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Abstract: Controlled Directional Reception (CDR) is a reflection
tomography technique that accepts seismic traveltimes and slopes
(traveltime derivatives w.r.t source and receiver coordinates) and
returns a velocity model fitting this data. In contrast to other slope-
based methods, it uses parsimonious model parametrization and
relies on ray tracing thus being computationally efficient and fairly
general. However, it is unstable w.r.t. data errors. In this paper we
revisit the CDR method and develop a formalism to mitigate its
instability. Our approach is based on linearized estimates of ray
tracing errors allowing for suboptimal regularization of the inverse
problem. We apply our original ray method asymptotics of the
pseudodifferential Double Square Root equation to parametrize
the wavefield and test our formulation of the CDR method on two
benchmark synthetic datasets. We demonstrate that it provides
competitive results suitable for depth migration. We restrict our-
selves to 2D settings although the approach can be generalized to
3D problems as well.
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1 Introduction

Slope tomography is a distinct group of reflection tomography techniques.
They accept a set of so-called events (vectors containing source and receiver
coordinates, reflection traveltimes and slopes i.e. traveltime derivatives w.r.t.
source and receiver coordinates) and adjust the velocity model to fit this
data. The resulting model is suitable for depth migration or full waveform
inversion [1]. The earliest slope tomography methods date back to 1950s
and were based on straight-rays considerations [2]. In 1987 Charles Sword
reformulated the original approach for heterogeneous media with curved rays,
dubbing his formulation the Controlled Directional Reception (CDR) method
[3]. However, it lacked stability w.r.t. data errors, and in 1998 Frederic
Billette et al. introduced more stable and general method of stereotomogra-
phy [4], which became a classic reference for coming algorithms [5, 6]. Nowa-
days slope tomography is widely adopted and developed for both 2D and 3D
data, isotropic and anisotropic models [7, 8, 9]. Notable industrial examples
are Slb’s CIP tomography [10] and Viridien’s slope tomography [11], and a
number of academic studies have been carried out (see [1, 12] for overview).

Each event in seismic data corresponds to a reflecting facet (a fragment
of an interface specified by its coordinates, orientation, and the reflection
angle) in the subsurface. In classic stereotomography one iteratively traces
incident and reflected rays upward from trial facets and then updates both
the velocity and the facets to minimize data mismatch [1]. In contrast, the
CDR method deals with the velocity model only. Instead of tracing rays
upward from unknown reflectors, one traces them downward from fixed
sources and receivers, passing the observed slopes as the initial conditions
for ray tracing. The tracing is stopped as soon as the total traveltime along
the incident and the reflected rays equals the observed one. If the rays do
not meet each other as the tracing stops, the velocity model is updated
until they converge. The reflecting facets are determined then automatically
[3]. On the one hand, this concept benefits from lower dimensionality of
the inverse problem. On the other hand, it suffers from instability of one-
point ray tracing [1]. However, this drawback formally can be attributed to
some more recent slope tomography algorithms [5, 6] as well. Hence, the
CDR method still can be a good starting point for new slope tomography
algorithms.

Double Square Root (DSR) equation is a one-way wave equation describing
singly scattered wavefield as a function of source and receiver coordinates.
It was introduced in [13] although its kinematics had been described earlier
[14]. It acts on the recorded wavefield and allows one to extrapolate the
observed data to another depth level, performing so-called “survey-sinking”
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migration [13, 15]. In this migration, one evaluates the extrapolated wavefield
at all depths at zero time and extracts zero offset traces (i.e. with coinciding
source and receiver) only to obtain the subsurface image. Significant energy
at nonzero offsets provides a basis for velocity-building techniques known as
migration velocity analysis (MVA) [16, 17]. The “survey-sinking” migration
and corresponding MVA much resemble the CDR method where one “sinks”
the source and the receiver and updates the velocity model until the rays
converge (i.e. the energy focuses at zero offsets). This similarity has been
employed in [18] to reformulate the Sword’s approach using a ray method
asymptotics of the DSR equation [19]. However, the authors limited them-
selves to noise-free data inversion. In this paper we consider more realistic
cases and stress on the method’s regularization.

