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Abstract:We study the critical group of the cone over a sandwich
graph. It is shown that this group can be described as the cokernel
of a discrete Laplace operator. Furthermore, we prove that its
exact structure can be determined by making use of a recurrence
relation derived from the Laplace operator. This relation involves
symmetric Laurent polynomials and provides a more e�cient way
to compute the group. The proposed method o�ers a powerful
tool for analyzing invariants of graphs with complex combinatorial
structure.

Keywords: critical group, circulant graph, discrete Laplacian,
Smith normal form.

1 Introduction

An important problem in algebraic graph theory is describing the structure
of the critical group of a graph. This notion is closely related to discrete
analogues of the classical Laplace operator. The discrete Laplacian naturally
arises as a combinatorial version of its continuous counterpart, providing a
useful tool for studying various graph invariants.
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The signi�cance of the critical group is not limited to the classical fact
that its order equals the number of spanning trees in a graph [1]. Often, it
also captures deeper structural properties, re�ecting analogies with discrete
versions of classical concepts from the theory of Riemann surfaces [1, 2], as
well as connections to statistical physics [3, 4].

Although determining the exact structure of critical groups remains an
open problem for many classes of graphs, certain families possess speci�c
features that make them easier to analyze. Such special cases allow step-by-
step progress toward understanding the general problem.

In Section 2, we de�ne the main object of the study, namely the cone graph
Ĝ constructed over a given sandwich graph G. The cone graph Ĝ is obtained
by adding one new vertex connected to every vertex of G, thus forming a
discrete analogue of a geometric cone with base G.

Several well-known graphs �t naturally into this sandwich graph construction.
Important examples include the I-graph and the generalized Petersen graph
(see, for example, [5, 6]), and the generalized prism, which is also known as
the cobordism of two circulant graphs [7].

Sandwich graphs form a special case of a more general construction known
as circulant foliation [13, 14], a structure relevant to applications such as
network design [15], quantum computing [16], chemistry [17], and number
theory [18].

Section 2 also summarizes key known results. In particular, for cone graphs
Ĝ, there exists another naturally related group whose order equals the number
of rooted spanning forests in the base graph G [19]. Understanding the
structure of the discrete Laplacian for sandwich graphs thus gives essential
insights into the critical group of Ĝ and allows us to develop computational
methods that improve numerical e�ciency, as shown in Section 3.

Classical results on critical groups, such as those in [1, 2, 8], are based
on combinatorial and analytical ideas, but typically involve computing the
Smith normal form of large Laplacian matrices [1, 8, 9, 10, 12] or using
spectral methods [11]. These computations become di�cult for graphs of
large size or complex structure. Our approach, by contrast, uses the algebraic
properties of circulant layers and relies on symmetric and monic Laurent
polynomials. This allows us to express the critical group of the cone through
a �xed-size matrix instead of a growing Laplacian matrix, which leads to a
reduction in computational complexity.

We believe the results in this paper are new and may help to develop a
more general understanding of circulant foliation graphs [13, 14].

2 Cone over a sandwich graph

Let us consider a classical path graph H with vertices v1, v2, . . . , vm,
characterized by the conditions deg(v1) = deg(vm) = 1 and deg(vi) = 2
for i = 2, . . . ,m− 1, where deg(·) denotes the vertex degree.
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For given integers n and m, we introduce the concept of a sandwich graph
G whose vertex set is de�ned as

V (G) = {(k, vi) | k = 0, 1, . . . , n− 1, i = 1, 2, . . . ,m}.
In this graph, for each �xed i, vertices (k, vi) together with integer parameters
(called jumps) si,1, si,2, . . . , si,ki ∈ Z satisfying

1 ≤ si,1 < si,2 < . . . < si,ki <
n
2 ,

form the circulant graph

Gi = Cn(si,1, si,2, . . . , si,ki), (1)

where each vertex (k, vi) is adjacent to vertices

(k ± si,1, vi), (k ± si,2, vi), . . . , (k ± si,ki , vi) mod n.

