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Abstract: The paper considers the problem of nonparametric
regression, which consists in estimating the derivative of the regres-
sion function, when the values of the regression function are obser-
ved with an accuracy of random errors in some known set of
fixed or random points (regressors). The solution of this problem,
including methods of kernel smoothing, is devoted to an extensive
literature. In the paper, the consistency of a new class of locally
linear estimators is studied, while a more general condition on
the regressors is used. With respect to the regressors, it is only
required that they asymptotically densely fill the domain of the
regression function. This condition includes both the case of fixed
regressors, without the requirement of regularity, and the situation
of random regressors, but without the assumption of some form of
weak dependence of quantities or the fulfillment of ergodic proper-
ties.
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1 Введение

Рассматривается следующая модель непараметрической регрессии:
даны наблюдения (отклики) X1, . . . , Xn, которые представимы в виде

Xi = f(zi) + εi, i = 1, . . . , n,

где достаточно гладкая скалярная функция f(t), t ∈ [0, 1], неизвестна,
ненаблюдаемые погрешности {εi} являются центрированными случай-
ными величинами, регрессоры {zi} могут быть как случайными, так и
детерминированными, их значения нам известны. Таким образом, с точ-
ностью до случайных погрешностей наблюдаются значения {Xi} регрес-
сионной функции f в некотором известном наборе ее аргументов {zi}.
Задача состоит в том, чтобы по заданным парам {(zi, Xi); i = 1, . . . , n}
оценить производную f ′ регрессионной функции f .

Оценивание производной регрессионной функции (наряду с оценива-
нием самой функции) играет важную роль в анализе (см. подробности,
например, в [1]-[5]). Решению этой задачи посвящена обширная литера-
тура (см., например, библиографию работы и ссылки в указанных пуб-
ликациях). Начиная с 60-х годов, в непараметрической регрессии ши-
роко используются методы ядерного сглаживания. Популярны ядерные
оценки и в задаче оценивания производных регрессионной функции (см.,
например, недавние публикации [6]–[19], а также более ранние работы
[20]-[29]). Методы ядерного сглаживания относят к одному из основных
подходов в задаче оценивания производных регрессионной функции (см.,
например, [1]-[5]).

В рассматриваемой задаче непараметрической регрессии нас интере-
суют условия на регрессоры. В известных нам работах, посвященных
оцениванию производных регрессионной функции, модели с детермини-
рованным и случайными регрессорами принято рассматривать отдельно
(см., например, [1]-[36]). Если регрессоры фиксированы, то предполага-
ется в том или ином смысле регулярное заполнение этими точками об-
ласти задания регрессионной функции (см., например, [3], [9], [11], [12],
[21], [22], [24], [29], [33], [35]). В ситуации случайных регрессоров либо
предполагается, что эти величины независимы и одинаково распределе-
ны ([2], [5], [8], [10], [13], [16], [19], [25], [26], [27], [31], [32], [36]), либо для
задания регрессоров используются те или иные формы слабой зависи-
мости случайных величин или условия эргодичности (см., например, [6],
[14], [15], [17], [18], [23], [28]).

В работе исследуются новые универсальные локально-линейные ядер-
ные оценки для производной регрессионной функции, при этом исполь-
зуется более общее и обладающее рядом преимуществ условие на ре-
грессоры, чем известные ранее в этой задаче. В работе семейство ре-
грессоров представляет собой случайные величины в схеме серий, а в
качестве параметра серии выступает объем наблюдений. Последнее поз-
воляет включить в рассмотрение в качестве частного случая и модели
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с детерминированными регрессорами. Доказана состоятельность новых
универсальных локально-линейных ядерных оценок для производной ре-
грессионной функции. При этом относительно набора регрессоров тре-
буется лишь, чтобы эти величины с высокой вероятностью образовыва-
ли измельчающееся разбиение области задания регрессионной функции.
Данное условие в терминах плотных данных является по существу необ-
ходимым для восстановления регрессионной функции и ее производных.
Оно универсально относительно природы корреляции регрессоров и поз-
воляет в едином подходе рассматривать модели с детерминированными
и случайными регрессорами, при этом без требования регулярности или
слабой зависимости, что особенно важно для приложений.