The paper is organized as follows. First, we briefly outline theoretical
aspects of the proposed formalism and build up a set of tools for iterative
velocity update following the CDR approach. Then we linearize the inverse
problem in simplified settings to derive suboptimal estimates of regularization
parameters which we use later in the original nonlinear problem. Finally, we
provide some technical information on our implementation and proceed with
numerical tests. In the Discussion and Conclusion section, we weigh our
results versus alternative approaches and summarize the paper’s contents.
We bring more technical features in three Appendices in the end of the
paper.

2 Method’s theory

2.1. DSR equation rays. Let us consider a smooth 2D velocity distributi-
on v(x, z) with z axis being the depth, i.e. pointed downward. Let τ(xs, xr, z)
be the traveltime of a reflected wave emitted from a source (xs, z)

T and
recorded at a receiver (xr, z)

T . Superscript T denotes transposition. Travel-
time τ is described by an equation [13, 14]

∂τ

∂z
= −

√
1

v2s
−
(

∂τ

∂xs

)2

−

√
1

v2r
−
(

∂τ

∂xr

)2

, (1)

where vs = v (xs, z) and vr = v (xr, z) are the velocities at the source and
receiver points respectively. We assume that the expressions under square
roots keep positive, which implies nowhere-horizontal wave propagation. We
shall briefly touch this restriction in the Discussion.

By solving (1) one can reconstruct the surface τ (xs, xr, z) = 0 which
defines all possible source-receiver pairs where the reflected wave is recorded
just as the source fires. We shall search for such pairs using ray method
[19, 20]. We define a phase space consisting of 6 coordinates:

x⃗ = (xs, xr, z)
T , p⃗ = (ps, pr, pz)

T =

(
∂τ

∂xs
,
∂τ

∂xr
,
∂τ

∂z

)T

. (2)
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Vector x⃗ (τ) defines a source (xs, z)T and a receiver (xr, z)T in physical space.
Thus, each point of the phase space describes a data configuration: a reflected
wave will be recorded at the time τ if one places a source-receiver pair at
x⃗ (τ) while the traveltime derivatives will be described by the vector p⃗ (τ).

To trace the rays we introduce a Hamiltonian [19]:

H (x⃗, p⃗) = −
pz +

√
1

v2s
− p2s +

√
1

v2r
− p2r

1

v2s

√
1

v2s
− p2s

+
1

v2r

√
1

v2r
− p2r

=

= −

(
pz +

√
1

v2s
− p2s +

√
1

v2r
− p2r

)
Cτ (x⃗, p⃗) .

(3)

The DSR equation ray tracing system reads
dx⃗

dτ
= ∇p⃗H,

dp⃗

dτ
= −∇x⃗H,

(4)

where ∇ is the gradient operator and its subscript indicates the variables of
differentiation. We impose the initial conditions for this system at the Earth’
upper surface ẑ = 0:

x⃗|τ=τ̂ = (x̂s, x̂r, ẑ = 0)T = ̂⃗x,
p⃗|τ=τ̂ =

(
p̂s, p̂r, p̂z = −

√
1

v̂2s
− p̂2s −

√
1

v̂2r
− p̂2r

)T

= ̂⃗p, (5)

with v̂s = v (x̂s, ẑ = 0) and v̂r = v (x̂r, ẑ = 0). The “capped” variables repre-
sent conventional slope tomography data including actual source and receiver

coordinates x̂s and x̂r, observed traveltime τ̂ and its derivatives p̂s =
∂τ̂

∂x̂s

and p̂r =
∂τ̂

∂x̂r
.

System (4) with conditions (5) define a DSR ray, i.e. a trajectory
(x⃗ (τ) , p⃗ (τ)). By tracing it backwards in time one can reconstruct a source-
receiver pair x⃗ (τ = 0) where the reflected wave is recorded just as the source
fires. We introduce the subsurface midpoint and half-offset to describe this
pair:

m =
xr + xs

2

∣∣∣∣
τ=0

, h =
xr − xs

2

∣∣∣∣
τ=0

. (6)

A physical wave cannot instantly get across a finite distance between the
source and the receiver. Thus, assuming error-free data and accurate velocity
model one can expect h to be zero and m to be the reflection point’s
horizontal coordinate.
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2.2. DSR equation ray perturbations. Let us assume that the velocity
model is inaccurate so that h ̸= 0. We are going to build a framework for
iterative velocity update aiming to reduce h to zero. To do so, we parametrize
the model by a parameters’ matrix V:

v = v (x, z;V) , V =

 v11 · · · v1N
...

