

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Vol. 22, No. 2, pp. 1255–1265 (2025) https://doi.org/10.33048/semi.2025.22.075 УДК 517.5 MSC 35J05, 05C25

THE CRITICAL GROUP OF THE CONE OVER A SANDWICH GRAPH

L.A. GRUNWALD

Communicated by I.V. Podvigin

Abstract: We study the critical group of the cone over a sandwich graph. It is shown that this group can be described as the cokernel of a discrete Laplace operator. Furthermore, we prove that its exact structure can be determined by making use of a recurrence relation derived from the Laplace operator. This relation involves symmetric Laurent polynomials and provides a more efficient way to compute the group. The proposed method offers a powerful tool for analyzing invariants of graphs with complex combinatorial structure.

Keywords: critical group, circulant graph, discrete Laplacian, Smith normal form.

1 Introduction

An important problem in algebraic graph theory is describing the structure of the *critical group* of a graph. This notion is closely related to discrete analogues of the classical Laplace operator. The discrete Laplacian naturally arises as a combinatorial version of its continuous counterpart, providing a useful tool for studying various graph invariants.

Received June, 16, 2025, Published October, 29, 2025.

Grunvald, L.A., The Critical Group of the Cone over a Sandwich Graph. c 2025 Grunvald, L.A.

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2026-0026).

The significance of the critical group is not limited to the classical fact that its order equals the number of spanning trees in a graph [1]. Often, it also captures deeper structural properties, reflecting analogies with discrete versions of classical concepts from the theory of Riemann surfaces [1, 2], as well as connections to statistical physics [3, 4].

Although determining the exact structure of critical groups remains an open problem for many classes of graphs, certain families possess specific features that make them easier to analyze. Such special cases allow step-by-step progress toward understanding the general problem.

In Section 2, we define the main object of the study, namely the cone graph \hat{G} constructed over a given sandwich graph G. The cone graph \hat{G} is obtained by adding one new vertex connected to every vertex of G, thus forming a discrete analogue of a geometric cone with base G.

Several well-known graphs fit naturally into this sandwich graph construction. Important examples include the I-graph and the generalized Petersen graph (see, for example, [5, 6]), and the generalized prism, which is also known as the cobordism of two circulant graphs [7].

Sandwich graphs form a special case of a more general construction known as *circulant foliation* [13, 14], a structure relevant to applications such as network design [15], quantum computing [16], chemistry [17], and number theory [18].

Section 2 also summarizes key known results. In particular, for cone graphs \hat{G} , there exists another naturally related group whose order equals the number of rooted spanning forests in the base graph G [19]. Understanding the structure of the discrete Laplacian for sandwich graphs thus gives essential insights into the critical group of \hat{G} and allows us to develop computational methods that improve numerical efficiency, as shown in Section 3.

Classical results on critical groups, such as those in [1, 2, 8], are based on combinatorial and analytical ideas, but typically involve computing the Smith normal form of large Laplacian matrices [1, 8, 9, 10, 12] or using spectral methods [11]. These computations become difficult for graphs of large size or complex structure. Our approach, by contrast, uses the algebraic properties of circulant layers and relies on symmetric and monic Laurent polynomials. This allows us to express the critical group of the cone through a fixed-size matrix instead of a growing Laplacian matrix, which leads to a reduction in computational complexity.

We believe the results in this paper are new and may help to develop a more general understanding of circulant foliation graphs [13, 14].

2 Cone over a sandwich graph

Let us consider a classical path graph H with vertices v_1, v_2, \ldots, v_m , characterized by the conditions $\deg(v_1) = \deg(v_m) = 1$ and $\deg(v_i) = 2$ for $i = 2, \ldots, m-1$, where $\deg(\cdot)$ denotes the vertex degree.

