
S e⃝MR
СИБИРСКИЕ ЭЛЕКТРОННЫЕ

МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ
Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
ISSN 1813-3304

Том 22, № 2, стр. 1394–1400 (2025) УДК 519.214
https://doi.org/10.33048/semi.2025.22.084 MSC 60F05

ОБ ОДНОМ УСИЛЕНИИ ТЕОРЕМЫ
ГАЕКА–ШИДАКА

И.С. Борисов,
11/10/2019 ORCID-iD_icon-vector.svg

file:///Users/tao/Downloads/5008697/ORCID-iD_icon-vector.svg 1/1

Ю.Ю. Линке
11/10/2019 ORCID-iD_icon-vector.svg

file:///Users/tao/Downloads/5008697/ORCID-iD_icon-vector.svg 1/1

Представлено Н.С. Аркашовым

Abstract: An analogue of the Hajek–Sidak theorem is proved
on asymptotic normality of the distributions of sums of weighted
independent identically distributed centered random variables with
a finite second moment in the case where the normalizing coeffici-
ents of these sums are not constants but random variables.
Keywords: Hajek-Sidak central limit theorem, series diagram,
random weighting coefficient.

1 Введение и основной результат

В книге Гаека и Шидака [1] имеется раздел «Cпециальный случай
центральной предельной теоремы» (см. главу 5, раздел 1.2), в кото-
ром приводится утверждение о слабой сходимости к нормальному за-
кону суммы взвешенных независимых одинаково распределенных слу-
чайных величин в случае, когда так называемый треугольный массив
коэффициентов, участвующий в указанной сумме, состоит из постоян-
ных. Цель данной заметки — доказать аналог указанного утверждения
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в ситуации, когда треугольный массив составляют случайные величи-
ны, т.е. этот массив взвешивающих коэффициентов образует «схему се-
рий». Утверждение такого типа нам потребовалось в задачах регрессии.
В частности, при доказательстве асимптотической нормальности неко-
торых явных оценок в задачах нелинейной регрессии и универсальных
локально–постоянных оценок в непараметрической регрессии (см. [3] и
[4]). Данный результат может быть использован и в других задачах ре-
грессионного анализа.

Перейдем к точным формулировкам. Приведем прежде всего обсуж-
даемую теорему Гаека–Шидака (см. приводимую далее теорему 1). Нам
удобнее использовать специализированную формулировку этой теоре-
мы, предложенную в [2]. Условимся, что всюду в дальнейшем все пре-
делы, если не оговорено иное, берутся при n → ∞. Символ N (a, σ2)
обозначает гауссовскую случайную величину c параметрами a и σ2, а
запись вида ζn

d−→ N (0, σ2) означает слабую сходимость распределений.

Теорема 1. Пусть ξ1, ξ2, . . . — последовательность независимых оди-
наково распределенных случайных величин с нулевым средним и конеч-
ным вторым моментом σ2 = Eξ21 . Кроме того, имеется такой тре-
угольный массив коэффициентов cnk, k = 1, . . . , n, n = 1, 2, . . ., что
выполнены условия

max
1≤k≤n

|cnk| → 0,
n∑

k=1

c2nk = 1 при всех n.

Тогда распределения последовательности сумм
∑n

k=1
cnkξk, n = 1, 2, . . . ,

асимптотически нормальны:
n∑

k=1

cnkξk
d−→ N (0, σ2).

Как отмечается в [2], случайные величины cnkξk, k = 1, . . . , n, n =
1, 2, . . ., образуют «схему серий» специального вида, в которой распре-
деления участвующих в ней величин отличаются только параметрами
масштаба.

Приведем теперь предлагаемый нами аналог теоремы 1 в ситуации
случайных нормирующих коэффициентов. Справедлива

Теорема 2. Пусть ξ1, ξ2, . . . — последовательность независимых оди-
наково распределенных центрированных случайных величин с конечным
вторым моментом σ2 = Eξ21 , а случайные величины ank, k = 1, . . . , n,
n = 1, 2, . . ., не зависящие от ξi, i = 1, 2, . . ., удовлетворяют следующим
двум условиям:

max
1≤k≤n

|ank|
p−→ 0,

n∑
i=1

a2nk = 1 при всех n. (1)
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Тогда имеет место предельное соотношение
n∑

k=1

ankξk
d−→ N (0, σ2).

Замечание 1. Утверждение теоремы 2 останется справедливым при
замене второго условия в (1) соотношением

n∑
i=1

a2nk = 1 + õp(1),

где õp(1) — случайная величина, сходящаяся к нулю по вероятности
так, что sup |õp(1)| < ∞ и sup берется по всем n и всем элементарным
исходам.

