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Abstract: The main results of the article concern the model theory
of T -pseudo�nite acts over abelian groups, where T is the theory of
all acts over the group. A left act over a group G is a set on which
G acts unitarily from the left. We give characteristic properties
of an abelian group G that are necessary for the existence of a
T -pseudo�nite G-act in the class KG,S̄ and su�cient for the class
KG,S̄ to be T -pseudo�nite, where T is the theory of all G-acts,

S̄ is a �nite set of subgroups of G, and KG,S̄ is the class of all

coproducts of G-acts of the form G(G/G1), G1 ∈ S̄. It follows from
this result that for a �nitely generated abelian group G the class
KG,S̄ is T -pseudo�nite; for the multiplicative group of rational
numbers G the class KG,S̄ is also T -pseudo�nite. It is noted that
there exists an abelian group G and a G-act GA such that GA is
not T -pseudo�nite but is pseudo�nite, where T is the theory of all
G-acts, namely, for a quasicyclic group G as a divisible group, the
G-act GG is not T -pseudo�nite, but is pseudo�nite.
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Introduction

The structure M in language L is called pseudo�nite if every sentence
true in M has a �nite model. The theory of pseudo�nite structures is a well-
developed theory. A signi�cant number of works are devoted to the theory
of pseudo�nite structures ([1]-[4]). In [5] the authors of this work considered
the issues of pseudo�niteness of connected unars without cycles, in [6] the
pseudo�nite acts over monoid with �nite number of isomorphism types of
�nite cyclic subacts are studied; in particular, it is proven that a coproduct
of �nite acts over monoid is pseudo�nite; as a consequence, it is shown that
every act over �nite group is pseudo�nite.

In [7], the concept of T -pseudo�niteness is introduced for the model of
theory T . A model M of a theory T is called T -pseudo�nite if every sentence
true inM is also true in some �nite model of T . It is clear that T -pseudo�nite-
ness implies pseudo�niteness for every theory T , and pseudo�niteness implies
T -pseudo�niteness for every �nite axiomatizable theory T . In [7], necessary
and su�cient conditions for the T -pseudo�niteness of acts over an abelian
group with a �nite number of isomorphism types of connected subacts are
given.

It is known that a structure M in a language L is pseudo�nite if and only
if M is elementarily equivalent to an ultraproduct of �nite structures of L. In
this paper, a similar result is proved for T -pseudo�nite structures (Theorem
1).

For an abelian group G and a �nite set S̄ of subgroups of G, we de�ne the
class KG,S̄ of all coproducts of G-acts of the form G(G/G1), where G1 ∈ S̄.
This class is axiomatizable (Corollary 1). Note that for any theory T in the
language L and any class K of models of T , if there exists a T -pseudo�nite
structure M ∈ K, then K is a T -pseudo�nite class. In this paper, we give
characteristic properties of the abelian group G that are necessary for the
existence of a T -pseudo�nite G-act in the class KG,S̄ and su�cient for the
class KG,S̄ to be T -pseudo�nite, where T is the theory of all G-acts and

S̄ is a �nite set of subgroups of G (Theorem 2). As a consequence of this
theorem we obtain the following result: if for every subgroup G1 ∈ S̄ of
group G and every �nite set F ⊆ G \G1 there exists a �nite index subgroup
G2 of group G such that G1 ⊆ G2 and F ∩ G2 = ∅, then the class KG,S̄

is T -pseudo�nite (Corollary 2). It follows from this result that for a �nitely
generated abelian group G the class KG,S̄ is T -pseudo�nite (Proposition 2);
for the multiplicative group of rational numbers G the class KG,S̄ is also
T -pseudo�nite (Proposition 1).