For given integers n and m, we introduce the concept of a $sandwich\ graph$ G whose vertex set is defined as

$$V(G) = \{(k, v_i) \mid k = 0, 1, \dots, n - 1, i = 1, 2, \dots, m\}.$$

In this graph, for each fixed i, vertices (k, v_i) together with integer parameters (called jumps) $s_{i,1}, s_{i,2}, \ldots, s_{i,k_i} \in \mathbb{Z}$ satisfying

$$1 \le s_{i,1} < s_{i,2} < \dots < s_{i,k_i} < \frac{n}{2},$$

form the circulant graph

$$G_i = C_n(s_{i,1}, s_{i,2}, \dots, s_{i,k_i}),$$
 (1)

where each vertex (k, v_i) is adjacent to vertices

$$(k \pm s_{i,1}, v_i), (k \pm s_{i,2}, v_i), \ldots, (k \pm s_{i,k_i}, v_i) \mod n.$$

From this point of view, the circulant graphs play the role of *layers* placed at each vertex v_1, v_2, \ldots, v_m of the path graph H (see Fig. 1). Furthermore, if we fix k, then there is an edge connecting the vertices (k, v_i) and (k, v_{i+1}) . Thus, for the sandwich graph G defined above, we say that G has m layers G_1, \ldots, G_m , each consisting of n vertices.

Note that if all layers are identical, that is, $G_i = G_j$ for all i, j = 1, ..., m, then the sandwich graph coincides with the Cartesian product of the path graph H and the graph G_i .

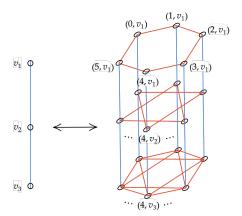


Fig. 1. From left to right: a path graph H on 3 vertices and the corresponding sandwich graph G with m=3 layers. From top to bottom, the layers are circulant graphs: $G_1=C_6(1)$, $G_2=C_6(2)$, and $G_3=C_6(1,2)$.

An important property of circulant graphs relevant to our study is their natural connection with Laurent polynomials [20]. Specifically, each circulant layer is associated with a Laurent polynomial

$$P_i(z) = 2k_i - \sum_{j=1}^{k_i} (z^{s_{i,j}} + z^{-s_{i,j}}), \quad i = 1, \dots, m,$$
 (2)

which is *symmetric*, i. e. $P_i(z) = P_i(\frac{1}{z})$, and *monic*, meaning that its leading and trailing coefficients are equal to ± 1 .

Finally, we construct the cone graph \hat{G} over the sandwich graph G by adding one new vertex adjacent to all vertices of G. This provides a discrete analogue of a geometric cone with the graph G as its base.

Critical group of cone over a graph and Laplacian. Formally, for a connected graph G on n vertices, the critical group K(G) is the torsion part of the abelian group coker(L(G)) (see, for example [1]), where L(G) is the discrete Laplacian operator viewed as a \mathbb{Z} -linear operator $\mathbb{Z}^n \to \mathbb{Z}^n$.

The discrete Laplacian is a discrete analogue of the classical Laplace operator, and it is represented by an $n \times n$ matrix

$$L(G) = D(G) - A(G),$$

where D(G) is the diagonal degree matrix (whose diagonal entries are the degrees of vertices), and A(G) is the adjacency matrix of G.

A fundamental property of the critical group is that its order equals the number of spanning trees of the graph [1]. The following Theorem 1 in [19] generalizes this classical fact, introducing a new group whose order equals the number of rooted spanning forests.

Theorem 1. Let G be a connected graph on n vertices. Then the critical group of the cone \hat{G} over the graph G is isomorphic to the cokernel of the linear operator $I_n + L(G)$, where L(G) is the discrete Laplacian of G, and I_n is the $n \times n$ identity matrix. More precisely,

$$\operatorname{coker}(\operatorname{L}(\hat{G})) \cong \operatorname{coker}(\operatorname{I}_n + \operatorname{L}(G)).$$

We refer to this group as the forest group of a graph F(G).