. . .
...

vM1 · · · vMN

 . (7)

We assume that v (x, z;V) is twice smooth w.r.t. spatial coordinates and
linear w.r.t. V. By differentiating (4) and (5) w.r.t. a parameter vmn we
obtain:

d

dτ

∂x⃗

∂vmn
= ∇p⃗∇x⃗H

∂x⃗

∂vmn
+∇p⃗∇p⃗H

∂p⃗

∂vmn
+∇p⃗

∂H

∂vmn
,

d

dτ

∂p⃗

∂vmn
= −∇x⃗∇x⃗H

∂x⃗

∂vmn
−∇x⃗∇p⃗H

∂p⃗

∂vmn
−∇x⃗

∂H

∂vmn
,

(8)

and 

∂x⃗

∂vmn

∣∣∣∣
τ=τ̂

= 0⃗,

∂p⃗

∂vmn

∣∣∣∣
τ=τ̂

=



0

0
∂v̂s
∂vmn

v̂3s

√
1

v̂2s
− p̂2s

+

∂v̂r
∂vmn

v̂3r

√
1

v̂2r
− p̂2r


,

(9)

where the symbol 0⃗ stands for a vector of zeros. We refer the reader to
[18, 19] for the Hamiltonian derivatives from (4) and (8) and discuss the
model parametrization in the Practical implementation section.

The solution of (8) determines the ray’s partial derivatives w.r.t. velocity
perturbations caused by the parameter vmn. By solving it for all the elements
of V, one can obtain the gradient of the subsurface half-offset (6) w.r.t.
velocity parameters:

∇Vh =
∇Vxr −∇Vxs

2

∣∣∣∣
τ=0

=

(
∂h

∂v11
,
∂h

∂v12
, . . . ,

∂h

∂vMN

)T

(10)

and perform an iterative velocity model update aiming to minimize the
absolute value of h.

3 Inverse problem statement

3.1. Linearized CDR method for a single ray in homogeneous me-
dium. Let us restrict ourselves to the class of homogeneous velocity models
parametrized by a single parameter v̂:

v (x, z;V) ≡ v̂ = const., V = (v̂) . (11)
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In such media the subsurface half-offset (6) reads:

ĥ =
x̂r − x̂s

2
−

 p̂r√
1

v̂2
− p̂2r

− p̂s√
1

v̂2
− p̂2s

 Cτ

(̂⃗x, ̂⃗p) τ̂
2

, (12)

with Cτ

(̂⃗x, ̂⃗p) defined in (3) and “capped” variables in (5). We introduced

ĥ to distinguish it from the general case and emphasize its dependence on v̂.
The CDR method consists of zeroing out ĥ by appropriate choice of

v̂. However, errors in the observed data will cause a perturbation of the
subsurface half-offset δĥ, making it nonzero in the precise velocity model.
Thus, we propose regularizing the inverse problem to avoid overfitting. Let
us search for a small perturbation δv̂ minimizing a linearized and regularized
loss functional:

L̂ (δv̂) =

(
ĥ+ δĥ+

∂ĥ

∂v̂
δv̂

)2

+ α̂
δv̂2

v̂2
→ min

δv̂
, (13)

where α̂ is the Tikhonov’s regularization parameter [21]. Given δĥ, its optimal
value can be found analytically:

α̂ = sup
∣∣∣δĥ∣∣∣v̂ ∣∣∣∣∣∂ĥ∂v̂

∣∣∣∣∣ . (14)

To estimate sup
∣∣∣δĥ∣∣∣, we suggest considering the underlying data errors as

independent normally distributed random variables with zero expectations
and known variances:

δτ̂ ∼ N
(
0, σ̂2

τ

)
, δp̂s ∼ N

(
0, σ̂2

s

)
, δp̂r ∼ N

(
0, σ̂2

r

)
. (15)

Assuming small data errors, δĥ also can be estimated as a normal variable:

δĥ ∼ N
(
0, σ̂2

h

)
, σ̂2

h =

(
∂ĥ

∂τ̂
σ̂τ

)2

+

(
∂ĥ

∂p̂s
σ̂s

)2

+

(
∂ĥ

∂p̂r
σ̂r

)2

. (16)

Finally, we apply the “three sigma rule” to estimate the optimal α̂ value:

α̂ ≈ 3σ̂hv̂

∣∣∣∣∣∂ĥ∂v̂
∣∣∣∣∣ . (17)