It is noted that there exists an abelian groupG and an act overG such that
this act is not T -pseudo�nite but is pseudo�nite, where T is the theory of all
G-acts (Corollary 4), namely, for a quasicyclic group G as a divisible group,
the act G over GG is not T -pseudo�nite (Proposition 3), but is pseudo�nite
(Corollary 3).
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1 Preliminary information

Let us recall some de�nitions and facts from act theory and model theory
(see [8, 9, 10]). Let S be a monoid with identity 1. A structure ⟨A; s⟩s∈S in the
language LS = {s | s ∈ S} consisting of unary operation symbols is a (left)
S-act if s1(s2a) = (s1s2)a and 1a = a for all s1, s2 ∈ S and a ∈ A. An S-act
⟨A; s⟩s∈S is denoted by SA. Elements x, y of an S-act SA are called connected
(denoted by x ∼ y) if there exist n ∈ ω, a0, . . . , an ∈ A, s1, . . . , sn ∈ S such
that x = a0, y = an, and ai = siai−1 or ai−1 = siai. An S-act SA is called
connected if we have x ∼ y for every x, y ∈ SA. It is easy to check that ∼
is a congruence relation on the S-act SA. The classes of this relation are
called connected components of the S-act SA. A coproduct of S-acts SAi is a
disjunctive union of this S-acts. The coproduct of S-acts SAi is denoted by∐
i∈I

SAi. It is known [8] that every S-act SA can be uniquely represented as a

coproduct of connected components. Let G be a group and H be a subgroup
of G. By GG/H we denote G-act G{gH | g ∈ G} with unary operations
de�ned as follows: g(aH) = (ga)H for every g, a ∈ G. Each connected G-act
has the form GG/H for some subgroup H of G and it has no proper subacts.

The structure M in language L is called pseudo�nite if every sentence
true in M has a �nite model. It is known that the structure M in language
L is pseudo�nite i� M is elementary equivalent to an ultraproduct of �nite
structures in language L ([11]).

Let T be a consistent (but possibly incomplete) theory in the language L.
The model M of the theory T is called T -pseudo�nite if every sentence true
in M is also true in some �nite model of the theory T . From the proof of
Theorem 1 [6] we get

Fact 1. Every coproduct of �nite S-acts is a T -pseudo�nite S-act, where T
is the theory of all S-acts.

A class K of models of the theory T is called T -pseudo�nite if whenever
K ⊨ φ, then φ is true in some �nite model of the theory T .

Fact 2. Let a group G have only a �nite number of �nite index subgroups
and T be the theory of all G-acts. Then a G-act GA is T -pseudo�nite if and
only if GA is elementarily equivalent to the coproduct of �nite G-acts, i.e. by
Fact 1, GA is T -pseudo�nite.

Fact 3. [12] Every �nitely generated abelian group is isomorphic to a group
of the form

Zn ⊕ Z/q1Z⊕ · · · ⊕ Z/qUZ,
where n ≥ 0, and the numbers q1, . . . , qU are powers of (not necessarily
distinct) prime numbers.

For an arbitrary set of sentences in language L and a structure M in
language L, instead of writing M ∈Mod(Γ) we will use the notation M ⊨ Γ.

We will distinguish between the notations A ⊆ B and A ⊂ B.
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Theorem 1. Let T be a theory in language L and M be a model of T . Then
M is a T -pseudo�nite structure if and only if M is elementary equivalent to
the ultraproduct of �nite models of the theory T .

Proof. Necessity. Let M be a T -pseudo�nite model of T . We denote the set
{φ | M ⊨ φ} by Φ. By the de�nition of a T -pseudo�nite structure, for every
sentence φ ∈ Φ there exists a �nite model Nφ of the theory T such that
Nφ ⊨ φ. Let Dφ = {ψ ∈ Φ | ψ ⊢ φ}, where φ ∈ Φ, and D′ = {Dφ | φ ∈ Φ}.
It is clear that D′ is the family of sets with �nite intersection property. Then
D′ is contained in some ultra�lter D on the set Φ. We will prove that M is
elementary equivalent to the ultraproduct

∏
ψ∈ΦNψ/D. Let M ⊨ φ. Note

that ψ ∈ Dφ implies Nψ ⊨ φ. Then Dφ ⊆ {ψ ∈ Φ | Nψ ⊨ φ}. Since Dφ ∈ D,
then {ψ ∈ Φ | Nψ ⊨ φ} ∈ D. By the de�nition of ultraproduct, we have∏
ψ∈ΦNψ/D ⊨ φ. Thus, M ≡

∏
ψ∈ΦNψ/D.