From this point of view, the circulant graphs play the role of layers placed
at each vertex v1, v2, . . . , vm of the path graph H (see Fig. 1). Furthermore,
if we �x k, then there is an edge connecting the vertices (k, vi) and (k, vi+1).
Thus, for the sandwich graph G de�ned above, we say that G has m layers
G1, . . . , Gm, each consisting of n vertices.

Note that if all layers are identical, that is, Gi = Gj for all i, j = 1, . . . ,m,
then the sandwich graph coincides with the Cartesian product of the path
graph H and the graph Gi.

Fig. 1. From left to right: a path graph H on 3 vertices and
the corresponding sandwich graph G withm = 3 layers. From
top to bottom, the layers are circulant graphs: G1 = C6(1),
G2 = C6(2), and G3 = C6(1, 2).

An important property of circulant graphs relevant to our study is their
natural connection with Laurent polynomials [20]. Speci�cally, each circulant
layer is associated with a Laurent polynomial

Pi(z) = 2ki −
ki∑
j=1

(
zsi,j + z−si,j

)
, i = 1, . . . ,m, (2)
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which is symmetric, i. e. Pi(z) = Pi(
1
z ), and monic, meaning that its leading

and trailing coe�cients are equal to ±1.
Finally, we construct the cone graph Ĝ over the sandwich graph G by

adding one new vertex adjacent to all vertices of G. This provides a discrete
analogue of a geometric cone with the graph G as its base.

Critical group of cone over a graph and Laplacian. Formally, for a
connected graph G on n vertices, the critical group K(G) is the torsion part
of the abelian group coker(L(G)) (see, for example [1]), where L(G) is the
discrete Laplacian operator viewed as a Z-linear operator Zn → Zn.

The discrete Laplacian is a discrete analogue of the classical Laplace
operator, and it is represented by an n× n matrix

L(G) = D(G)−A(G),

where D(G) is the diagonal degree matrix (whose diagonal entries are the
degrees of vertices), and A(G) is the adjacency matrix of G.

A fundamental property of the critical group is that its order equals the
number of spanning trees of the graph [1]. The following Theorem 1 in [19]
generalizes this classical fact, introducing a new group whose order equals
the number of rooted spanning forests.

Theorem 1. Let G be a connected graph on n vertices. Then the critical
group of the cone Ĝ over the graph G is isomorphic to the cokernel of the
linear operator In+L(G), where L(G) is the discrete Laplacian of G, and In
is the n× n identity matrix. More precisely,

coker(L(Ĝ)) ∼= coker(In+L(G)).

We refer to this group as the forest group of a graph F(G).

Remark 1. According to [19], �x some i and consider an arbitrary Laurent
polynomial P (z) of the form (2). Then the critical group coker(In+L(G))
admits the following presentation:

coker(In+L(G)) = ⟨xi, i ∈ Z | (P (T ) + 1)xj = 0, (Tn − 1)xj = 0, j ∈ Z⟩,
(3)

where the shift operator T is a Z-linear operator acting on the generators of
the group by

T : xj 7→ xj+1, and Tn = 1, j ∈ Z.

Theorem 1 connects the critical group of the cone graph Ĝ with the
operator In+L(G), also known as the discrete Helmholtz operator [21]. It
provides a discrete analogue of classical analytic concepts, thus extending
continuous analytical methods into the discrete setting of combinatorial
graph theory.

Theorem 1 shows that the cokernel of the Laplacian of the cone graph is a
torsion group, as the operator In+L(G) is nonsingular (has trivial kernel).
Therefore, we have a decomposition

coker(L(Ĝ)) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdn ,
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where (d1, d2, . . . , dn) are invariant factors obtained from the Smith normal

form of L(Ĝ), satisfying di | di+1 for all 1 ≤ i ≤ n − 1. Consequently, we
obtain the following representation of the forest group

F(G) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdn . (4)

From a computational perspective, determining the Smith normal form
of the discrete Laplacian L(Ĝ) becomes challenging as the size of the graph

grows, since the dimension of L(Ĝ) increases with the number of vertices.
However, the special algebraic structure of circulant graphs, encoded in their
associated Laurent polynomials (2), provides a useful way to simplify the
problem. The following Theorem 2 from [19] is formulated in a more general
way for graphs G associated with arbitrary symmetric and monic Laurent
polynomials.