We conclude that given a single event in homogeneous medium one can
estimate the subsurface offset’s variance (16) and the optimal regularization
parameter (17). We suggest considering the homogeneity restriction (11)
formally and interpret v̂ just as a realistic velocity estimate. We expect (16)
and (17) to be accurate at least in order of magnitude in heterogeneous
models. We provide more details on the errors’ distribution in the Numerical
test section and list the explicit formulae for the ĥ’s derivatives in the
Appendix A.
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3.2. Nonlinear CDR method for multiple rays in heterogeneous
media. Let us return to the general case of heterogeneous velocity models
parametrized by a matrix V (7). We shall build an iterative algorithm of
velocity updates and denote the parameters’ matrix at i-th iteration by V(i).
In particular, V(0) will denote the initial guess matrix. Unlike the previous
section, we shall deal with K events, each defining a DSR ray. We shall
mark all the quantities related to k-th event with a corresponding sub- or
superscript. For instance, hk will denote the k-th subsurface half-offset.

We suggest minimizing weighted and regularized loss functional:

L (V) =
K∑
k=1

w2
kh

2
k + α

∥v
(
x, z;V −V(0)

)
∥2

∥v
(
x, z;V(0)

)
∥2

→ min
V

(18)

with the weights wk and the regularization parameter α chosen so that the
k-sum is dominated by high-accuracy events while the regularizing term
prohibits excessively complex models.

We are going to use estimates (16) and (17) in their “formal” interpretation.
For each ray we prescribe data errors (15) and define v̂k as the average of
the source and receiver initial velocities:

v̂k =
v
(
x̂ks , ẑ = 0;V(0)

)
+ v

(
x̂kr , ẑ = 0;V(0)

)
2

, (19)

Then we proceed with the following multipliers for (18):

wk =

1

σ̂k
h√∑K

k′=1

(
1

σ̂k′
h

)2
, α =

K∑
k′=1

w2
k′α̂k′ . (20)

Essentially, we divided each hk by its expected variance σ̂k
h (16) and formed

up α by individual rays’ contributions α̂k (17). Sub- and superscripts k and
k′ refer to the ray’s number, not power. Such weights wk favor high-accuracy
rays while α decreases with data errors. We expect the loss functional (18)
to be well-behaved, allowing one to minimize it by gradient-based methods.
We emphasize that wk and α are estimated prior to inversion.

4 Practical implementation

4.1. Model parametrization. We required the model v (x, z;V) (7) to
be twice smooth w.r.t. x and z and linear w.r.t. V. We shall use gridded
velocity models supplied with bicubic interpolation [22]. We introduce a fixed
inversion grid and interpret V as a matrix of grid velocities

X⃗ = (x1, . . . , xM )T , Z⃗ = (z1, . . . , zN )T , vmn = v (xm, zn;V) . (21)

In this paper we assume that the grid step is constant:

∆x = xm+1 − xm = const., ∆z = zn+1 − zn = const. (22)
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A bicubic spline at x ∈ [xm, xm+1], z ∈ [zn, zn+1] is given by

v (x, z;V)|x∈[xm,xm+1]
z∈[zn,zn+1]

= ∆X⃗T
mCmn∆Z⃗n (23)

with

∆X⃗m =


x− xm
xm+1 − x

(x− xm)3

(xm+1 − x)3

 , ∆Z⃗n =


z − zn
zn+1 − z

(z − zn)
3

(zn+1 − z)3

 ,

Cmn =

c11mn · · · c14mn
...

. . .
...

c41mn · · · c44mn

 .

(24)

Coefficient matrices Cmn linearly depend on the grid velocities V, see the
Appendix B for details.

Bicubic splines belong to the Sobolev space of twice differentiable functions
with a norm defined as an integral of their squared values and derivatives.
We propose a finite-sum variant of this norm:

∥v(x, z;V)∥2 =
M∑

m=1

N∑
n=1

v2mn +

(
∂v

∂x

∣∣∣∣x=xm
z=zn

∆x

)2

+

+

(
∂v

∂z

∣∣∣∣x=xm
z=zn

∆z

)2

+

(
∂2v

∂x2

∣∣∣∣x=xm
z=zn

∆x2

)2

+

+

(
∂2v

∂z2

∣∣∣∣x=xm
z=zn

∆z2

)2

+ 2

(
∂2v

∂x∂z

∣∣∣∣x=xm
z=zn

∆x∆z

)2

.