Отметим, что исследовать новые универсальные ядерные оценки при
близких к минимальным ограничениях на регрессоры во многом удает-
ся благодаря специальной структуре этих оценок, содержащей конструк-
ции сумм определенным образом взвешенных наблюдений со структурой
интегральных сумм Римана. Конструкции интегральных сумм открыва-
ют возможность исследовать асимптотические свойства оценок за счет
близости интегральных сумм и соответствующих интегралов, а не пре-
дельных теорем теории вероятностей.

Ранее близкие условия в терминах плотных данных были предложены
в [37]-[46] в задаче оценивания регрессионной функции, а также функций
среднего и ковариации непрерывного случайного процесса. На первый
взгляд в случае, когда известна некоторая оценка для регрессионной
функции, имеется простейший путь получения оценки для производ-
ной этой функции, состоящий в дифференцировании оценки для самой
функции. Но такой вариант оценивания годится, по-видимому, только в
исключительных случаях, и не гарантирует «хорошей» оценки для про-
изводной даже в случае, когда регрессионная функция оценена «очень
хорошо» (см. комментарии, например, в [1], [30]). Так что указанный
простейший путь не решает поставленной задачи в достаточно широких
условиях.

Работа устроена следующим образом: в разделе 2 приведен основной
результат, доказательство которого отнесено в раздел 3.

2 Основной результат

Нам потребуется ряд условий на параметры модели.
(M) Даны двумерные наблюдения {(zi, Xi); i = 1, . . . , n}, представи-

мые в виде
Xi = f(zi) + εi, i = 1, . . . , n, (1)

где f(t) — неизвестная заданная на [0, 1] непрерывно дифференцируемая
скалярная функция, случайные погрешности {εi; i = 1, . . . , n} ненаблю-
даемы, набор регрессоров {zi; i = 1, . . . , n} состоит из случайных вели-
чин, вообще говоря, с неизвестными распределениями, не обязательно
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независимых или одинаково распределенных. Предполагается, что слу-
чайные величины {zi; i = 1, . . . , n} могут зависеть от n.

Замечание 1. Условие (M) включает в себя и ситуацию фиксирован-
ных регрессоров. Отрезок [0, 1] в качестве области изменения регрессо-
ров мы рассматриваем исключительно с целью простоты изложения.

(E) При всех n ≥ 1 случайные погрешности {εi; i = 1, . . . , n} с вероят-
ностью 1 при всех i, j ≤ n, i ̸= j, удовлетворяют следующим условиям:

EFnεi = 0, sup
i≤n

EFnε
2
i ≤ σ2, EFnεiεj = 0, (2)

где константа σ2 > 0 неизвестна и не зависит от n, а символ EFn обозна-
чает условное математическое ожидание при фиксации σ-алгебры Fn,
порожденной случайными величинами {zi; i = 1, . . . , n}.

(K) Ядерная функция K(t), t ∈ R, является плотностью симметрич-
ного распределения с носителем [−1, 1], т.е. K(t) ≥ 0, K(t) = K(−t) при
всех t ∈ [−1, 1] и

∫
[−1,1]K(t)dt = 1. Кроме того, ядерная функция K(t)

удовлетворяет условию Липшица всюду на R с константой L ≥ 1.
При некотором h > 0 положим Kh(t) = h−1K(h−1t). Понятно, что при

выполнении условия (K) функция Kh(t) является плотностью распре-
деления на [−h, h].

Обозначим через zn:1 ≤ . . . ≤ zn:n элементы вариационного ряда, по-
строенного по выборке регрессоров {zi; i = 1, . . . , n}. Положим

zn:0 = 0, zn:n+1 = 1, ∆zni = zn:i − zn:i−1, i = 1, . . . , n+ 1.

Отклик из (1), ассоциированный с порядковой статистикой zn:i, обозна-
чим через Xni.