Приведем один из примеров, относящийся к классической задаче оце-
нивания регрессионной функции в непараметрической регрессии мето-
дом ядерного сглаживания, когда может возникнуть необходимость ис-
следовать асимптотическое поведение рассматриваемых в теореме 2
сумм. Предположим, что наблюдения Xk, k = 1, . . . , n, представимы в
виде

Xk = f(zk) + g(zk)ξk, k = 1, . . . , n,

где неизвестная функция f(t), t ∈ [0, 1], непрерывна и подлежит оцени-
ванию, детерминированные или случайные величины {zk} (регрессоры)
нам известны, погрешности {ξk} — ненаблюдаемые независимые одина-
ково распределенные случайные величины с нулевым средним и конеч-
ной дисперсией, не зависящие от регрессоров {zk}, неизвестная функция
g(t), t ∈ [0, 1], непрерывна и положительна. В такой модели непараметри-
ческой регрессии весьма популярны методы ядерного сглаживания (см.,
например, [5]–[7]). Оценка Надарая–Ватсона для регрессионной функ-
ции f имеет следующую структуру:

f∗
n,h(t) =

∑n

k=1
XkKh(t− zk)∑n

k=1
Kh(t− zk)

,

где Kh(x) = h−1K(h−1x) и K(x) — некоторая ядерная функция (на-
пример, плотность симметричного распределения с носителем [−1, 1]), а
h = hn → 0 — размер окна; при этом знаменатель у приведенной оценки
отличен от нуля при всех n. Нетрудно видеть, что справедливо следую-
щее представление:

B−1
n,h

(
f∗
n,h(t)− f(t)− rn,h

)
=

=

(
n∑

i=1

K2
h (t− zi) g

2(zi)

)−1/2 n∑
k=1

Kh(t− zk)g(zk)ξk,
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где

rn,h(t) =

(
n∑

i=1

Kh(t− zi)

)−1 n∑
i=1

(f(zi)− f(t))Kh(t− zi),

B2
n,h(t) =

(
n∑

i=1

Kh(t− zi)

)−2 n∑
i=1

K2
h (t− zi) g

2(zk).

Таким образом, доказательство асимптотической нормальности оцен-
ки Надарая–Ватсона эквивалентно доказательству аналогичного соот-

ношения для суммы
n∑

k=1

ankξk при

ank =
Kh(t− zk)g(zk)(∑n

i=1
K2

h (t− zi) g
2(zk)

)1/2 .
Отметим, что в силу теоремы 2 для асимптотической нормальности оцен-
ки Надарая–Ватсона в точке t нужно требовать следующее условие рав-
номерной малости:

maxk≤nK
2
h(t− zk)g

2(zk)∑n

i=1
K2

h (t− zi) g
2(zk)

p−→ 0.

Подчеркнем, что это условие выполнено при весьма широких ограниче-
ниях на регрессоры и не требует, например, выполнения тех или иных
форм слабой зависимости или регулярности {zi}. Отметим, что если это
условие выполнено для любого фиксированного t ∈ [0, 1] (другими сло-
вами, оценка Надарая–Ватсона асимптотически нормальна для любой
фиксированной точки из области определения f), то относительно ре-
грессоров {zi} можно утверждать, что выполнено лишь условие плот-
ного заполнения ими области задания регрессионной функции. Это по
существу необходимое ограничение на регрессоры более слабое по срав-
нению с известными ранее в данной модели. В этой связи, не стремясь
привести подробную библиографию, укажем, например, монографии [8]–
[12] и работы [6], [7], [13]–[16], в которых исследуются вопросы асимпто-
тической нормальности тех или иных ядерных оценок, включая оценки
Надарая–Ватсона и их модификации.

2 Доказательство теоремы 2

Пусть Fn — σ-алгебра, порожденная набором случайных величин ank,
k = 1, . . . , n. Обозначим символом EFn условное математическое ожида-
ние при фиксации этой σ-алгебры и рассмотрим характеристическую
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функцию случайной величины ηn =
∑n

k=1 ankξk. Для любого фиксиро-
ванного действительного s имеем

Eeisηn = EEFn exp

{
is

n∑
k=1

ankξk

}
= EEFn

n∏
k=1

eisankξk =

= EEFn

n∏
k=1

[
1 + isankξk −

s2a2nkξ
2
k

2

(
1 + 2

∫ 1

0
(1− u)

(
eiusankξk − 1

)
du

)]
=

= E
n∏

k=1

[
1−

s2σ2a2nk
2

(1 + τs (ank))

]
, (2)

где

τs(x) = 2σ−2E
(
ξ21

∫ 1

0
(1− u)(eisxuξ1 − 1)du

)
. (3)

При выводе соотношения (2) мы использовали формулу Тейлора для
функции eiz при z = sankξk с остаточным членом в интегральном виде,
а именно

eiz = 1 + iz − z2
∫ 1

0
(1− u)eizudu =

= 1 + iz − z2

2

(
1 + 2

∫ 1

0
(1− u)

(
eizu − 1

)
du

)
.