Remark 1. According to [19], fix some i and consider an arbitrary Laurent polynomial P(z) of the form (2). Then the critical group $\operatorname{coker}(I_n + L(G))$ admits the following presentation:

$$\operatorname{coker}(\mathbf{I}_n + \mathbf{L}(G)) = \langle x_i, i \in \mathbb{Z} \mid (P(T) + 1)x_j = 0, (T^n - 1)x_j = 0, j \in \mathbb{Z} \rangle,$$
(3)

where the shift operator T is a \mathbb{Z} -linear operator acting on the generators of the group by

$$T: x_j \mapsto x_{j+1}, \text{ and } T^n = 1, j \in \mathbb{Z}.$$

Theorem 1 connects the critical group of the cone graph \hat{G} with the operator $I_n + L(G)$, also known as the discrete Helmholtz operator [21]. It provides a discrete analogue of classical analytic concepts, thus extending continuous analytical methods into the discrete setting of combinatorial graph theory.

Theorem 1 shows that the cokernel of the Laplacian of the cone graph is a torsion group, as the operator $I_n + L(G)$ is nonsingular (has trivial kernel). Therefore, we have a decomposition

$$\operatorname{coker}(\operatorname{L}(\hat{G})) \cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \cdots \oplus \mathbb{Z}_{d_n},$$

where (d_1, d_2, \ldots, d_n) are invariant factors obtained from the Smith normal form of $L(\hat{G})$, satisfying $d_i \mid d_{i+1}$ for all $1 \leq i \leq n-1$. Consequently, we obtain the following representation of the forest group

$$F(G) \cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \cdots \oplus \mathbb{Z}_{d_n}. \tag{4}$$

From a computational perspective, determining the Smith normal form of the discrete Laplacian $L(\hat{G})$ becomes challenging as the size of the graph grows, since the dimension of $L(\hat{G})$ increases with the number of vertices. However, the special algebraic structure of circulant graphs, encoded in their associated Laurent polynomials (2), provides a useful way to simplify the problem. The following Theorem 2 from [19] is formulated in a more general way for graphs G associated with arbitrary symmetric and monic Laurent polynomials.

Theorem 2. Let P(z) be a symmetric and monic Laurent polynomial with integer coefficients, and let A be the companion matrix associated with P(z). Then

$$\operatorname{coker}(\operatorname{L}(G)) \cong \operatorname{coker}(\mathcal{A}^n - \operatorname{I}).$$

This result relies on a classical construction from the theory of polynomials, namely the *companion matrix*; see [22] for further details.

Theorem 2 allows us to replace the computation of the Smith normal form of the potentially large Laplacian matrix with the simpler computation of a fixed-size matrix $\mathcal{A}^n - I$, thus significantly reducing computational complexity.

3 Critical group of the cone over a sandwich graph

Let A(H) denote the adjacency matrix of a path graph H, and D(X) denote the diagonal matrix whose diagonal entries are indeterminate variables $X = (x_v)$, indexed by the vertices of H. We define the $m \times m$ matrix

$$L(G, X) = D(X) - A(H)$$

as the generalized Laplacian matrix of the sandwich graph G.

For convenience, let us denote the Laurent polynomials $L_i(z)$ defined for graphs (1) by

$$L_i = L_i(z) = P_i(z) + d_i + 1, \quad i = 1, \dots, m,$$
 (5)

where $d_i = \deg(v_i)$ is the degree of vertex v_i in the path graph H.

Theorem 3. Let \hat{G} be the cone over the sandwich graph G with m circulant layers G_1, \ldots, G_m , each on n vertices. Then the forest group F(G) is isomorphic to the cokernel of the linear operator A^n-I , where A is the companion matrix of the symmetric and monic Laurent polynomial $D_m(z)$, which satisfies the recurrence relation

$$D_m(z) = L_m(z)D_{m-1}(z) - D_{m-2}(z),$$

with initial conditions

$$D_{-1}(z) = 0$$
, $D_0(z) = 1$, $D_1(z) = L_1(z)$, $D_2(z) = L_1(z)L_2(z) - 1$.