Su�ciency. LetM is elementary equivalent to the ultraproduct
∏
i∈I Ni/D

of �nite models of the theory T and M ⊨ φ. Then
∏
i∈I Ni/D ⊨ φ. By  Los's

Theorem ([13], chapter 3, § 17) I0 = {i ∈ I | Ni ⊨ φ} ∈ D. If i0 ∈ I0 then
Ni0 ⊨ φ. Thus M is a T -pseudo�nite model of T . □

Let G be an abelian group, S1, . . . , Sn be pairwise distinct subgroups of
G. For sets S̄ = {S1, . . . , Sn}, S̄1 ⊆ S̄, S̄2 ⊆ S̄, S ∈ S̄ and elements g1 ̸∈

⋃
S̄,

g2 ̸∈
⋃
S̄1, we de�ne the functions

φ1
S̄S̄1S : U

S̄S̄1S
1 → G, U

S̄S̄1S
1 = {U ∈ S̄1 | S \ U ̸= ∅}, φ1

S̄S̄1S(U) ∈ S \ U,

φ2
S̄S̄2S : U

S̄S̄2S
2 → G, U

S̄S̄2S
2 = {U ∈ S̄2 | U \ S ̸= ∅}, φ2

S̄S̄2S(U) ∈ U \ S,

φ3
S̄ : U

S̄
3 → G, U

S̄
3 = {U ∈ S̄ |

⋃
S̄ \ U ̸= ∅}, φS̄3 (U) ∈

⋃
S̄ \ U,

φ4
S̄S̄1 : U

S̄S̄1

4 → G, U
S̄S̄1

4 = {U ∈ S̄ | U ̸∈ S̄1}, φS̄S̄1
4 (U) ∈ U,

φ5
S̄S̄1 : U

S̄S̄1

5 → G, U
S̄S̄1

5 = {U ∈ S̄ |
⋃
S̄1 \ U ̸= ∅}, φS̄S̄1

5 (U) ∈
⋃
S̄1 \ U,

φ6
S̄S̄1 : U

S̄S̄1

6 → G, U
S̄S̄1

6 = {U ∈ S̄ | U \
⋃
S̄1 ̸= ∅}, φS̄S̄1

6 (U) ∈ U \
⋃
S̄1,

and the formulae

αS̄(g1) ⇋ ∀x(g1x ̸= x),

βS̄(S̄1, g2, φ4
S̄S̄1) ⇋ ∀x((g2x = x) →

∨
U∈U S̄S̄1

4

(φ4
S̄S̄1(U)x = x)),

γS̄(S̄1, S̄2, S, φ1
S̄S̄1S , φ2

S̄S̄2S) ⇋

⇋ ∃x(
∧

U∈U S̄S̄1S
1

(φ1
S̄S̄1S(U)x = x) ∧

∧
U∈U S̄S̄2S

2

(φ2
S̄S̄2S(U)x ̸= x)),

δS̄(φ3
S̄) ⇋ ∀x

∨
U∈U S̄

3

(φ3
S̄(U)x ̸= x),
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εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1) ⇋

⇋ ∀x(
∧

U∈U S̄S̄1
5

(φ5
S̄S̄1(U)x = x) →

∨
U∈U S̄S̄1

6

(φ6
S̄S̄1(U)x = x)).

Let us introduce one more notation:

ΓS̄ = {αS̄(g) | g ̸∈
⋃
S̄}∪

∪ {βS̄(S̄1, g, φ4
S̄S̄1) | S̄1 ⊂ S̄, g ̸∈

⋃
S̄1}∪

∪ {γS̄(S̄1, S̄2, S, φ1
S̄S̄1S , φ2

S̄S̄2S) | S̄1, S̄2 ⊆ S̄}∪

∪ {δS̄(φ3
S̄) |

⋃
S̄ ̸∈ S̄}∪

∪ {εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1) | S̄1 ⊂ S̄,
⋃
S̄1 ̸∈ S̄}.

