон-
катенации для множества беспрефиксных языков.

Теорема 3. Если |Σ| ⩾ 2, то теории алгебр A = (Lp(Σ), ·) и B =
(Lp(Σ) ∪ {∅ }, ·) неразрешимы.

Доказательство. В алгебре (Lp(Σ) \ { { ε } }, ·) выполняются все аксио-
мы TC1–TC5. Следовательно, её теория неразрешима в силу существен-
ной неразрешимости теории TC (см. [2]). Пустое множество определимо
формулой (∀y)xy = x, а множество { ε } — формулой (∀y)xy = y (здесь
переменные x и y обозначают не слова, а языки). Следовательно, теории
алгебр A и B также неразрешимы. □

Мы уже отмечали, что лемма Леви неверна в классе всех языков, а
значит, алгебры слов и языков с операцией конкатенации не являются
элементарно эквивалентными. Если рассматривать все беспрефиксные
языки, включая пустой, то более простым примером формулы, разли-
чающей алгебры слов и языков, является формула, выражающая су-
ществования нуля моноида: (∃x)(∀y)xy = x. Она ложна на множестве
слов, но истинна на множестве языков. Далее мы докажем, что алгебры
(∆∗, ·) и (Lp(Σ), ·) элементарно эквивалентны, если |Σ| ⩾ 2, а алфавит
∆ бесконечен.

Сначала мы определим специальные языки, которые будут играть
роль символов в алгебре языков.

Определение 1. Пусть L ̸= ∅ — беспрефиксный язык. L называет-
ся элементарным, если не существует беспрефиксных языков L1 и L2,
отличных от { ε } и таких, что L = L1L2.
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Элементарные языки неразложимы подобно символам. В лемме 10 мы
докажем, что любой язык из Lp(Σ) выражается через них подобно тому,
как любое слово является конкатенацией своих символов. Заметим, что
требование беспрефиксности языков L1 и L2 нельзя опустить. Например,
{ ab, aabb } ∈ Lp(Σ) для Σ = { a, b }, но этот язык представляется в виде
конкатенации { a, aab } · { b }, в которой первый язык уже не является
беспрефиксным.

Лемма 9. Если |Σ| ⩾ 2, то множества элементарных языков и всех
языков в алфавите Σ равномощны.

Доказательство. Для любого целого i = 0, 1, 2, . . . любой язык L, со-
держащий слова a и baib, является элементарным. Действительно, если
L = L1L2, то один из языков L1, L2 должен содержать слово a, а дру-
гой — пустое слово ε. Но тогда второй язык равен { ε }, поэтому язык L
элементарный. Остальные слова языка L можно выбрать произвольным
образом, что и даст требуемую мощность. □

В частности, из этой леммы следует, что множество элементарных
языков в не более чем счётном алфавите, содержащем хотя бы две буквы,
имеет мощность континуум.

Лемма 10. Любой беспрефиксный язык L представляется в виде кон-
катенации элементарных языков и при этом однозначно с точностью
до множителей { ε }.

Доказательство. Существование представления докажем индукцией по
длине k кратчайшего слова в L.
Базис индукции. Если k = 0, то ε ∈ L, а значит, L = { ε }, так как в
противном случае L не был бы беспрефиксным. L является искомым
представлением.
Индукционный шаг. Пусть длина кратчайшего слова языка L равна k+1.
Если L элементарный, то L является искомым представлением. Если L
не является элементарным, то L = L1L2 для некоторых L1, L2 ̸= { ε }.
Если x ∈ L1, y ∈ L2 — кратчайшие слова, то |xy| = k + 1. Поскольку
ε /∈ L1, L2, то |x|, |y| ⩽ k. Поэтому для L1 и L2 искомые представления
существуют по индукционному предположению.

Теперь докажем единственность представления. Предположим, что
для языка L существуют два различных представления

L1 · L2 · . . . · Ln = L′
1 · L′

2 · . . . · L′
m,

в которых все языки отличны от { ε }. Предположим сначала, что Li ̸= L′
i

для некоторого i, и выберем наименьшее из таких i. Тогда

L1 · . . . · Li−1 · Li · L′ = L1 · . . . · Li−1 · L′
i · L′′,

где через L′ и L′′ обозначены конкатенации языков, стоящих правее.
Сокращая слева на L1, . . . , Li−1 по лемме 2, получаем LiL

′ = L′
iL

′′. По
теореме 1 существует беспрефиксный язык L′′′ такой, что LiL

′′′ = L′
i или
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L′
iL

′′′ = Li. Но так как Li и L′
i элементарны, то это возможно только при

L′′′ = { ε }, откуда Li = L′
i.