Условимся, что все пределы берутся при n → ∞. Относительно ре-
грессоров нам потребуется следующее условие, которое обсудим далее,
в замечании 6.

(R) Имеет место предельное соотношение δn ≡ max1≤i≤n+1∆zni
p→ 0.

Наконец, для любого h ∈ (0, 1) введем в рассмотрение следующий
класс оценок для производной регрессионной функции f :

f̂ ′
n,h(t) =

n∑
i=1

wn0(t)(zn:i − t) + wn1(t)

wn0(t)wn2(t)− w2
n1(t)

XniKh(t− zn:i)∆zni, (3)

где

wnj(t) =
n∑

i=1

(t− zn:i)
jKh(t− zn:i)∆zni, j = 0, 1, 2. (4)

Замечание 2. Нетрудно проверить, что ядерная оценка (3) является
второй координатой двумерной точки, на которой достигается минимум

min
(a,b)

n∑
i=1

(Xni − a− b(zn:i − t))2Kh(t− zn:i)∆zni. (5)
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Таким образом, предлагаемый класс оценок в известном смысле близок
к классической локально–линейной оценке для производной, но во взве-
шенном методе наименьших квадратов используются несколько иные ве-
са, определяемые порядковыми статистиками, построенными по набору
регрессоров, а вместо исходных наблюдений Xi участвуют наблюдения
Xni, ассоциированные с соответствующими порядковыми статистиками.

Замечание 3. Ядерная оценка для регрессионной функции f , опреде-
ляемая как первая координата двумерной точки, на которой достигается
минимум в (5), была введена и исследована в [38], но лишь в предполо-
жении непрерывности функции f . Как мы уже отмечали во введении,
оценка для регрессионной функции не позволяет получить оценку для
производной регрессионной функции в достаточно широких условиях.

Замечание 4. В случае, когда в наборе {zi; i = 1, . . . , n} имеются крат-
ные точки, некоторые спейсинги ∆zni обращаются в ноль, и мы теряем
часть выборочной информации в оценке f̂ ′

n,h(t), определенной в (3). В
этом случае предлагается прежде, чем использовать оценку (3), несколь-
ко сократить выборку. А именно, заменить наблюдения Xi с одинаковы-
ми точками zi их средним арифметическим и оставить в новой выборке
лишь одну точку из кратных. В этом случае усредненные наблюдения
будут иметь меньшее зашумление, так что, несмотря на меньший объем
новой выборки, мы в известной мере не теряем информацию, содержа-
щуюся в исходной выборке.

Основной результат состоит в следующем.

Теорема 1. Пусть выполнены условия (M), (E), (K) и (R) и последо-
вательность положительных чисел h = hn → 0 такова, что

Eδn/h3 → 0, Eδ2n/h4 → 0. (6)

Тогда для любого фиксированного t имеет место предельное соотноше-
ние

f̂ ′
n,h(t)

p→ f ′(t).

Замечание 5. Приведенные в теореме 1 достаточные условия (6) поз-
воляют в тех или иных ситуациях оценить порядок скорости сходимо-
сти. Например, в случае так называемого эквидистантного плана (т.е.
zi = i/n, i = 1, ..., n) выполнено δn = 1/n. Поэтому условие (6) гаранти-
руется соотношением nh3 → ∞, что совпадает с порядками сходимости
оценок для производных, полученными другими способами (см. [9], [47]).
Также нетрудно видеть, что сходимость Eδ2n/h6 → 0 гарантирует выпол-
нение обоих условий в (6), поскольку Eδn/h3 ≤