Нам потребуется следующее неравенство для функции τs(x):

|τs(x)| ≤ 2σ−2E
{
ξ21

∫ 1

0
(1− u)min{|sxuξ1|, 2}du

}
.

Это соотношение очевидным образом следует из определения (3) и нера-
венства

∣∣eix − 1
∣∣ ≤ min{|x|, 2} для любого x ∈ R. В частности, τs(x) → 0

при x → 0 в силу теоремы Лебега. Кроме того,

sup
x,s

|τs(x)| ≤ 2, (4)

поскольку
∫ 1
0 (1− u)min{|sxuξ1|, 2}du ≤ 1.

Вернемся к изучению асимптотического поведения характеристиче-
ской функции Eeisηn . Нам потребуется следующий хорошо известный
вариант теоремы Лебега: если Xn

p→ c0 и для любого n ≥ 1 выполнено
|Xn| ≤ C для некоторой константы C < ∞, то EXn → c0. При этом слу-
чайные величины Xn и постоянная c0 могут быть комплекснозначными.
Обозначим через Xn произведение, стоящее под знаком математического
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ожидания в правой части (2), и воспользуемся следующим представле-
нием:

n∏
k=1

(1 + bnk) = exp

{
n∑

k=1

log(1 + bnk)

}
=

= exp


n∑

k=1

bnk −
n∑

k=1

b2nk

1∫
0

1− u

(1 + bnku)2
du

 (5)

при bnk = ca2nk(1+ τs(ank)) и c = −s2σ2/2. Здесь мы опять использовали
разложение Тейлора для функции φ(z) = log(1+z) с комплекснозначной
переменной z:

φ(z) = φ(0) + φ′(0)z + z2
1∫

0

(1− u)φ′′(uz)du.

Поскольку по условию теоремы maxk |ank|
p→ 0, то в силу свойств функ-

ции τs(·) выполнено

max
1≤k≤n

|τs(ank)|
p→ 0 и max

1≤k≤n
|bnk|

p→ 0.

Стало быть, интегралы в правой части (5) определены корректно на мно-
жестве асимптотически полной меры. Учитывая теперь второе условие
в (1), заключаем, что

n∑
k=1

bnk = c+ op(1),

n∑
k=1

b2nk = op(1).

Таким образом, в силу (5)

Xn =

n∏
k=1

[
1 + ca2nk

(
1 + τs(ank)

)]
≡

n∏
k=1

(1 + bnk) = exp {c+ op(1)} .

Легко видеть, что при всех n с учетом (1) и (4)∣∣∣∣∣
n∑

k=1

a2nkτs(ank)

∣∣∣∣∣ ≤ 2. (6)

Таким образом, c учетом (4), (6) и неравенства |1 + z| ≤ 1 + |z| ≤ e|z|,
справедливого при всех комплекснозначных z, при всех n ≥ 1 мы имеем

|Xn| ≤ exp{3|c|}.

Из полученных неравенств и предельных соотношений немедленно по-
лучаем, что Xn

p→ c0 ≡ e−s2σ2/2 и supn |Xn| ≤ C при некотором C < ∞.
Таким образом, при любом фиксированном действительном s выполнено
Eeisηn ≡ EXn → e−s2σ2/2. Теорема 2 доказана.
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NOTs, 14, Matematicheskǐı Institut im. V.A. Steklova, RAN, Moscow, 2009.
Zbl 06235250

[3] Yu.Yu. Linke, I.S. Borisov, Constructing explicit estimators in nonlinear regression
models, Theory Probab. Appl., 63:1 (2018), 22–44. Zbl 1404.62071

[4] I.S. Borisov, Yu.Yu. Linke, P.S. Ruzankin, Universal weighted kernel-type estimators
for some class of regression models, Metrika, 84:2 (2021), 141–166. Zbl 1461.62046

[5] Y. Shen, C. Gao, D. Witten, F. Han, Optimal estimation of variance in nonparametric
regression with random design, Ann. Stat., 48:6 (2020), 3589–3618. Zbl 1460.62053

[6] Q. Xie, Q. Sun, J. Liu, Local weighted composite quantile estimation and smoothing
parameter selection for nonparametric derivative function, Econom. Rev., 39:3 (2020),
215–233. Zbl 1490.62103

[7] B. Kai, R. Li, H. Zou, Local composite quantile regression smoothing: an efficient and
safe alternative to local polynomial regression, J. R. Stat. Soc., Ser. B, Stat. Methodol.,
72:1 (2010), 49–69. Zbl 1411.62101
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[11] W. Härdle, M. Müller, S. Sperlich, A. Werwatz, Nonparametric and semiparametric
models, Springer, Berlin, 2004. Zbl 1059.62032
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