(25)

When inserted in (18), this norm will penalize large deviations from the
initial model, fast growth and fast oscillations in both directions, like the
“damping” and “smoothing” terms in other slope tomography algorithms [3,
4, 23]. In homogeneous models this norm simplifies to the squared velocity
used in (13) which partially justifies the use of (16) and (17) in heterogeneous
media.

4.2. Gauss-Newton minimization. Given a set of events and an initial
model, we shall use the Gauss-Newton method to minimize the loss functional
(18), following [3, 4]. In this method, the problem is linearized at each
iteration, and a perturbation δV⃗ = (δv11, δv12, . . . , δvMN )T is searched as
the best-fit solution for a system of linear equations:

GδV⃗ = −l⃗, (26)

where l⃗ consists of the loss terms and G consists of their gradients w.r.t.
velocity parameters, see the Appendix C for explicit expressions. System
(26) is solved in the least-squares sense:

δV⃗ = −
(
GTG

)−1
GT l⃗ (27)
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and the model is updated in the estimated direction. However, due to nonli-
nearity of the original problem, a line search step is required. Assuming i-th
iteration, matrix V is updated as follows:

V(i+1) = V(i) + ε · δV,

ε = argmin
0≤ε≤1

L
(
V(i) + ε · δV

)
, δV =

 δv11 · · · δv1N
...

. . .
...

δvM1 · · · δvMN

 .
(28)

The iterations are halted as soon as the loss stops decreasing.

4.3. Data picking and selection. We shall use the slant stacks to pick
the events in seismic data, following [7] with some minor modifications. This
method scans the data and returns events d⃗k specified by source and receiver
coordinates, traveltimes, their derivatives, so-called semblances (events’ cohe-
rency [24]) and the numbers of traces falling in the analysis window (the
folds):

d⃗k =
(
x̂ks , x̂

k
r , τ̂k, p̂

k
s , p̂

k
r , ŝk, Q̂k

)
, ŝk ∈ [0, 1] , Q̂k > 1. (29)

While the first five components form up the initial conditions for the ray
tracing system (5), the last two bring information on the picking error. We
expect the events with higher semblances and folds to be more accurate, see
the next section for details.

As highlighted in [1], it is important to sort out some events during the
inversion due to non-uniform ray coverage of the model. In our parametriza-
tion the model’s variability is controlled by the grid spacing (22). We suggest
an ad-hoc selection algorithm:

(1) Trace all the DSR equation rays downward and estimate the subsur-
face midpoints’ positions (6);

(2) Select at most 10 events whose subsurface midpoints fall into each
model cell, prioritizing higher weight (20) events;

(3) Proceed by the Gauss-Newton scheme using the selected events only;
(4) Repeat the selection at the beginning of each inversion iteration.

The factor 10 at the second step is heuristic and implies that the number
of processed events should be greater than that of velocity parameters. We
emphasize that the proposed selection is performed at each iteration, leading
to possible instability of the loss-based stopping criterion.

4.4. Programming issues. We implemented our algorithm using NumPy
[25], SciPy [26] and Numba [27] libraries of the Python language. We emp-
loyed FteikPy [28] library to compute traveltimes for the Kirchhoff migration
and Matplotlib [29] library to plot the results, see the next section for details.
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5 Numerical Tests

5.1. Tests’ layout. To test our formulation of the CDR method we desi-
gned a hierarchy of velocity models revolving around the Marmousi dataset
[30] which is a classic benchmark for reflection seismology and slope tomog-
raphy in particular [5, 6, 7]. The models’ hierarchy is displayed on the Fig. 1.
It contains four models: the original Marmousi model, its smoothed version
(Marmousoft), its best linear fit (Marmoulin) and a step-like approximation
of the latter one (Marmouflat). The first model is publicly available [31], the
second one was proposed in [7] and kindly provided to us by Gilles Lambaré,
and the last two models were created by ourselves. We shall test our method
on the Marmousi and Marmousoft models, passing the Marmoulin model as
the initial guess, and using the Marmouflat model to estimate the picking
errors.