Proof. Let G be a sandwich graph. Consider its generalized Laplacian matrix

$$L(G,X) = \begin{pmatrix} L_1 & -1 & 0 & \cdots & 0 & 0\\ -1 & L_2 & -1 & \cdots & 0 & 0\\ 0 & -1 & L_3 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & L_{m-1} & -1\\ 0 & 0 & 0 & \cdots & -1 & L_m \end{pmatrix},$$
(6)

where the entries $X = (L_i)$ are symmetric and monic Laurent polynomials with integer coefficients, satisfying $L_i(z) = L_i(\frac{1}{z})$. In fact, the generalized Laplacian coincides with the classical Laplacian of size $nm \times nm$ if each entry of matrix (6) is interpreted as an $n \times n$ block matrix. That is, each L_i is viewed as a polynomial in the identity matrix, $L_i(I_n)$, while 0 and 1 are replaced by the zero and identity matrices, respectively.

Let us consider $L(G, X) : \mathbb{Z}^m \to \mathbb{Z}^m$ as a \mathbb{Z} -linear operator. Using Theorem 1 and Remark 1, we thus obtain the representation of the cokernel as an abelian group of relations among n-periodic sequences

$$\langle x_i^1, x_i^2, \dots, x_i^m \mid i \in \mathbb{Z} \mid$$

$$L_1 x_j^1 - x_j^2 = 0, \quad L_2 x_j^2 - x_j^1 - x_j^3 = 0, \quad \dots, \quad L_m x_j^m - x_j^{m-1} = 0,$$

$$x_{j+n}^1 - x_j^1 = 0, \quad x_{j+n}^2 - x_j^2 = 0, \quad \dots, \quad x_{j+n}^m - x_j^m = 0, \quad j \in \mathbb{Z} \rangle.$$

$$(7)$$

This is an abelian group generated by m infinite families of generators with 2m relations: m linear relations and m periodicity conditions.

By sequentially eliminating variables x_j^i for $i=2,\ldots,m$, the system reduces to a single linear relation involving only the variables x_j^1 . In particular, for m=2 we have

$$(L_1L_2 - 1)x_i^1 = 0,$$

and for m=3, we obtain

$$(L_3L_2L_1 - L_3 - L_1)x_j^1 = 0.$$

In general, since each x_j^i is expressed linearly through x_j^{i-1} and x_j^{i+1} , the system collapses to a single linear recurrence relation

$$D_m x_j^1 = 0,$$

where the polynomial D_m satisfies the recurrence

$$D_m = L_m D_{m-1} - D_{m-2}, (8)$$

with initial conditions

$$D_{-1} = 0, \ D_0 = 1, \ D_1 = L_1, \ D_2 = L_1 L_2 - 1.$$
 (9)

Remark 2. One can recognize that the recurrence relation (8) with initial conditions (9), coincides with the classical formula for the determinant of the tridiagonal matrix (6).

Using the definition of $L_i(z)$ given in (5), it is straightforward to verify that the Laurent polynomial $D_m(z)$ satisfies the symmetry condition and is monic.

Since every x_j^i can be expressed through x_j^1 , the periodicity condition for all variables is equivalent to the periodicity condition on x_j^1 . Thus, the group (7) has the following presentation

$$\operatorname{coker}(I_n + L(G)) \cong \langle x_i^1 | D_m(z) x_i^1 = 0, x_{j+n}^1 - x_j^1 = 0, j \in \mathbb{Z} \rangle.$$

Applying Theorem 2, we immediately obtain the statement of the theorem.