(
Eδ2n/h6

)1/2.
Замечание 6. Таким образом, единственное условие (R) на регрессоры,
обеспечивающее поточечную состоятельность новой локально–линейной
оценки для производной регрессионной функции, состоит в следующем:
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регрессоры с высокой вероятностью образуют измельчающееся разби-
ение области задания регрессионной функции, диаметр которого стре-
мится к нулю по вероятности c увеличением объема выборки. На наш
взгляд, условие (R) весьма наглядно и по сути является необходимым
для восстановления как регрессионной функции, так и ее производных.
Очевидно, что неслучайные регрессоры, регулярно заполняющие [0, 1],
удовлетворяют условию (R). Если {zi} независимы и одинаково распре-
делены, а отрезок [0, 1] является носителем их общего распределения, то
условие (R) также выполнено. Если {zi} — стационарная последователь-
ность с условием α-перемешивания и маргинальным распределением с
носителем [0, 1], то условие (R) также выполнено. Все другие известные
в литературе формы слабой зависимости регрессоров также влекут за
собой условие вида (R). Но выполнение этого условия вполне возможно
и для других типов зависимости, которая может быть более сильной,
нежели классические условия слабой зависимости (например, когда не
выполнены предельные теоремы типа законов больших чисел, см. по-
дробности и примеры в [37]-[46]).

3 Доказательство теоремы 1

Всюду далее в этом разделе считаем, что выполнены условия теоре-
мы 1. Введем следующие обозначения:

βn,i(t) =
(zn:i − t)wn0(t) + wn1(t)

wn0(t)wn2(t)− w2
n1(t)

, (7)

rn,h(t) =
n∑

i=1

βn,i(t)
(
f(zn:i)− f(t)− f ′(t)(zn:i − t)

)
Kh(t− zn:i)∆zni, (8)

νn,h(t) =
n∑

i=1

βn,i(t)Kh(t− zn:i)∆zniεni, (9)

где через {εni} обозначены погрешности, ассоциированные с порядковы-
ми статистиками {zn:i}.

Нам потребуется ряд вспомогательных утверждений. Справедлива

Лемма 1. Имеет место представление

f̂ ′
n,h(t) = f ′(t) + rn,h(t) + νn,h(t).
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Доказательство. Заметим прежде всего, что с учетом определений (3),
(4) и (7), справедливы тождества

f̂ ′
n,h(t) ≡

n∑
i=1

βn,iXniKh(t− zn:i)∆zni,

n∑
i=1

βn,i(t)Kh(t− zn:i)(zn:i − t)∆zni ≡ 1,

n∑
i=1

βn,i(t)Kh(t− zn:i)∆zni ≡ 0.

Принимая во внимание соотношение

Xni = f(zn:i) + εni, i = 1, . . . , n,

утверждение леммы следует из указанных тождеств и определений (8)
и (9). □

Замечание 7. Положим

An,h(t) = {i : |t− zn:i| ≤ h, 1 ≤ i ≤ n}.

Подчеркнем, что ввиду свойств плотности Kh(·), область суммирования
в (8) и (9), а также в (4), совпадает с множеством An,h(t). Отмеченный
факт является принципиальным для дальнейшего анализа. Условимся
далее использовать символ

∑
без индексов только в случае, когда сум-

мирование ведется по множеству индексов i ∈ An,h(t).

Положим

c∗ ≡ c∗(K) =
κ2 − κ21

96L(6L+ κ2 + κ1/2)
<

1

864L
, (10)

где символ κj , j = 1, 2, обозначает j-й абсолютный момент распределе-
ния с плотностью K(t):

κj =

∫ 1

−1
|u|jK(u)du.

Легко видеть, что силу четности ядра K разность κ2 − κ21 представляет
собой дисперсию невырожденного распределения, тем самым она строго
положительна. При выводе оценки в (10) мы учли, что c∗ < κ2/(96L·6L),
при этом κ2 ≤ 2L/3.

Нам потребуется следующее вспомогательная лемма, которая являет-
ся частным случаем леммы 1 в [38]. Отметим, что в основе этого утвер-
ждения лежит близость между интегральными суммами Римана и со-
ответствующими интегралами.
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Лемма 2. При h < 1/2 на подмножестве элементарных исходов, опре-
деляемых соотношением δn ≤ c∗h, справедливы неравенства

sup
t∈[0,1]

|wnj(t)| ≤ 3Lhj , j = 0, 1, 2,

inf
t∈[0,1]

(wn0(t)wn2(t)− w2
n1(t)) ≥

1

8
(κ2 − κ21)h

2.