Fig. 1. Models’ hierarchy

We borrowed the survey geometry and time sampling from [7]. The survey
line consisted of 261 sources with 96 receivers per source. The sources and
receivers spacing was 25 m, with sources ranging from 2600 to 9100 m
and source-receiver offsets ranging from −2475 to −100 m. Time sampling
interval was 4 ms. We simulated the Marmousi data in the Madagascar
package [32], received the Marmousoft data from Gilles Lambaré [7] and
simulated the Marmouflat data using kinematic ray tracing followed by a
convolution with the Ricker wavelet [33]. Three common-shot gathers are
displayed on the Fig. 2. Despite being oversimplified, the Marmouflat model
exhibits certain similarities with its more complex counterparts and thus can
be used to estimate the picking accuracy.

5.2. Picking accuracy. We picked events in the data and filtered out
low-semblance and low-fold events (29). We display the picking results on
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Fig. 2. Common-shot gathers in different models

the Fig. 3. We can describe the picking quality as poor in the Marmousi
model, satisfying in the Marmousoft model and good in the Marmouflat
model.

Fig. 3. Common-shot gathers in different models with
picking results

We compared the picked Marmouflat events to the ray-modelled ones.
We estimate the traveltime error’s variance (15) as a single time sampling
interval for all the events at once. In contrast, we link the slopes’ errors to
events’ semblances and folds (29), individual for each event. We propose the
following estimates:

σ̂k
τ ≈ 4 · 10−3 [s] , σ̂k

s = σ̂k
r ≈

1

v̂k

34.2ŝk(
−4.9 + 1.6Q̂k

) [ s
m

]
, (30)

where the sub- and superscripts k refer to the event’s number, not power.
We obtained numeric multipliers in σ̂k

s = σ̂k
r using maximum likelihood
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method. To check them, we divided the actual slope errors by their estimated
variances and built a histogram fitting theoretical probability density function
of the standard normal distribution, see the Fig. 4. We multiplied the obtained
estimates σ̂k

s = σ̂k
r by a factor of 3 while working with the Marmousi and

Marmousoft models to consider their complexity. Average estimated slope
error variance in these models amounted for 3.6 · 10−5 s/m and 1.5 · 10−5

s/m respectively which accords with the a-priori estimate 1 · 10−5 s/m used
in [7].

Fig. 4. Normalized slope error distribution

5.3. Inversion results. We passed the Marmousi and Marmousoft events
to nonlinear inversion, using inversion grids (21) with 100 m spacing in
both directions. In both cases we started from the Marmoulin model and
performed 6 Gauss-Newton iterations to reach the stopping criterion. We
present the results on the Fig. 5 and Fig. 6.

Fig. 5. Marmousi model inversion
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Fig. 6. Marmousoft model inversion

Evidently, our tomography failed to reconstruct the Marmousi model,
although it did image some of its principal structures. We attribute this
failure to the model’s blocky structure, which is not representable in the
class of bicubic splines (23), and poor picking quality. The bottom part
of the model was almost unilluminated by rays, obstructing its successful
resolution. In contrast, smooth Marmousoft model is fairly well-resolved
down to its bottom part, thanks to its dense ray coverage. In this model
our results are competitive with [5, 6, 7].

To further assess the tomography results, we performed first-arrival Kirch-
hoff depth migration [15] of the Marmousi and Marmousoft datasets. We
present the resulting images on the Fig. 7, along with the true model migration
results as a reference. Although being inexact, the inverted models allow for
interpretative imaging even in the Marmousi case. We admit that the bottom
part of the Marmousi image remains unfocused after inversion, but we remind
that we used first-arrival migration, which does not consider all the raypaths
and cannot image reflectors in such complex media [34], as the true model
migration suggests.

Finally, we checked our regularization parameter’s estimate (20) using the
L-curve method [35]. To do so, we performed a sequence of Marmousi data
inversions, setting α to different fractions of its estimated value. Then we
evaluated the models’ norms (25) and residuals

∑K
k=1w

2
kh

2
k at final iteration

of each inversion run and plotted the squared norms as a function of the
residuals, see Fig. 8. We attribute the non-monotonous behaivour of the
curve to the events selection algorithm. The residuals were computed for
different sets of rays, producing such a non-regular output. However, our α
estimate appears to be close to the curve’s bending point, thus being at least
suboptimal.
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Fig. 7. Migration results in different models