Теперь предположим, что L1 = L′
1, . . . , Ln = L′

n, но m > n. Равенство
двух разложений можно переписать в виде

L1 · L2 · . . . · Ln · { ε } = L1 · L2 · . . . · Ln · L′
n+1 · . . . · L′

m.

Сокращая слева по лемме 2 на беспрефиксные языки L1, . . . , Ln, получа-
ем L′

n+1 · . . . ·L′
m = { ε }, откуда L′

n+1 = · · · = L′
m = { ε }. Следовательно,

в обоих случаях разложения совпадают. □

Леммы 9 и 10 позволяют описать строение алгебры беспрефиксных
языков.

Теорема 4. Для любого алфавита Σ моноид (Lp(Σ), ·) является сво-
бодным. Моноиды (Lp(Σ1), ·) и (Lp(Σ2), ·) изоморфны при |Σ1|, |Σ2| ⩾ 2
тогда и только тогда, когда либо алфавиты Σ1 и Σ2 не более чем счёт-
ны, либо они несчётны и имеют одинаковую мощность.

Доказательство. Известно (см. [11]), что полугруппа S является сво-
бодной тогда и только тогда, когда каждый элемент из S может быть
однозначно представлен в виде произведения элементов из некоторого
множества X. Поэтому из леммы 10 следует, что моноид Lp(Σ) является
свободным, причём множеством образующих являются все элементар-
ные языки. Второе утверждение теоремы следует из леммы 9 и из того,
что свободные моноиды изоморфны тогда и только тогда, когда их мно-
жества образующих равномощны. □

В частности из этой теоремы следует, что моноид беспрефиксных язы-
ков изоморфен моноиду всех слов в некотором подходящем алфавите ∆
бесконечной мощности. Поскольку свободные моноиды с бесконечным
числом образующих элементарно эквивалентны, то справедлив также
следующий результат.

Следствие 1. Пусть ∆ — бесконечный алфавит, Σ — алфавит, со-
держащий не менее двух символов. Тогда моноиды A = (∆∗, ·) и B =
(Lp(Σ), ·) элементарно эквивалентны.

Если использовать стандартное кодирование для случая счётного ∆,
когда символ ai ∈ ∆ записывается в виде aib, то можно сформулировать
другой вариант этого следствия, в котором все алфавиты конечны.

Следствие 2. Пусть L0 — множество всех слов в алфавите { a, b },
заканчивающихся на b, а также пустое слово, и пусть |Σ| ⩾ 2. Тогда
алгебры A = (L0, ·) и B = (Lp(Σ), ·) элементарно эквивалентны.

Доказательство. Любое слово из языка L0 однозначно представляется
в виде конкатенации слов вида aib, поэтому A — свободный моноид со
счётным множеством образующих { aib : i ⩾ 0 }. Он элементарно экви-
валентен свободному моноиду B с бесконечным множеством образую-
щих. □
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В [12] была доказана разрешимость теории слов в произвольном ал-
фавите со счётным множеством операций возведения в степень xi для
i ⩾ 2. Из следствия 1 немедленно получается аналогичный результат
для Lp(Σ).

Теорема 5. Теория алгебры Lp(Σ) с операциями xi, i ⩾ 2, разрешима.

Отметим также, что все доказанные в этом разделе результаты о раз-
решимости и элементарной эквивалентности непосредственно переносят-
ся и на бессуффиксные языки.

В заключение сформулируем некоторые вопросы для дальнейшего ис-
следования.

• Для каких более широких классов языков также выполняется
лемма Леви?

• Разрешима ли теория всех языков в произвольном фиксирован-
ном алфавите Σ с операциями возведения в степень xi, i ⩾ 2?

Автор выражает благодарность М.Е. Вишникину за обсуждение ре-
зультатов и ценные замечания.
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