Lemma 1. Let G be an abelian group, S1, . . . , Sn be pairwise distinct sub-
groups of G, S̄ = {S1, . . . , Sn}. Then GA ⊨ ΓS̄ i�

GA ∼=
∐
i∈I1

G(G/S1)i ⊔ . . . ⊔
∐
i∈In

G(G/Sn)i

for some nonempty sets I1, . . . , In.

Proof. Necessity. Let GA ⊨ ΓS̄ and GA ∼=
∐
j∈J G(G/Kj), where Kj are

subgroups of G (j ∈ J).
Let us show that Kj ∈ S̄. We consider two cases.
(1) Kj ̸=

⋃
S̄. Let S̄1 = {S ∈ S̄ | S ⊆ Kj}. Then

⋃
S̄1 ⊆ Kj .

We will show that
⋃
S̄1 = Kj . Suppose that there exists g ∈ Kj \

⋃
S̄1.

Then gKj = Kj . Let S̄1 ⊂ S̄, that is, S̄ \ S̄1 ̸= ∅. By the de�nition of
the set S̄1, we have U ̸⊆ Kj for every group U ∈ S̄ \ S̄1, that is, there

is gU ∈ U \ Kj and gUKj ̸= Kj . We de�ne the function φ4
S̄S̄1 as follows:

φ4
S̄S̄1(U) = gU for every U ∈ U

S̄S̄1

4 . Since S̄1 ⊂ S̄, then by condition,

GA ⊨ βS̄(S̄1, g, φ4
S̄S̄1), contradiction. Therefore, S̄ = S̄1, g ∈ Kj \

⋃
S̄ and

gKj = Kj , but GA ⊨ αS̄(g), and again a contradiction. Thus,
⋃
S̄1 = Kj .

Now we will show that Kj ∈ S̄. Suppose the opposite. Then
⋃
S̄1 ̸∈ S̄.

Note that U ⊂
⋃
S̄1 for every U ∈ S̄1. Therefore, for every U ∈ S̄ there is

gU ∈
⋃
S̄1 \ U . Since

⋃
S̄1 = Kj , then gU ∈ Kj and gUKj = Kj . Let us

de�ne the function φ5
S̄S̄1 as follows: φ5

S̄S̄1(U) = gU for every U ∈ U
S̄S̄1

5 .
Since Kj ̸=

⋃
S̄, then

⋃
S̄1 ⊂

⋃
S̄ and there is a group U ′ ∈ S̄ such that

U ′ \
⋃
S̄1 ̸= ∅. Then S̄1 ⊂ S̄ and U ′ ∈ U

S̄S̄1

6 . For every U ∈ S̄ such that
U \

⋃
S̄1 ̸= ∅, we choose rU ∈ U \

⋃
S̄1. Since

⋃
S̄1 = Kj , then rUKj ̸=

Kj . Let us de�ne the function φ6
S̄S̄1 as follows: φ6

S̄S̄1(U) = rU for every

U ∈ U
S̄S̄1

6 . As noted above, U
S̄S̄1

6 ̸= ∅. Since
⋃
S̄1 ̸∈ S̄, then by condition,

GA ⊨ εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1). Consequently, there exists a group U ∈ U
S̄S̄1

6

such that rU ∈ Kj , contradiction. Therefore, Kj ∈ S̄.
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(2) Kj =
⋃
S̄. Let us assume that Kj ̸∈ S̄, that is,

⋃
S̄ ̸∈ S̄. Then⋃

S̄ ̸= U for every U ∈ S̄. Therefore, for every U ∈ S̄ there is gU ∈
⋃
S̄ \U .

We de�ne the function φ3
S̄ as follows: φ3

S̄(U) = gU for every U ∈ U
S̄
3 . Since

Kj =
⋃
S̄, then gUKj = Kj for every gU . Since

⋃
S̄ ̸∈ S̄, then by condition,

GA ⊨ δS̄(φ3
S̄), contradiction. Therefore, Kj ∈ S̄.