Proposition 1. If the sandwich graph has at least one layer with zero jumps, i.e., if for some $i \in \{1, ..., m\}$ we have $s_{i,1} = s_{i,2} = \cdots = s_{i,k_i} = 0$, then the polynomial $L_i(z)$ reduces to $L_i(z) = d_i + 1$. In this case, the Laurent polynomial $D_m(z)$ is not monic, and the statement of Theorem 3 no longer holds.

Proof. This is because the isomorphism coker $(L(\hat{G})) \cong \operatorname{coker}(\mathcal{A}^n - I)$ holds only when the associated Laurent polynomial is symmetric and monic, as follows from Theorem 2 (see [19]).

Thus, the method based on Theorem 2 is limited to graphs that can be associated only with symmetric and monic Laurent polynomials.

4 Examples

The computational advantage provided by Theorem 3 can be stated as follows.

Remark 3. Let G be a sandwich graph with $\nu = m \cdot n$ vertices, where m is the number of layers and n is the number of vertices in each circulant layer. Let $D_m(z)$ denote the symmetric and monic Laurent polynomial constructed recursively from the polynomials (2) associated with the layers, and let \mathcal{A} be its companion matrix. Then the computation of the Smith normal form of the Laplacian matrix $L(G) \in \mathbb{Z}^{\nu \times \nu}$ reduces to the computation of the Smith normal form of the matrix $\mathcal{A}^n - I$, whose size depends only on the parameters of the recurrence and remains independent of the number of vertices n.

For clarity, we consider the special case of a sandwich graph G whose layers are identical and represented by simple cycles, i.e., $G_i = C_n(s_{i,1})$ with $s_{i,1} = 1$ for all $i = 1, \ldots, m$. Here, m denotes the number of layers, and n is the number of vertices in each layer.

For example, if m=2, then, by Theorem 3, the forest group F(G) is isomorphic to the cokernel of the linear operator \mathcal{A}^n-I , where \mathcal{A} is the

ш. Г companion matrix corresponding to the Laurent polynomial $D_2(z) = 17 + \frac{1}{z^2} - \frac{8}{z} - 8z + z^2$. Explicitly, the matrix \mathcal{A} has the following form

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 8 & -17 & 8
\end{pmatrix}.$$
(10)

The invariant factors were computed via Theorem 3 from the Smith normal form of $\mathcal{A}^n - I$, where \mathcal{A} is defined in (10); see Table 1 for $n = 3, \ldots, 10$ and m = 2, and Table 2 for $n = 3, \ldots, 10$ and $m = 3, \ldots, 6$. We do not list invariant factors equal to 1 in the tables, as they do not affect the resulting group structure.

Note for Table 1. Each cell in Table 1 lists vertically the invariant factors of the corresponding forest group (4). For clarity, each factor is written in its prime factorized form. For example, when n=3 the invariant factors are $d_1=1, d_2=1, d_3=2^3\cdot 3, d_4=2^3\cdot 3^2$. Hence, $F(G)\cong \mathbb{Z}_{24}\oplus \mathbb{Z}_{72}$.

m = 1	3	4	5	6	7	8	9	10
m = 1	$ \begin{array}{c} 2^3 \cdot 3 \\ 2^3 \cdot 3^2 \end{array} $	3·5 3·5 3·5·7	11·29 3·11·29	$ \begin{array}{c} 2^3 \\ 2^3 \\ 2^3 \cdot 3 \\ 2^3 \cdot 3^2 \cdot 5 \cdot 7 \end{array} $	29.139	3.5.7 3.5.7.23 3.5.7.23	$2^3 \cdot 3^2 \cdot 19 \cdot 37$ $2^3 \cdot 3^3 \cdot 19 \cdot 37$	$5.11.19.29 \\ 3.5^{2}.7.11.19.29$

TABLE 1. Invariant factors of the forest group (prime factorized form) for a sandwich graph with two layers.

Additional numerical results are given in Table 2. These data were collected to investigate patterns arising when both the number of vertices per layer n and the total number of layers m are varied.

Note for Table 2. The structure of Table 2 is the same as in Table 1, except that here n indexes the rows and m indexes the columns.

