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Abstract. The famous Nash-Williams’ Theorem states that the
edge set of a multigraph G = (V,E) can be decomposed into k
forests iff for every subset X ⊆ V the induced subgraph G[X]
contains at most k(|X|−1) edges. In 2017, Glebov conjectured that
if a graph G satisfies the conditions of Nash-Williams’ Theorem
and has minimum degree δ(G) ≥ k + 1, then its edge set can
be decomposed into k forests such that none of these forests has
an isolated vertex. Here we prove this conjecture. Moreover, we
present a new proof of Nash-Williams’ Theorem which allows us to
prove a more general result on edge decomposition of a multigraph
into k forests such that the size of connected components in these
forests is greater than a given constant.

Keywords: graph, multigraph, tree, forest, decomposition, arboricity,
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1 Введение

В настоящей работе через G = (V,E) обозначается конечный неори-
ентированный мультиграф с множеством вершин V и множеством рёбер
E, Через v(G) = |V | и e(G) = |E| обозначается число вершин и число
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рёбер мультиграфа G соответственно. Будем говорить, что ребро e ∈ E
инцидентно вершине v ∈ V (или что e покрывает v), если вершина v
является концом ребра e. Степенью d(v) вершины v ∈ V в G называется
число инцидентных v рёбер. Через δ(G) и ∆(G) обозначается минималь-
ная и максимальная степень вершины мультиграфа G соответственно.
Для каждой пары вершин u, v ∈ V через µ(uv) обозначается кратность
мультиребра uv в G, то есть количество рёбер в E с концами u и v. Через
µ(G) обозначается максимальная кратность мультиребра в мультиграфе
G. Ясно, что G является простым графом тогда и только тогда, когда
µ(G) ≤ 1.

Лесом называется простой граф без циклов. Для каждого подмноже-
ства вершин X ⊆ V мультиграфа G через G[X] обозначается подграф
в G, порождённый множеством вершин X. Для каждого подмножества
рёбер F ⊆ E через G < F >= (V, F ) обозначается подграф в G с мно-
жеством вершин V и множеством рёбер F .

Раскраской рёбер мультиграфа G = (V,E) в k цветов (или k-раскраской
рёбер G) называется произвольное отображение c : E → K, где K =
{1, 2, . . . , k} называется множеством цветов. Для каждого ребра e ∈ E
число c(e) называется цветом ребра e. Для каждого цвета i ∈ K через Ei

обозначается соответствующий ему цветовой класс, то есть множество
Ei = c−1(i) всех рёбер цвета i в G. Раскраску рёбер мультиграфа G назо-
вём древесной, если для каждого цветового класса Ei соответствующий
подграф G < Ei > является лесом.

Раскраску рёбер G назовём покрывающей, если каждая вершина муль-
тиграфа G покрыта рёбрами всех цветов, то есть каждый цветовой класс
Ei является рёберным покрытием G. Далее мы рассмотрим более общее
понятие t-покрывающей раскраски рёбер. Пусть t — натуральное чис-
ло. Раскраску рёбер мультиграфа G назовём t-покрывающей, если для
любого цвета i ∈ K каждая компонента связности соответствующего
подграфа G < Ei > содержит не менее t вершин. Из данных определе-
ний следует, что покрывающая раскраска рёбер мультиграфа является
частным случаем t-покрывающей раскраски при t = 2.

Иногда при изучении раскрасок рёбер графов и мультиграфов быва-
ет полезно рассматривать ситуации, когда одновременно выполняются
два важных свойства, каждое из которых заслуживает быть предметом
самостоятельного исследования. Так в работе [1] изучались раскраски
рёбер мультиграфов, которые одновременно являются древесными и по-
крывающими. Иными словами, в [1] исследовались такие древесные рас-
краски рёбер мультиграфов, что множество рёбер каждого цвета порож-
дает лес без изолированных вершин.

Хорошо известен следующий критерий существования древесной рас-
краски рёбер мультиграфа в k цветов:
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Теорема 1. (Нэш-Вильямс) [4, 5] Для мультиграфа G = (V,E) суще-
ствует древесная k-раскраска рёбер, если и только если для любого под-
множества вершин X ⊆ V число рёбер в порождённом подграфе G[X]
не превосходит k(|X| − 1).