Let us show that for every S ∈ S̄ there is j ∈ J such that S = Kj .
Suppose that there is S ∈ S̄ such that S ̸= Kj for every j ∈ J . Then for
every j ∈ J either Kj ⊂ S or Kj \ S ̸= ∅. Let S̄1 = {Kj | Kj ⊂ S}, and
S̄2 = {Kj | Kj \ S ̸= ∅}. Since Kj ∈ S̄ for every j ∈ J , then S̄1, S̄

′
1 ⊆ S̄. It

is clear that
⋃
j∈J Kj = S̄1 ∪ S̄′

1. For every U ∈ S̄1 we choose the element

gU ∈ S \ U . We de�ne the function φ1
S̄S̄1S as follows: φ1

S̄S̄1S(U) = gU for

every U ∈ U
S̄S̄1S
1 . For every U ∈ S̄2 we choose the element rU ∈ U \ S. We

de�ne the function φ2
S̄S̄2S as follows: φ2

S̄S̄2S(U) = rU for every U ∈ U
S̄S̄2S
2 .

Let j ∈ J . If Kj ⊂ S, that is, Kj ∈ S̄1, then gKjKj ̸= Kj ; if Kj \ S ̸= ∅,

that is, Kj ∈ S̄2, then rKjKj = Kj . By condition,

GA ⊨ γS̄(S̄1, S̄
′
1, S, φ1

S̄S̄1S , φ2
S̄S̄2S),

contradiction. Consequently, for every S ∈ S̄ there is j ∈ J such that S = Kj .
Thus, Kj ∈ S̄ for every j ∈ J .
Su�ciency. Let GA ∼= GB and GB =

∐
i∈I1 G(G/S1)i⊔...⊔

∐
i∈In G(G/Sn)i.

Let us show that GA ⊨ ΓS̄ .
Let g ̸∈

⋃
S̄. Then gS ̸= S for every S ∈ S̄. Therefore, GA ⊨ αS̄(g).

Let S̄1 ⊂ S̄, g ̸∈
⋃
S̄1, S ∈ S̄ and the function φ4

S̄S̄1 : U
S̄S̄1

4 → G
is de�ned. We assume that gS = S. Then S ̸∈ S̄1, that is, S ∈ S̄ \ S̄1.
Therefore, φ4

S̄S̄1(S)S = S and GA ⊨ βS̄(S̄1, g, φ4
S̄S̄1 , φ4

S̄S̄1).

Let S̄1, S̄2 ⊆ S̄, S ∈ S̄ and the functions φ1
S̄S̄1S : U

S̄S̄1S
1 → G and φ2

S̄S̄2S :

U
S̄S̄1S
2 → G are de�ned. Then φ1

S̄S̄1S(U)S = S for every U ∈ U
S̄S̄1S
1 and

φ2
S̄S̄1(U)S ̸= S for every U ∈ U

S̄S̄2S
2 . Therefore,

GA ⊨ γS̄(S̄1, S̄
′, S, φ1

S̄S̄1S , φ2
S̄S̄2S).

Let
⋃
S̄ ̸∈ S̄, S ∈ S̄ and the function φ3

S̄ : U
S̄
3 → G is de�ned. Then

S ⊂
⋃
S̄ and S ∈ U S̄3 . Therefore, φ3

S̄(S)S ̸= S and GA ⊨ δS̄(φ3
S̄).

Let S̄1 ⊂ S̄,
⋃
S̄1 ̸∈ S̄ and the functions φ5

S̄S̄1 : U
S̄S̄1

5 → G and φ6
S̄S̄1 :

U
S̄S̄1

6 → G are de�ned. Suppose that S ∈ S̄ and φ5
S̄S̄1(U)S = S for all

U ∈ U
S̄S̄1

5 , that is, for all U ∈ S̄ such that
⋃
S̄1 \ U ̸= ∅. Let us show that

S ∈ U
S̄S̄1

6 , that is, S \
⋃
S̄1 ̸= ∅. Assume that S ⊆

⋃
S̄1. If S =

⋃
S̄1, then⋃

S̄1 ∈ S̄, a contradiction. Therefore, S ⊂
⋃
S̄1, S ∈ U

S̄S̄1

5 and φ5
S̄S̄1(S) ∈ S,

but φ5
S̄S̄1(S) ∈

⋃
S̄1\S, a contradiction. So we proven S ∈ U

S̄S̄1

6 . Therefore,
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φ6
S̄S̄1(S) ∈ S \

⋃
S̄1. This implies the equality φ6

S̄S̄1(S)S = S and

GA ⊨ εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1).