Доказательство. Это утверждение доказано в [38] (см. лемму 1). □

Обозначим через ωf ′(h) модуль непрерывности функции f ′, т.е.

ωf ′(h) = sup
x,y∈[0;1]:|x−y|≤h

|f ′(x)− f ′(y)|.

Справедливы также следующие два утверждения.

Лемма 3. Для любого положительного h < 1/2 на подмножестве эле-
ментарных исходов, определяемых соотношением δn ≤ c∗h, имеет ме-
сто оценка

|rn,h(t)| ≤ ωf ′(h)
144L2

κ2 − κ21
.

Доказательство. По теореме Лагранжа о среднем значении, для любого
i ∈ An,h(t) выполнено

f(zn:i)− f(t) = f ′(ξi)(zn:i − t),

ξi ∈ [min{zn:i, t}, max{zn:i, t}], |ξi − t| ≤ h.

Кроме того, имеют место оценки∑
∆zni ≤ (2h+ δn) ≤ 3h, Kh(t− zn:i) ≤ Lh−1, (11)

где в первом случае мы учли, что δn ≤ c∗h и c∗ < 1. Следовательно, с
учетом определений (8), (7), (4), замечания 7 и утверждений леммы 2,
справедлива следующая цепочка соотношений:

|rn,h(t)| =
∣∣∣∑βn,i(t)(f

′(ξi)− f ′(t))(zn:i − t)Kh(t− zn:i)∆zni

∣∣∣ ≤
≤ wf ′(h)

∑
|βn,i(t)(zn:i − t)|Kh(t− zn:i)∆zni ≤

≤
wf ′(h)

wn0(t)wn2(t)− w2
n1(t)

(
wn0(t)wn2(t)+

+|wn1(t)|
∑

|zn:i − t|Kh(t− zn:i)∆zni

)
≤

≤
wf ′(h)

8−1(κ2 − κ21)h
2
(3L · 3Lh2 + 3Lh · h · Lh−1 · 3h) = wf ′(h)

144L2

κ2 − κ21
.

При выводе этого соотношения, которое и доказывает лемму, мы также
учли, что wn0(t)wn2(t) − w2

n1(t) ≥ 0 в силу неравенства Коши-Буняков-
ского. □
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Лемма 4. При h < 1/2 на подмножестве элементарных исходов, опре-
деляемых соотношением δn ≤ c∗h, для любого ε > 0 имеет место оцен-
ка

PFn(|νn,h(t)| > ε) ≤ 4608 L4σ2

(κ21 − κ2)2ε2

(
δn
h3

+
δ2n
h4

)
,

где символ PFn обозначает условную вероятность при фиксации σ-ал-
гебры Fn, введенной в условии (E).

Доказательство. Оценим величину EFnν
2
n,h(t) и воспользуемся затем

неравенством

PFn(|νn,h(t)| ≥ ε) ≤ ε−2EFnν
2
n,h(t). (12)

Нетрудно видеть, что погрешности {εni}, ассоциированные с порядко-
выми статистиками {zn:i}, удовлетворяют соотношениям (2) из усло-
вия (E). Следовательно, с учетом определения (9), выполнено

EFnν
2
n,h(t) = EFn

(∑
βn,i(t)Kh(t− zn:i)∆zniεni

)2
≤

σ2
∑

β2
n,i(t)K

2
h(t− zn:i)(∆zni)

2 ≤

≤ 2σ2δn
∑ w2

n0(t)(zn:i − t)2 + w2
n1(t)(

wn0(t)wn2(t)− w2
n1(t)

)2 K2
h(t− zn:i)∆zni ≤

≤ 2304 L2σ2δn
(κ21 − κ2)2h2

∑
K2

h(t− zn:i)∆zni. (13)

При выводе этой оценки мы воспользовались также определением (7),
утверждениями леммы 2, замечания 7 и элементарным неравенством
(a + b)2 ≤ 2a2 + 2b2. Остается оценить сумму