$m \mapsto$	3	4	5	6
$n\downarrow$				
3	22 22 · 5 · 7 23 · 5 · 7	$2^4 \cdot 3 \cdot 17 \\ 2^4 \cdot 3^2 \cdot 7 \cdot 17$	$2^{2} \cdot 29 \cdot 41$ $2^{2} \cdot 5 \cdot 11 \cdot 29 \cdot 41$	$2^{3} \cdot 3$ $2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ $2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
4	2^{2} $2^{3} \cdot 3$ $2^{3} \cdot 3^{2}$ $2^{6} \cdot 3^{2} \cdot 5$	3.5 3.7.23 3.5.7.23.47	3.5.11.19.29 3.52.11.19.29.41	$2^{2} \cdot 3$ $2^{4} \cdot 3^{2} \cdot 5$ $2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
5	$ \begin{array}{c} 11 \cdot 19 \cdot 41 \\ 2^3 \cdot 11 \cdot 19 \cdot 41 \end{array} $	11·29·719 3·7·11·29·719	$2^{2} \cdot 3 \cdot 5$ $2^{2} \cdot 3 \cdot 5^{2} \cdot 11$ $2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 31$ $2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 31$	$ \begin{array}{c} 11 \cdot 19 \cdot 29 \cdot 41 \cdot 661 \\ 2^4 \cdot 3^2 \cdot 11 \cdot 19 \cdot 29 \cdot 41 \\ \cdot 661 \end{array} $
6	$5 \\ 2^2 \cdot 5 \\ 2^3 \cdot 5 \\ 2^3 \cdot 5 \cdot 7 \\ 2^3 \cdot 3 \cdot 5 \cdot 7 \\ 2^3 \cdot 3^2 \cdot 5 \cdot 7$	$\begin{array}{c} 2^4 \cdot 7 \\ 2^4 \cdot 7 \\ 2^4 \cdot 3 \cdot 7 \cdot 17 \\ \\ 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 17 \\ \\ \cdot 47 \end{array}$	$ \begin{array}{c} 11 \\ 11 \cdot 41 \\ 2^3 \cdot 5 \cdot 11 \cdot 19 \cdot 29 \cdot 41 \\ 2^3 \cdot 5^2 \cdot 11 \cdot 19 \cdot 29 \cdot 41 \end{array} $	2^3 $2^3 \cdot 3 \cdot 5$ $2^3 \cdot 3 \cdot 5$ $2^3 \cdot 3^2 \cdot 5 \cdot 7$
7	29.71.239 23.29.71.239	$7 \cdot 29 \cdot 139 \cdot 2113$ $3 \cdot 7^{2} \cdot 29 \cdot 139 \cdot 2113$	$29 \cdot 71 \cdot 421 \cdot 8329$ $5 \cdot 11 \cdot 29 \cdot 71 \cdot 421$ $\cdot 8329$	$29 \cdot 71 \cdot 139 \cdot 239 \cdot 12781$ $2^{4} \cdot 3^{2} \cdot 29 \cdot 71 \cdot 139 \cdot 239 \cdot 12781$ $2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