□

Let KG,S̄ denote the class of all G-acts of the form∐
i∈I1

G(G/S1)i ⊔ . . . ⊔
∐
i∈In

G(G/Sn)i,

where I1, . . . , In are some nonempty sets and S̄ = {S1, . . . , Sn}. From Lemma
1 we obtain the following corollary.

Corollary 1. Let G be an abelian group, S1, . . . , Sn be pairwise distinct
subgroups of G. Then the class KG,S̄ is axiomatizable.

2 T -pseudo�niteness of class KG,S̄

Note that for any theory T in the language L and any class K of models
of T , if there exists a T -pseudo�nite structure M ∈ K, then K is a T -
pseudo�nite class. Theorem 2 gives us characteristic properties of the abelian
group G that are necessary for the existence of a T -pseudo�nite G-act in the
class KG,S̄ and su�cient for the class KG,S̄ to be T -pseudo�nite, where T is
the theory of all G-acts.

Theorem 2. Let G be an abelian group, T be the theory of all G-acts,
S1, . . . , Sn be pairwise distinct subgroups of the group G, S̄ = {S1, . . . , Sn}.
Then

(a) =⇒ (b) =⇒ (c),

where
(a) there exists GA ∈ KG,S̄ such that GA is T -pseudo�nite;
(b) for every �nite set F ⊆ G there are �nite index subgroups U1, . . . , Uk

of group G such that following conditions are satis�ed:
1) F ∩

⋃
1≤i≤k Ui ⊆

⋃
S̄;

2) for every set S̄1 ⊂ S̄ and for every group Ui

(F ∩ Ui) \
⋃
S̄1 ̸= ∅ ⇒ ∃U ∈ S̄ \ S̄1 (U ∩ F ⊆ Ui);

3) for every S ∈ S̄ there exists Ui0, i0 ∈ {1, . . . , k}, such that S ∩ F ⊆
U ∪ Ui0 and U ∩ F ∩ Ui0 ⊆ S for every U ∈ S̄;

4) if
⋃
S̄ ̸∈ S̄, then for every group Ui there is a group U ∈ S̄ such that⋃

S̄ ∩ Ui ∩ F ⊆ U ;
5) for every set S̄1 ⊂ S̄ such that

⋃
S̄1 ̸∈ S̄, and for every group Ui

∀U ∈ S̄((
⋃
S̄1 ∩ Ui ∩ F ) \ U ̸= ∅) ⇒

⇒ ∃U ∈ S̄((U ∩ F ) \
⋃
S̄1 ̸= ∅ ∧ (U ∩ F ) \

⋃
S̄1 ⊆ Ui);

(c) the class KG,S̄ is T -pseudo�nite.
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Proof. Let the conditions of Theorem be satis�ed.
(a) =⇒ (b) Let GA be a T -pseudo�nite G-act,

GA =
∐
i∈I1

G(G/S1)i ⊔ . . . ⊔
∐
i∈In

G(G/Sn)i,

where G(G/Sk)i are the copies of GG/Sk, I1, . . . , In are nonempty sets, F be
a �nite subset of G, Γ be a set of sentences from ΓS̄ in language

LF = {f | f ∈ F} ⊆ LG.

It is clear that Γ is a �nite set. Let Θ denote the conjunction of all sentences
from Γ. By Lemma 1, GA ⊨ ΓS̄ . Therefore, GA ⊨ Θ. Since GA is a T -
pseudo�nite G-act, there is a �nite G-act GB such that GB ⊨ Θ. Then

GB = GG/U1 ⊔ . . . ⊔ GG/Uk, where U1, . . . , Uk are �nite index subgroups of
group G.