Theorem 2. Let P (z) be a symmetric and monic Laurent polynomial with
integer coe�cients, and let A be the companion matrix associated with P (z).
Then

coker (L(G)) ∼= coker(An − I).

This result relies on a classical construction from the theory of polynomials,
namely the companion matrix ; see [22] for further details.

Theorem 2 allows us to replace the computation of the Smith normal
form of the potentially large Laplacian matrix with the simpler computation
of a �xed-size matrix An − I, thus signi�cantly reducing computational
complexity.

3 Critical group of the cone over a sandwich graph

Let A(H) denote the adjacency matrix of a path graph H, and D(X)
denote the diagonal matrix whose diagonal entries are indeterminate variables
X = (xv), indexed by the vertices of H. We de�ne the m×m matrix

L(G,X) = D(X)−A(H)

as the generalized Laplacian matrix of the sandwich graph G.
For convenience, let us denote the Laurent polynomials Li(z) de�ned for

graphs (1) by

Li = Li(z) = Pi(z) + di + 1, i = 1, . . . ,m, (5)

where di = deg(vi) is the degree of vertex vi in the path graph H.

Theorem 3. Let Ĝ be the cone over the sandwich graph G with m circulant
layers G1, . . . , Gm, each on n vertices. Then the forest group F(G) is isomorphic
to the cokernel of the linear operator An−I, where A is the companion matrix
of the symmetric and monic Laurent polynomial Dm(z), which satis�es the
recurrence relation

Dm(z) = Lm(z)Dm−1(z)−Dm−2(z),
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with initial conditions

D−1(z) = 0, D0(z) = 1, D1(z) = L1(z), D2(z) = L1(z)L2(z)− 1.

Proof. Let G be a sandwich graph. Consider its generalized Laplacian matrix

L(G,X) =



L1 −1 0 · · · 0 0
−1 L2 −1 · · · 0 0
0 −1 L3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Lm−1 −1
0 0 0 · · · −1 Lm


, (6)

where the entries X = (Li) are symmetric and monic Laurent polynomials
with integer coe�cients, satisfying Li(z) = Li(

1
z ). In fact, the generalized

Laplacian coincides with the classical Laplacian of size nm × nm if each
entry of matrix (6) is interpreted as an n× n block matrix. That is, each Li

is viewed as a polynomial in the identity matrix, Li(In), while 0 and 1 are
replaced by the zero and identity matrices, respectively.

Let us consider L(G,X) : Zm → Zm as a Z-linear operator. Using Theorem 1
and Remark 1, we thus obtain the representation of the cokernel as an abelian
group of relations among n-periodic sequences

⟨x1i , x2i , . . . ,xmi | i ∈ Z |
L1x

1
j − x2j = 0, L2x

2
j − x1j − x3j = 0, . . . , Lmxmj − xm−1

j = 0,

x1j+n − x1j = 0, x2j+n − x2j = 0, . . . , xmj+n − xmj = 0, j ∈ Z⟩.
(7)

This is an abelian group generated by m in�nite families of generators with
2m relations: m linear relations and m periodicity conditions.

By sequentially eliminating variables xij for i = 2, . . . ,m, the system

reduces to a single linear relation involving only the variables x1j . In particular,
for m = 2 we have

(L1L2 − 1)x1j = 0,

and for m = 3, we obtain

(L3L2L1 − L3 − L1)x
1
j = 0.

In general, since each xij is expressed linearly through xi−1
j and xi+1

j , the
system collapses to a single linear recurrence relation

Dmx1j = 0,

where the polynomial Dm satis�es the recurrence

Dm = LmDm−1 −Dm−2, (8)

with initial conditions

D−1 = 0, D0 = 1, D1 = L1, D2 = L1L2 − 1. (9)
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Remark 2. One can recognize that the recurrence relation (8) with initial
conditions (9), coincides with the classical formula for the determinant of
the tridiagonal matrix (6).

Using the de�nition of Li(z) given in (5), it is straightforward to verify
that the Laurent polynomial Dm(z) satis�es the symmetry condition and is
monic.