8	$2^{2} \cdot 7$ $2^{4} \cdot 3 \cdot 7$ $2^{4} \cdot 3^{2} \cdot 7 \cdot 17$ $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17$	5 5 5 5.7·23 3·5·7·23 3·5·7·23·47	$\begin{matrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ \hline 3 \\ 3 \\ \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 29 \\ \cdot 31 \cdot 719 \\ \cdot 5^2 \cdot 7 \cdot 11 \cdot 19 \cdot 29 \\ \cdot 31 \cdot 41 \cdot 719 \end{matrix}$	$\begin{array}{c} 2 \\ 2 \\ 2^2 \\ 2^2 \cdot 7 \\ 2^3 \cdot 3 \cdot 7 \\ 2^5 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23 \\ 2^5 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \cdot 47 \\ 2^8 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 23 \cdot 47 \\ 47 \end{array}$
9	2^{2} $2^{2} \cdot 5 \cdot 7 \cdot 19 \cdot 53 \cdot 199$ $2^{3} \cdot 5 \cdot 7 \cdot 19 \cdot 53 \cdot 199$	$2^{4} \cdot 3^{2} \cdot 17 \cdot 19 \cdot 37 \cdot 8929$ $2^{4} \cdot 3^{3} \cdot 7 \cdot 17 \cdot 19 \cdot 37 \cdot 8929$	$ \begin{array}{c} 19 \\ 19 \\ 2^2 \cdot 19 \cdot 29 \cdot 41 \cdot 109 \cdot \\ \cdot 179 \cdot 251 \\ 2^2 \cdot 5 \cdot 11 \cdot 19 \cdot 29 \cdot 41 \cdot \\ \cdot 109 \cdot 179 \cdot 251 \end{array} $	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 2^3 \cdot 3^2 \\ \\ 2^3 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot \\ \cdot 37 \cdot 53 \cdot 199 \cdot 829 \\ \\ 2^4 \cdot 3^4 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot \\ \cdot 37 \cdot 53 \cdot 199 \cdot 829 \end{array}$
10	11 11 $2^2 \cdot 5 \cdot 11 \cdot 19 \cdot 29 \cdot 41$ $2^5 \cdot 3 \cdot 5^2 \cdot 11 \cdot 19 \cdot 29 \cdot 41$	$\begin{matrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ \hline 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot \\ \cdot 29 \cdot 31 \cdot 719 \\ \hline \\ 3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 19 \cdot \\ \cdot 29 \cdot 31 \cdot 41 \cdot 719 \\ \end{matrix}$	$\begin{array}{c} 5 \\ 2 \cdot 5 \\ 2 \cdot 5^2 \\ 2^1 \cdot 5^2 \cdot 11 \\ 2^4 \cdot 3 \cdot 5^3 \cdot 11 \cdot 31 \cdot 41 \end{array}$	$11 \cdot 19 \cdot 29$ $11 \cdot 19 \cdot 29$ $2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \cdot 29$ $\cdot 41 \cdot 241 \cdot 661$ $2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 19$ $\cdot 29 \cdot 241 \cdot 661$