Let us show that condition 1) is satis�ed. Suppose that there is an element
g ∈ (F ∩

⋃
1≤i≤k Ui)\

⋃
S̄. Since GB ⊨ Θ, g ∈ G\

⋃
S̄ and g ∈ F , then GB ⊨

αS̄(g). So gUi ̸= Ui, that is, g ̸∈ Ui, for every i, 1 ≤ i ≤ k. Contradiction.
Condition 1) has been proven.

Let us show that condition 2) is satis�ed. Let S̄1 ⊂ S̄, 1 ≤ i ≤ k and
(F ∩Ui)\

⋃
S̄1 ̸= ∅. Then there exists g ∈ (F ∩Ui)\

⋃
S̄1 and gUi = Ui. Let

us show that there exists a group U ∈ S̄\S̄1 such that U∩F ⊆ Ui. Assume the

converse. Then for every group U ∈ S̄\S̄1 (that is, for every group U ∈ U
S̄S̄1

4 )

there is gU ∈ (U ∩ F ) \ Ui. We de�ne the function φ4
S̄S̄1 : U

S̄S̄1

4 → G as

follows: φ4
S̄S̄1(U) = gU for every group U ∈ U

S̄S̄1

4 . Since GB ⊨ Θ, then

GB ⊨ βS̄(S̄1, g, φ4
S̄S̄1). Consequently, gUUi = Ui for some group U ∈ U

S̄S̄1

4 ,
that is, gU ∈ Ui, contradiction. Thus, there is a group U ∈ S̄ \ S̄1 such that
U ∩ F ⊆ Ui. Condition 2) has been proven.

Let us show that condition 3) is satis�ed. Assume the converse. Then
there is S ∈ S̄ such that for every Ui, 1 ≤ i ≤ k, there exists a group Ri ∈ S̄
satisfying the relation S ∩ F ̸⊆ Ri ∪ Ui, or there exists a group Qi ∈ S̄
satisfying the relation Qi ∩ F ∩ Ui ̸⊆ S. Let K1 be a subset of {1, . . . , k}
such that i ∈ K1 if and only if the group Ri is de�ned, and let K2 be a
subset of {1, . . . , k} such that i ∈ K2 if and only if the group Qi is de�ned.
Let S̄1 denote the set {Ri | i ∈ K1}, and S̄2 denote the set {Qi | i ∈ K2}.
Then U

S̄S̄1S
1 = S̄1, U

S̄S̄2S
2 = S̄2. For every i ∈ K1 we choose gi ∈ (S ∩ F ) \

(Ri ∪ Ui) and for every i ∈ K2 we choose ri ∈ (Qi ∩ F ∩ Ui) \ S. We de�ne

the functions φ1
S̄S̄1S : U

S̄S̄1S
1 → G and φ2

S̄S̄2S : U
S̄S̄2S
2 → G as follows:

φ1
S̄S̄1S(Ri) = gi for every group Ri ∈ U

S̄S̄1S
1 , and φ2

S̄S̄2S(Qi) = gi for every

group Qi ∈ U
S̄S̄2S
2 . Since GB ⊨ Θ, then GB ⊨ γS̄(S̄1, S̄2, S, φ1

S̄S̄1S , φ2
S̄S̄2S).

Consequently, there exists Ui0 , i0 ∈ {1, . . . , k}, such that gi ∈ Ui0 for every
i ∈ K1 and ri ̸∈ Ui0 for every i ∈ K2. If i0 ∈ K1 then gi0 ∈ Ui0 , contradiction.
If i0 ∈ K2 then ri0 ̸∈ Ui0 , contradiction. Condition 3) has been proven.
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Let us show that condition 4) is satis�ed. Let
⋃
S̄ ̸∈ S̄. Assume the

converse, that is, there is a group Ui such that
⋃
S̄ ∩ Ui ∩ F ⊂ U , that

is, U ∈ U
S̄
3 , for every group U ∈ S̄. Therefore, for every group U ∈ S̄ there

exists gU ∈ (
⋃
S̄ ∩ Ui ∩ F ) \ U . We de�ne the function φ3

S̄ : U
S̄
3 → G as

follows: φ3
S̄(U) = gU . Since GB ⊨ Θ and

⋃
S̄ ̸∈ S̄, then GB ⊨ δS̄(φ3

S̄).