∑
K2

h(t − zn:i)∆zni, в
которой суммирование, с учетом замечания 7, ведется по множеству
индексов i : |zn:i − t| ≤ h. Отметим, что в силу условия (K) выполне-
но supy∈[−1,1]K(y) ≤ L, а потому с учетом первого соотношения в (11),
имеем ∑

K2
h(t− zn:i)∆zni =

1

h2

∑
K2

(
t− zn:i

h

)
∆zni ≤

≤ L2

h2

∑
∆zni ≤

L2

h2
(2h+ δn).

Эта оценка вместе с (13) и (12) доказывает утверждение леммы. □

Лемма 5. В условиях теоремы 1 имеют место предельные соотноше-
ния

rn,h(t)
p→ 0, νn,h(t)

p→ 0.
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Доказательство. В силу неравенства Маркова с первым моментом и
утверждения леммы 3, для любого фиксированного ε > 0 выполнено

P(|rn,h(t)| > ε) = P(|rn,h(t)| > ε, δn ≤ c∗h) + P(|rn,h(t)| > ε, δn > c∗h) ≤
≤ P(c wf ′(h) > ε) + P(δn > c∗h) ≤ P(c wf ′(h) > ε) + (c∗h)

−1Eδn,

где c = 144L2(κ2 − κ21)
−1. Но поскольку h → 0 c ростом n, то начиная с

некоторого n выполнено P(cwf ′(h) > ε) = 0, а соотношение Eδn/h → 0
следует из (6). Отмеченные факты вместе с приведенной оценкой дока-
зывают первое утверждение леммы.

Аналогично вышесказанному, c учетом леммы 4 для любого фиксиро-
ванного ε > 0 справедливо соотношение

P(|νn,h(t)| > ε) = P(|νn,h(t)| > ε, δn ≤ c∗h) + P(|νn,h(t)| > ε, δn > c∗h) ≤
≤ E

(
I(δn ≤ c∗h)PFn(|νn,h(t)| > ε)

)
+ P(δn > c∗h) ≤

≤ 4608 L4σ2

(κ21 − κ2)2ε2

(
Eδn
h3

+
Eδ2n
h4

)
+

Eδn
c∗h

,

где I(·) — индикаторная функция. Второе утверждение леммы следует
теперь из условия (6). □

Для завершения доказательства теоремы 1 нам остается воспользо-
ваться леммами 1 и 5. Теорема доказана.

References

[1] K. De Brabanter, J. De Brabanter, B. De Moor, I. Gijbels, Derivative estimation with
local polynomial fitting, J. Mach. Learn. Res., 14 (2013), 281–301. Zbl 1320.62088

[2] Z. Liu, M. Li, On the estimation of derivatives using plug-in kernel ridge regression
estimators, J. Mach. Learn. Res., 24 (2023), Paper No. 266. Zbl 7895930

[3] W.W. Wang, L. Lin, Derivative estimation based on difference sequence via locally
weighted least squares regression, J. Mach. Learn. Res., 16:1 (2015), 2617–2641.
Zbl 1351.62095

[4] W.W. Wang, P. Yu, L. Lin, T. Tong, Robust estimation of derivatives using locally
weighted least absolute deviation regression, J. Mach. Learn. Res., 20:1 (2019), 2157–
2205. Zbl 1489.62131

[5] F. Comte, N. Marie, On a projection estimator of the regression function derivative,
J. Nonparametric Stat., 35:4 (2023), 773–819. Zbl 7768738

[6] M. Delecroix, A.C. Rosa, Nonparametric estimation of a regression function and its
derivatives under an ergodic hypothesis, J. Nonparametric Stat., 6:4 (1996), 367–382.
Zbl 0879.62034

[7] D. Li, Z. Lu, O. Linton, Local linear fitting under near epoch dependence: uni-
form consistency with convergence rates, Econom. Theory, 28:5 (2012), 935–958.
Zbl 1369.62075