Table 2. Invariant factors of the forest group (prime factorized form) for a sandwich graph with m=3,4,5,6 layers.

Based on the data in these tables, we make the following observation.

Conjecture 1 (Lucas Divisibility). Let $p \geq 3$ be a prime and $m \geq 2$. For the sandwich graph G with m identical layers $C_p(1)$, write

$$F(G) \cong \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_p} \quad (d_1 \mid \cdots \mid d_p).$$

Then the Lucas number L_p divides the second largest invariant factor

$$L_p \mid d_{p-1}$$
.

Remark 4. Numerical verification confirms the conjecture for all $2 \le m \le 6$ and $3 \le p \le 37$.

However, the general pattern remains an open question.

Further research will be devoted to the study of the forest group for the cone over circulant foliation graphs [13, 14], which is a natural generalization of the sandwich graph considered in this work. It is planned to formulate corresponding restrictive conditions, similar to those in Proposition 1, and to apply the theory of voltage graphs (see [12]) for a more detailed structural analysis. Exact theoretical results on the invariant factors for such graphs will be obtained, taking into account the number of layers m and the number of vertices n in each layer. These results will make it possible to better understand the structure of the critical group for cones over graphs of arbitrary structure.

References

- R. Bacher, P. de la Harpe, T. Nagnibeda, The lattice of integral flows and the lattice of integral cuts on a finite graph, Bull. Soc. Math. Fr., 125:2 (1997), 167– 198, Zbl 0891.05062
- [2] M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math., 215:2 (2007), 766-788. Zbl 1124.05049
- [3] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality, Phys. Rev. A., 38:1 (1988), 364-374. Zbl 1230.37103
- [4] D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64:14 (1990), 1613–1616. Zbl 0943.82553
- [5] N.L. Biggs, Three remarkable graphs, Can. J. Math., 15:2 (1973), 397-411.Zbl 0256.05114
- [6] M. Boben, T. Pisanski, A. Žitnik, I-graphs and the corresponding configurations, J. Comb. Des., 13:6 (2005), 406–424. Zbl 1076.05065
- [7] N.V. Abrosimov, G.A. Baĭgonakova, L.A. Grunwald, I.A. Mednykh, Counting rooted spanning forests in cobordism of two circulant graphs, Sib. Elektron. Mat. Izv., 17 (2020), 814-823. Zbl 1444.05066
- [8] N.L. Biggs, Chip-firing and the critical group of a graph, J. Algebr. Comb., 9:1 (1999), 25-45. Zbl 0919.05027
- [9] R. Cori, D. Rossin, On the sandpile group of dual graphs, Eur. J. Comb., 21:4 (2000), 447–459. Zbl 0969.05034
- [10] D. Lorenzini, Smith normal form and Laplacians, J. Comb. Theory Ser. B, 98:6 (2008), 1271-1300. Zbl 1175.05088

- [11] B. Jacobson, A. Niedermaier, V. Reiner, Critical groups for complete multipartite graphs and Cartesian products of complete graphs, J. Graph Theory, 44:3 (2003), 231–250. Zbl 1031.05064
- [12] S. R. Gonet, Jacobians of finite and infinite voltage covers of graphs, Ph. D. Dissertation, University of Vermont, 2021.
- [13] L.A. Grunwald, Young Soo Kwon, I.A. Mednykh, Counting rooted spanning forests for circulant foliation over a graph, Tôhoku Math. J. (2), 74:4 (2022), 535-548. Zbl 1506.05098
- [14] Y.S. Kwon, A.D. Mednykh, I.A. Mednykh, Complexity of the circulant foliation over a graph, J. Algebr. Comb., 53:1 (2021), 115-129. Zbl 1464.05194
- [15] E.A. Monakhova, A survey on undirected circulant graphs, Discret. Math. Algorithms Appl., 4:1 (2012), Article ID 1250002. Zbl 1247.05115
- [16] N. Saxena, S. Severini, I. Shparlinski, Parameters of integral circulant graphs and periodic quantum dynamics, Int. J. Quantum Inf., 5:3 (2007), 417-430. Zbl 1119.81042
- [17] M. Imran, A. Baig, S.A.U.H. Bokhary, I. Javaid, On the metric dimension of circulant graphs, Appl. Math. Lett., 25:3 (2012), 320-325. Zbl 1243.05072
- [18] J. Sander, T. Sander, Recent developments on the edge between number theory and graph theory, in Sander, Jürgen (ed.) et al., From arithmetic to zeta-functions: Number theory in memory of Wolfgang Schwarz, Springer, Cham, 2016, 405-425. Zbl 1366.05050
- [19] L.A. Grunwald, I.A. Mednykh, On the Jacobian group of a cone over a circulant graph, Mat. Zamet. SVFU, 28:2 (2021), 88-101. Zbl 7821028
- [20] P.J. Davis, Circulant matrices, AMS Chelsea Publishing, New York, 1994. Zbl 0898.15021
- [21] M.B. van Gijzen, Y.A. Erlangga, C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29:5 (2007), 1942–1958. Zbl 1155.65088
- [22] R.A. Horn, C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge etc., 1985. Zbl 0576.15001

LILIYA ALEXANDROVNA GRUNWALD SOBOLEV INSTITUTE OF MATHEMATICS, PR. KOPTYUGA, 4, 630090, NOVOSIBIRSK, RUSSIA

 $Email\ address: {\tt mathmanlily@gmail.com}$