Наименьшее число k, для которого существует древесная k-раскраска
рёбер мультиграфа G называется его древесностью и обозначется через
γ(G). Из теоремы Нэш-Вильямса следует явная формула для вычисле-
ния древесности мультиграфа: γ(G) = ⌈Arb(G)⌉, где число

Arb(G) = max

{
e(G[X])

|X| − 1
|X ⊆ V, |X| > 1

}
называется дробной древесностью мультиграфа G.

Что касается покрывающей раскраски рёбер мультиграфа, Гуптой [2,
3] были получены следующие достаточные условия её существования.

Теорема 2. [2, 3] Пусть G — мультиграф с минимальной степенью
δ(G) и максимальной кратностью мультиребра µ(G). Тогда существу-
ет покрывающая раскраска рёбер G в δ(G)−µ(G) цветов. При этом если
G — двудольный граф, то существует покрывающая раскраска рёбер G
в δ(G) цветов.

В [1] было доказано, что при определённых условиях одновременное
выполненеие требований из теорем 1 и 2 влечёт существование такой
k-раскраски рёбер мультиграфа, которая одновременно является дре-
весной и покрывающей.

Теорема 3. [1] Пусть k ≥ 2 — целое число, и G = (V,E) — мультиграф
с древесностью γ(G) ≤ k, удовлетворяющий одному из условий:

(1) G — двудольный и δ(G) ≥ k;
(2) k = 2 и δ(G) ≥ 3.
Тогда существует древесная покрывающая k-раскраска рёбер G.

Также в [1] была сформулирована следующая

Гипотеза 1. [1] Для любого графа G с древесностью γ(G) ≤ k и ми-
нимальной степенью δ(G) ≥ k+1 существует древесная покрывающая
k-раскраска рёбер.

В [1] было отмечено, что нижняя граница для минимальной степе-
ни графа в гипотезе 1 является неулучшаемой, что следует из суще-
ствования k-регулярного графа G с χ′(G) = k + 1. В настояшей работе
подтверждается справедливость гипотезы 1 и доказывается следующий
более общий факт:

Теорема 4. Пусть для мультиграфа G существует древесная k-раскраска
его рёбер (т.е. γ(G) ≤ k) и существует t-покрывающая k-раскраска рё-
бер G. Тогда существует древесная t-покрывающая k-раскраска рёбер
G.
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Заметим, что из теорем 2 и 4 (при t = 2) следует справедливость
гипотезы 1 а также тот факт, что для двудольного графа G с древесно-
стью γ(G) ≤ k и минимальной степенью δ(G) ≥ k существует древесная
покрывающая k-раскраска рёбер.

Предложенное ниже доказательство теоремы 4 основано на преобра-
зовании произвольной k-раскраски рёбер мультиграфа в его древесную
k-раскраску путём последовательной перекраски рёбер. Назовём пере-
краску ребра e = uv из цвета i в цвет j цикловой перекраской, если в
подграфе G < Ei > ребро e принадлежит какому-либо циклу. Заметим,
что после цикловой перекраски ребра e все множества вершин компо-
нент связности подграфа G < Ei > не меняются, а множества вершин
компонент связности подграфа G < Ej > либо не меняются (если в
этом подграфе вершины u и v принадлежат одной компоненте), либо
два таких подмножества (содержащие вершины u и v соответственно)
объединяются в одно подмножество. Таким образом, при любой после-
довательности цикловых перекрасок множества вершин всех компонент
связности во всех подграфах G < Em > (m = 1, . . . , k) могут только
увеличиваться. Отсюда следует, что если начальная k-раскраска рёбер
мультиграфа G является t-покрывающей, то и полученная в конце k-
раскраска рёбер G также является t-покрывающей.

Наш основной результат о цикловой перекраске рёбер состоит в сле-
дующем:

Теорема 5. Пусть для мультиграфа G существует древесная k-раскраска
его рёбер (т.е. γ(G) ≤ k). Тогда из любой начальной k-раскраски рёбер G
последовательностью цикловых перекрасок можно получить древесную
k-раскраску рёбер G.