[8] Q. Zheng, C. Gallagher, K.B. Kulasekera, Adaptively weighted kernel regression, J.
Nonparametric Stat., 25:4 (2013), 855–872. Zbl 1416.62235

[9] J. Chen, L.X. Zhang„ Local linear M-estimation for spatial processes in fixed-design
models, Metrika, 71:3 (2010), 319–340. Zbl 1185.62168

[10] W. Yao, B.G. Lindsay, R. Li, Local modal regression, J. Nonparametrшс Stat., 24:3
(2012), 647–663. Zbl 1254.62059

https://dl.acm.org/doi/abs/10.5555/2567709.2502590
https://dl.acm.org/doi/abs/10.5555/2567709.2502590
https://dl.acm.org/doi/abs/10.5555/3648699.3648965
https://dl.acm.org/doi/abs/10.5555/3648699.3648965
https://dl.acm.org/doi/10.5555/2789272.2912083
https://dl.acm.org/doi/10.5555/2789272.2912083
https://dl.acm.org/doi/10.5555/3322706.3362001
https://dl.acm.org/doi/10.5555/3322706.3362001
https://doi.org/10.1080/10485252.2023.2209198
https://doi.org/10.1080/10485259608832682
https://doi.org/10.1080/10485259608832682
http://www.jstor.org/stable/23271468
http://www.jstor.org/stable/23271468
https://doi.org/10.1080/10485252.2013.813511
https://doi.org/10.1007/s00184-009-0233-8
https://doi.org/10.1007/s00184-009-0233-8
https://doi.org/10.1080/10485252.2012.678848


1392 С.С. ПЕТРЕНКО, Ю.Ю. ЛИНКЕ

[11] S. Liu, J. Yang, Kernel regression for estimating regression function and its derivatives
with unknown error correlations, Metrika, 87:1 (2024), 1–20. Zbl 7790391

[12] G. Boente, D. Rodriguez, Robust estimators of high order derivatives of regression
functions, Stat. Probab. Lett., 76:13 (2006), 1335–1344. Zbl 1094.62049

[13] Q. Xie, Q. Sun, J. Liu, Local weighted composite quantile estimation and smoothing
parameter selection for nonparametric derivative function, Econom. Rev., 39:3 (2020),
215–233. Zbl 1490.62103

[14] Z. Lu, O. Linton, Local linear fitting under near epoch dependence, Econom. Theory,
23:1 (2007), 37–70. Zbl 1441.62238

[15] M. El Machkouri, K. Es-Sebaiy, I. Ouassou, On local linear regression for strongly
mixing random fields, J. Multivariate Anal., 156 (2017), 103–115. Zbl 1391.62055

[16] B. Bercu, S. Capderou, G. Durrieu, Nonparametric recursive estimation of the
derivative of the regression function with application to sea shores water quality, Stat.
Inference Stoch. Process, 22:1 (2019), 17–40. Zbl 1419.62498

[17] C. Martins-Filho, P. Saraiva, On asymptotic normality of the local polynomial
regression estimator with stochastic bandwidths, Commun. Stat. Theory Methods,
41:4-6 (2012), 1052–1068. Zbl 1319.62089

[18] K.D. Prasangika, W. Tang, Z. Yao, Double smoothing local linear estimation in
nonlinear time series, Commun. Stat. Theory Methods, 52:5 (2023), 1385–1399.
Zbl 7706285

[19] S. Calonico, M.D. Cattaneo, M.H. Farrell, Coverage error optimal confidence intervals
for local polynomial regression, Bernoulli, 28:4 (2022), 2998–3022. Zbl 7594086

[20] H.-G. Müller, U. Stadtmüller, T. Schmitt, Bandwidth choice and confidence intervals
for derivatives of noisy data, Biometrika, 74 (1987), 743–749. Zbl 0628.62034

[21] T. Gasser, H.-G. Müller, Estimating regression functions and their derivatives by the
kernel method, Scand. J. Stat., Theory Appl., 11 (1984), 171–185. Zbl 0548.62028
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