Since every xij can be expressed through x1j , the periodicity condition

for all variables is equivalent to the periodicity condition on x1j . Thus, the

group (7) has the following presentation

coker(In+L(G)) ∼=
〈
x1j | Dm(z)x1j = 0, x1j+n − x1j = 0, j ∈ Z

〉
.

Applying Theorem 2, we immediately obtain the statement of the theorem.
□

Proposition 1. If the sandwich graph has at least one layer with zero jumps,
i.e., if for some i ∈ {1, . . . ,m} we have si,1 = si,2 = · · · = si,ki = 0, then
the polynomial Li(z) reduces to Li(z) = di + 1. In this case, the Laurent
polynomial Dm(z) is not monic, and the statement of Theorem 3 no longer
holds.

Proof. This is because the isomorphism coker (L(Ĝ)) ∼= coker(An − I) holds
only when the associated Laurent polynomial is symmetric and monic, as
follows from Theorem 2 (see [19]). □

Thus, the method based on Theorem 2 is limited to graphs that can be
associated only with symmetric and monic Laurent polynomials.

4 Examples

The computational advantage provided by Theorem 3 can be stated as
follows.

Remark 3. Let G be a sandwich graph with ν = m · n vertices, where m is
the number of layers and n is the number of vertices in each circulant layer.
Let Dm(z) denote the symmetric and monic Laurent polynomial constructed
recursively from the polynomials (2) associated with the layers, and let A be
its companion matrix. Then the computation of the Smith normal form of
the Laplacian matrix L(G) ∈ Zν×ν reduces to the computation of the Smith
normal form of the matrix An−I, whose size depends only on the parameters
of the recurrence and remains independent of the number of vertices n.

For clarity, we consider the special case of a sandwich graph G whose
layers are identical and represented by simple cycles, i.e., Gi = Cn(si,1) with
si,1 = 1 for all i = 1, . . . ,m. Here, m denotes the number of layers, and n is
the number of vertices in each layer.

For example, if m = 2, then, by Theorem 3, the forest group F(G) is
isomorphic to the cokernel of the linear operator An − I, where A is the
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companion matrix corresponding to the Laurent polynomial D2(z) = 17 +
1
z2

− 8
z − 8z + z2. Explicitly, the matrix A has the following form

0 1 0 0
0 0 1 0
0 0 0 1
−1 8 −17 8

 . (10)

The invariant factors were computed via Theorem 3 from the Smith normal
form of An − I, where A is de�ned in (10); see Table 1 for n = 3, . . . , 10
and m = 2, and Table 2 for n = 3, . . . , 10 and m = 3, . . . , 6. We do not list
invariant factors equal to 1 in the tables, as they do not a�ect the resulting
group structure.

Note for Table 1. Each cell in Table 1 lists vertically the invariant factors
of the corresponding forest group (4). For clarity, each factor is written in
its prime factorized form. For example, when n = 3 the invariant factors are
d1 = 1, d2 = 1, d3 = 23 · 3, d4 = 23 · 32. Hence, F(G) ∼= Z24 ⊕ Z72.

n 3 4 5 6 7 8 9 10

m = 2

23 ·3
23 ·32

3·5
3·5
3·5·7

11·29
3·11·29

23

23

23 ·3
23 ·32 ·5·7

29·139
3·29·139

3·5·7
3·5·7·23
3·5·7·23

23 ·32 ·19·37
23 ·33 ·19·37

5·11·19·29
3·52 ·7·11·19·29

Table 1. Invariant factors of the forest group (prime
factorized form) for a sandwich graph with two layers.

Additional numerical results are given in Table 2. These data were collected
to investigate patterns arising when both the number of vertices per layer n
and the total number of layers m are varied.