Заметим, что из теоремы 5 следует как теорема 1 (Нэш-Вильямса),
так и теорема 4. Последний факт следует из того, что если в качестве
начальной k-раскраски рёбер G в теореме 5 выбрать t-покрывающую
раскраску, то согласно сделанному выше замечанию, эта раскраска будет
преобразована в древесную t-покрывающую k-раскраску рёбер G.

Таким образом, для доказательства теоремы 4 и гипотезы 1 доста-
точно доказать теорему 5. Этому доказательству посвящена оставшаяся
часть статьи.

2 Доказательство теоремы о цикловой перекраске рёбер

Пусть мультиграф G = (V,E) является контрпримером к теореме 5
с минимальным числом рёбер. Очевидно, что |E| > 1. Рассмотрим про-
извольную начальную k-раскраску c0 : E → K = {1, 2, . . . , k} рёбер G.
Выберем произвольное ребро e0 = ab ∈ E. Без ограничения общности
будем считать, что c0(e0) = 1. Рассмотрим в G подграф G′ = G − e0
с множеством вершин V и множеством рёбер E′ = E \ {e0}. Обозна-
чим через c′0 ограничение k-раскраски c0 на множество рёбер E′. Из
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минимальности контрпримера G следует, что раскраска c′0 может быть
последовательностью цикловых перекрасок преобразована в древесную
k-раскраску c′ рёбер подграфа G′. Очевидно, что все указанные пере-
краски являются также цикловыми перекрасками рёбер мультиграфа
G, где в качестве начальной раскраски выбрана c0. Таким образом, рас-
краска c0 с помошью указанной последовательности цикловых перекра-
сок преобразуется в такую k-раскраску c1 рёбер G, что все подграфы
G < Ei > при i = 2, . . . , k являются лесами, а подграф G < E1 > либо
является лесом, либо содержит единственный цикл C0, включающий в
себя ребро e0. Если G < E1 > — лес, то раскраска c1 является искомой
древесной k-раскраской рёбер G.

Допустим, что подграф G < E1 > содержит единственный цикл C0 =
(V0, E0), где e0 ∈ E0. Тогда при любой цикловой перекраске произволь-
ного ребра e ∈ E0 в любой цвет j ∈ {2, . . . , k} подграф G < E1 > ста-
новится лесом, а подграф G < Ej > либо остаётся лесом, либо в нём
появляется единственный цикл C, включающий в себя ребро e. В пер-
вом случае цикловую перекраску ребра e назовём успешной. Ясно, что
после успешной перекраски образуется искомая древесная k-раскраска
рёбер G.

Допустим, что перекраска ребра e в цвет j не является успешной.
Тогда подграф G < Ej > содержит единственный цикл C, а все другие
подграфы G < Em > при m ̸= j являются лесами. В таком случае после-
довательность цикловых перекрасок можно продолжить, перекрашивая
любое ребро e′ ∈ C в любой цвет m ̸= j. Если эту последовательность пе-
рекрасок можно продолжить таким образом, что в какой-то момент она
оканчивается успешной перекраской, то получаем искомую древесную
k-раскраску рёбер G.

Допустим, что никакая последовательность цикловых перекрасок рё-
бер G, начинающаяся с раскраски c1, не оканчивается успешной пере-
краской. Тогда для любой k-раскраски рёбер G, полученной из раскрас-
ки c1 путём последовательных цикловых перекрасок рёбер, в точности
один подграф G < Ei > содержит единственный цикл C, а все дру-
гие подграфы G < Em > при m ̸= i являются лесами. Будем гово-
рить, что вершина v ∈ V является C-достижимой, если из раскраски
c1 последовательностью цикловых перекрасок можно получить такую
k-раскраску рёбер G, что вершина v принадлежит единственному циклу
C в соответствующем подграфе G < Ei >. Обозначим множество всех
C-достижимых вершин мультиграфа G через Z, а порождённый ими
подграф G[Z] — через H = (Z,EH).