Fig. 8. L-curve for the Marmousi model

6 Discussion and conclusion

In our paper we have presented a reformulation of the CDR method
based on our asymptotics of the DSR equation. We provided theoretical
aspects of our approach and developed several heuristic or semi-heuristic
tricks to obtain a stable slope tomography algorithm competitive with other
techniques. Our most important contribution is the suboptimal regularization
of the CDR inverse problem which mitigates the notorious instability of the
Sword’s method. The key steps towards this result were the DSR equation-
based wavefield parametrization, homogeneous medium assumption and li-
nearization w.r.t. both velocity model and data errors. Our approach is
parsimonious (compared to stereotomography [4]), does not rely on the
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single-arrival assumption (compared to adjoint-state method [5, 6]) and does
not require multiple data migrations (compared to residual moveout-based
methods [36, 37]). On the other hand, it does not process horizontal rays
which limits its applicability in complex media with steep reflectors and
contrastive layers [1]. However, it manages to construct acceptable velocity
models for depth migration and allows for improvements like more elaborated
picking engine [38, 39, 30], directional smoothing [23] and multiscale inversion
[1, 5, 6]. In addition, the DSR parametrization theoretically allows for lifting
the nowhere-horizontal rays restriction by means of a special coordinate
system [41]. As a conclusion, we add that it is scalable to 3D settings and
anisotropic problems [42] as well.
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2D stereotomography, Geophysics, 68:3 (2003), 1008–1021.
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[36] H. Chauris, M.S. Noble, G. Lambaré, P. Podvin, Migration velocity analysis from
locally coherent events in 2-D laterally heterogeneous media, Part I: Theoretical
aspects, GEOPHYSICS, 67:4 (2002), 1202–1212.

https://www.geokniga.org/books/31398
https://doi.org/10.1190/1.1581078
https://doi.org/10.1190/1.1581078
https://doi.org/10.1190/1.2370028
https://doi.org/10.1190/1.2370028
https://doi.org/10.1134/S1990478924010137
https://doi.org/10.1134/S1990478924010137
https://doi.org/10.3390/jmse12040636
https://doi.org/10.3390/jmse12040636
https://doi.org/10.1190/1.3459955
https://doi.org/10.1190/1.3459955
https://doi.org/10.1190/1.2967499
https://doi.org/10.1190/1.1440994
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2833157.2833162
https://github.com/keurfonluu/fteikpy
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3997/2214-4609.201411190
https://doi.org/10.3997/2214-4609.201411190
https://seis.karlov.mff.cuni.cz/software/marmousi/marmousi.htm
https://doi.org/10.5334/jors.ag
https://doi.org/10.5334/jors.ag
https://doi.org/10.5334/jors.ag
https://doi.org/10.1190/1.1444814
https://doi.org/10.1190/1.1444814
https://doi.org/10.1137/0914086
https://doi.org/10.1137/0914086
https://doi.org/10.1190/1.1500382
https://doi.org/10.1190/1.1500382
https://doi.org/10.1190/1.1500382


1366 N.N. SHILOV
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Appendix A
In this Appendix we provide explicit formulae for the subsurface offset’s

ĥ (12) derivatives appearing in (13)–(17). We define

Ĉτ = Cτ

(̂⃗x, ̂⃗p) . (1A)

With this shorthand:

∂ĥ

∂τ̂
= −

 p̂r√
1

v̂2
− p̂2r

− p̂s√
1

v̂2
− p̂2s

 Ĉτ

2
, (2A)

∂ĥ

∂p̂s
=

 1√
1

v̂2
− p̂2s

+
p̂2s(

1

v̂2
− p̂2s

) 3
2

 Ĉτ τ̂

2
+

p̂s√
1

v̂2
− p̂2s

∂Ĉτ

∂p̂s

τ̂

2
, (3A)

∂ĥ

∂p̂r
= −

 1√
1

v̂2
− p̂2r

+
p̂2r(

1

v̂2
− p̂2r

) 3
2

 Ĉτ τ̂

2
− p̂r√

1

v̂2
− p̂2r

∂Ĉτ

∂p̂r

τ̂

2
, (4A)