Note for Table 2. The structure of Table 2 is the same as in Table 1,
except that here n indexes the rows and m indexes the columns.
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m 7→ 3 4 5 6

n

7→

3

22

22 ·5·7
23 ·5·7

24 ·3·17
24 ·32 ·7·17

22 ·29·41
22 ·5·11·29·41

23 ·3
23 ·32 ·5·7·11
24 ·33 ·5·7·11

4

22

23 ·3
23 ·32
26 ·32 ·5

3·5
3·7·23
3·5·7·23·47

3·5·11·19·29
3·52 ·11·19·29·41

22 ·3
24 ·32 ·5
24 ·32 ·5·11
27 ·32 ·5·7·11·23

5
11·19·41
23 ·11·19·41

11·29·719
3·7·11·29·719

22 ·3·5
22 ·3·52 ·11
22 ·3·52 ·11·31
22 ·3·52 ·11·31

11·19·29·41·661

24 ·32 ·11·19·29·41·
·661

6

5
22 ·5
23 ·5
23 ·5·7
23 ·3·5·7
23 ·32 ·5·7

24 ·7
24 ·7
24 ·3·7·17

24 ·32 ·5·7·17·
·47

11

11·41
23 ·5·11·19·29·41
23 ·52 ·11·19·29·41

23

23 ·3·5
23 ·3·5
23 ·32 ·5·7
23 ·32 ·5·7·11·13
26 ·33 ·5·7·11·13·23

7
29·71·239
23 ·29·71·239

7·29·139·2113

3·72 ·29·139·
·2113

29·71·421·8329

5·11·29·71·421·
·8329

29·71·139·239·12781

24 ·32 ·29·71·139·239·
·12781

24 ·33 ·5·7·11

8

22 ·7
24 ·3·7
24 ·32 ·7·17
27 ·32 ·5·7·17

5
5

5
5·7·23
3·5·7·23
3·5·7·23·47

3

3

3
3

3·5·7·11·19·29·
·31·719

3·52 ·7·11·19·29·
·31·41·719

2

2

22

22 ·7
23 ·3·7
25 ·32 ·5·7·23
25 ·32 ·5·7·11·23·47

28 ·32 ·5·7·11·17·23·
·47

9

22

22 ·5·7·19·53·
·199

23 ·5·7·19·53·
·199

24 ·32 ·17·19·
·37·8929

24 ·33 ·7·17·19·
·37·8929

19
19

22 ·19·29·41·109·
·179·251

22 ·5·11·19·29·41·
·109·179·251

3

3
3

23 ·32

23 ·33 ·5·7·11·19·
·37·53·199·829

24 ·34 ·5·7·11·19·
·37·53·199·829

10

11

11

22 ·5·11·19·29·
·41

25 ·3·52 ·11·19·
·29·41

3

3
3

3·5·7·11 ·19·
·29·31·719

3·52 ·7·11·19·
·29·31·41·719

5

2·5
2·52
21 ·52 ·11
24 ·3·52 ·11
24 ·3·52 ·11
24 ·3·52 ·11·31
24 ·3·53 ·11·31·41

11·19·29
11·19·29

23 ·3·5·11·19·29·
·41·241·661

26 ·32 ·5·7·11 ·19·
·29·241·661

Table 2. Invariant factors of the forest group (prime
factorized form) for a sandwich graph with m = 3, 4, 5, 6
layers.
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Based on the data in these tables, we make the following observation.

Conjecture 1 (Lucas Divisibility). Let p ≥ 3 be a prime and m ≥ 2. For
the sandwich graph G with m identical layers Cp(1), write

F(G) ∼= Zd1 ⊕ · · · ⊕ Zdp (d1 | · · · | dp).

Then the Lucas number Lp divides the second largest invariant factor

Lp | dp−1.

Remark 4. Numerical veri�cation con�rms the conjecture for all 2 ≤ m ≤ 6
and 3 ≤ p ≤ 37.

However, the general pattern remains an open question.
Further research will be devoted to the study of the forest group for the

cone over circulant foliation graphs [13, 14], which is a natural generalization
of the sandwich graph considered in this work. It is planned to formulate
corresponding restrictive conditions, similar to those in Proposition 1, and
to apply the theory of voltage graphs (see [12]) for a more detailed structural
analysis. Exact theoretical results on the invariant factors for such graphs
will be obtained, taking into account the number of layers m and the number
of vertices n in each layer. These results will make it possible to better
understand the structure of the critical group for cones over graphs of arbitrary
structure.
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