Для каждого j = 1, . . . , k положим E′
j = Ej ∩ EH , где Ej — мно-

жество всех рёбер цвета j в раскраске c1. Рассмотрим в H подграфы
Hj = H < E′

j >= (Z,E′
j), где j = 1, . . . , k. Будем считать, что при цик-

ловой перекраске ребра e ∈ E′
i из цвета i в любой другой цвет m ребро

e переносится из множества E′
i в множество E′

m (а также из множества
Ei в Em). Тогда после любой последовательности цикловых перекрасок
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для каждого j = 1, . . . , k выполняется равенство E′
j = Ej ∩ EH . Таким

образом, множества рёбер всех подграфов Hj в любой момент образуют
разбиение множества рёбер мультиграфа H, то есть выполняется равен-
ство EH = E′

1 ∪ E′
2 ∪ . . . ∪ E′

k.
Из существования древесной k-раскраски рёбер G и из теоремы 1,

применённой к множеству X = Z, следует неравенство

k(|Z| − 1) ≥ |EH | = |E′
1|+ |E′

2|+ . . .+ |E′
k|. (1)

Из определения множеств Z и E′
1 следует, что V0 ⊆ Z, E0 ⊆ E′

1. Следо-
вательно, цикл C0 содержится в подграфе H1. Аналогично, после любой
последовательности цикловых перекрасок, начинающейся с раскраски
c1, все вершины полученного цикла C принадлежат Z, а все его рёбра
— одному из подмножеств E′

i, где i ∈ {1, 2, . . . , k}. Тогда цикл C содер-
жится в подграфе Hi.

Докажем, что для некоторого j ∈ {1, 2, . . . , k} подграф Hj является
несвязным. Предположим, что для каждого j = 1, 2, . . . , k подграф Hj

связен. Тогда |E′
j | ≥ |Z| − 1 и |E′

1| ≥ |Z|, так как подграф H1 содержит
цикл C0. Отсюда следует, что |E′

1| + |E′
2| + . . . + |E′

k| > k(|Z| − 1), что
противоречит (1). Следовательно, существует j ∈ {1, 2, . . . , k}, для кото-
рого подграф Hj не является связным. Обозначим через Z1 множество
вершин какой-либо компоненты связности в Hj . Положим Z2 = Z \ Z1.
Тогда Z2 ̸= ∅ и в Hj (а значит, и в Ej) нет рёбер, соединяющих вершины
из Z1 с вершинами из Z2.

Случай 1. Цикл C0 содержит хотя бы одну вершину из Z1 и хотя
бы одну вершину из Z2. В этом случае в C0 есть ребро e = xy такое,
что x ∈ Z1, y ∈ Z2. Следовательно, j ̸= 1. Докажем, что цикловая
перекраска ребра e из цвета 1 в цвет j является успешной. Допустим,
что после указанной перекраски в подграфе G < Ej > образуется цикл
C. Тогда e ∈ C. Из определения множества Z следует, что все вершины
цикла C принадлежат Z. Поэтому цикл C содержится в подграфе Hj .
Тогда до перекраски ребра e в цвет j в подграфе Hj имеется (x, y)-цепь
P = C − e, где x ∈ Z1, y ∈ Z2. Это противоречит определению множеств
Z1 и Z2. Следовательно, перекраска ребра e в цвет j является успешной.

Случай 2. Все вершины цикла C0 содержатся в одном из множеств
Z1 или Z2. Предположим, что V0 ⊆ Z1. Случай V0 ⊆ Z2 рассматрива-
ется аналогично. Из определения множества Z следует, что существует
такая последовательность цикловых перекрасок рёбер, начинающаяся с
раскраски c1, что для полученного цикла C в подграфе Hi какая-то его
вершина z принадлежит множеству Z2. Рассмотрим минимальную та-
кую последовательность цикловых перекрасок. Тогда при последней из
этих перекрасок какое-то ребро e′ = x′y′, принадлежащее циклу C ′ в
некотором подграфе Hm, перекрашивается в цвет i. При этом все вер-
шины цикла C ′ принадлежат множеству Z1. Так как после перекраски
ребра e′ = x′y′ в цвет i это ребро принадлежит циклу C в подграфе
Hi, то цикл C содержит вершины x′, y′ ∈ Z1, а также вершину z ∈ Z2.
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Отсюда следует, что в цикле C имеется такое ребро e = xy, что x ∈ Z1,
y ∈ Z2. Получили ситуацию, аналогичную случаю 1, где вместо цикла
C0 рассматривается цикл C. Аналогично случаю 1, доказывается, что
цикловая перекраска ребра e в цвет j является успешной. Теорема 5
доказана.
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