∂ĥ

∂v̂
= − 1

v̂3

 p̂r(
1

v̂2
− p̂2r

) 3
2

− p̂s(
1

v̂2
− p̂2s

) 3
2

 Ĉτ τ̂

2
−

−

 p̂r√
1

v̂2
− p̂2r

− p̂s√
1

v̂2
− p̂2s

 ∂Ĉτ

∂v̂

τ̂

2
,

(5A)

where
∂Ĉτ

∂p̂s
= − Ĉ2

τ

v̂2
p̂s(

1

v̂2
− p̂2s

) 3
2

,
∂Ĉτ

∂p̂r
= − Ĉ2

τ

v̂2
p̂r(

1

v̂2
− p̂2r

) 3
2

,

∂Ĉτ

∂v̂
= −2Ĉ2

τ

v̂3

 1√
1

v̂2
− p̂2s

+
1√

1

v̂2
− p̂2r

−

− Ĉ2
τ

v̂5

 1(
1

v̂2
− p̂2s

) 3
2

+
1(

1

v̂2
− p̂2r

) 3
2

 .

(6A)
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We emphasize that (3A)–(5A) linearly grow with the reflection traveltime
τ̂ . Thus, when inserted in (16), (17) and (20), these multipliers will reduce the
weights of deeper events and magnify corresponding regularization contribu-
tions.

Appendix B
In this Appendix we present the remaining formulae for bicubic splines’

construction. For the theory see [22]. We shall follow the main text’s notation
(21)–(24).

The coefficient matrices Cmn from (24) linearly depend on the grid velo-
cities:

Cmn = DT
x,m VDz,n, (1B)

with

Dx,m =


1

∆x


e⃗Tm+1

e⃗Tm

0

0

+
∆x

6


−e⃗Tm+1

−e⃗Tm
e⃗Tm+1

e⃗Tm




T

,

e⃗m =


0
...
1
...
0

← mth row.

(2B)

Matrices Ax and Bx are sparse matrices with nonzero elements defined as

axij =


1,

i = j = 1,
i = j = M,

2∆x

3
, 1 < i = j < M,

∆x

3
,

2 < i = j + 1 < M,
1 < i = j − 1 < M − 1,

bxij =


− 2

∆x
, 1 < i = j < M,

1

∆x
,

2 < i = j + 1 < M,
1 < i = j − 1 < M − 1.

(3B)

Analogous expressions for Dz,n, Az and Bz are obtained by a change of
indices and subscripts.

The coefficient matrices Cmn are required to evaluate the spline or its
derivatives w.r.t spatial coordinates. Matrices Dx,m and Dz,n are required
to evaluate its derivatives w.r.t. grid velocities. The coefficients Cmn are
updated during the inversion along with the grid velocities while Dx,m and
Dz,n remain fixed.

Appendix C
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In this Appendix we provide explicit expressions for the matrix G and
vector l⃗ from (26). They read

G = ∇
V⃗
l⃗ =

(
∂l⃗

∂v11
,

∂l⃗

∂v12
, . . . ,

∂l⃗

∂vMN

)
, l⃗ =



l⃗h
l⃗v
l⃗∂xv
l⃗∂zv
l⃗∂2

xv

l⃗∂2
zv

l⃗∂2
xzv


. (1C)

We note that matrix G is formed by vector-columns, and no transposition is
required. We shall list all the l⃗’s subvectors below. To avoid large repetitive
multipliers, we denote

wα =

√
α

∥v
(
x, z;V(0)

)
∥
. (2C)

With this shorthand we have:

l⃗h =

 w1h1
...

wKhK

 , l⃗v = wα

 v11
...

vMN

 ,

l⃗∂xv = wα∆x



∂v

∂x

∣∣∣∣x=x1
z=z1
...

∂v

∂x

∣∣∣∣x=xM
z=zN

 , l⃗∂zv = wα∆z



∂v

∂z

∣∣∣∣x=x1
z=z1
...

∂v

∂z

∣∣∣∣x=xM
z=zN

 ,

l⃗∂2
xv

= wα∆x2



∂2v

∂x2

∣∣∣∣x=x1
z=z1

...
∂2v

∂x2

∣∣∣∣x=xM
z=zN

 , l⃗∂2
zv

= wα∆z2



∂2v

∂z2

∣∣∣∣x=x1
z=z1

...
∂2v

∂z2

∣∣∣∣x=xM
z=zN

 ,

l⃗∂2
xzv

=
√
2wα∆x∆z



∂2v

∂x∂z

∣∣∣∣x=x1
z=z1

...
∂2v

∂x∂z

∣∣∣∣x=xM
z=zN

 .

(3C)
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Evidently, the squared Euclidean norm of l⃗ gives the loss functional (18).
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