Then for the group Ui there is a group U ∈ U
S̄
3 such that gUUi ̸= Ui, that

is, gU ̸∈ Ui, contradiction. Thus, condition 4) is proven.
Let us show that condition 5) is satis�ed. Assume the converse. Then there

exist a set S̄1 ⊂ S̄ and a group Ui with the following properties:
⋃
S̄1 ̸∈ S̄, for

every group U ∈ S̄ the set (
⋃
S̄1∩Ui∩F )\U is nonempty and for every group

U ′ ∈ S̄ such that (U ′∩F )\
⋃
S̄1 ̸= ∅, we have (U ′∩F )\

⋃
S̄1 ̸⊆ Ui. Therefore,

U ∈ U
S̄S̄1

5 for every group U ∈ S̄, and (U ′ ∩ F ) \ (
⋃
S̄1 ∪ Ui) ̸= ∅ for every

group U ′ ∈ S̄ such that (U ′ ∩ F ) \
⋃
S̄1 ̸= ∅, that is, for every group U ′ ∈

U
S̄S̄1

6 . For every U ∈ U
S̄S̄1

5 we choose the element gU ∈ (
⋃
S̄1 ∩ Ui ∩ F ) \ U ,

and for every U ′ ∈ U
S̄S̄1

6 we choose the element rU ′ ∈ (U ′ ∩F ) \ (
⋃
S̄1 ∪Ui).

Note that gUUi = Ui and rUUi ̸= Ui. Functions φ5
S̄S̄1 : U

S̄S̄1

5 → G and

φ6
S̄S̄1 : U

S̄S̄1

6 → G is de�ned as follows: φ5
S̄S̄1(U) = gU for every U ∈ U

S̄S̄1

5

and φ6
S̄S̄1(U ′) = rU ′ for every U ′ ∈ U

S̄S̄1

6 . Since GB ⊨ Θ, S̄1 ⊂ S̄ and⋃
S̄1 ̸∈ S̄, then GB ⊨ εS̄(S̄1, φ5

S̄S̄1 , φ6
S̄S̄1). Consequently, there exists a

group U ∈ U
S̄S̄1

6 such that rUUi = Ui. Contradiction. Thus, condition 5) is
proven.

(b) =⇒ (c) Assume that conditions 1)-5) of Theorem are satis�ed and
KG,S̄ ⊨ Θ. By Lemma 1 and Corollary 1, ΓS̄ ⊢ Θ. Then there is a �nite
subset Γ of the set ΓS̄ such that Γ ⊢ Θ. Let F denote a �nite subset of
G such that Θ is a formula in language LF . By condition of Theorem, for
F there exist �nite index subgroups U1, . . . , Uk of the group G such that
conditions 1)-5) are satis�ed. Let GB = GG/U1⊔ . . .⊔GG/Uk. To prove that
the class KG,S̄ is T -pseudo�nite, we will show that GB ⊨ Θ. It is enough to
prove that GB ⊨ Γ.

Let αS̄(g) ∈ Γ, where g ∈ F and g ̸∈
⋃
S̄. By condition 1), g ̸∈ Ui for

every i, 1 ≤ i ≤ k. Therefore, GB ⊨ αS̄(g).

Let βS̄(S̄1, g, φ4
S̄S̄1) ∈ Γ, where S̄1 ⊂ S̄, φ4

S̄S̄1 : U
S̄S̄1

4 → G, φS̄S̄1
4 (U) ∈

U ∩ F for every U ∈ U S̄S̄1
4 , g ∈ F \

⋃
S̄1. Assume that gUi = Ui. Then we

have g ∈ (F ∩ Ui) \
⋃
S̄1, that is, (F ∩ Ui) \

⋃
S̄1 ̸= ∅. By condition 2),

there is a group U ∈ S̄ \ S̄1 such that U ∩ F ⊆ Ui. Consequently, U ∈ U S̄S̄1
4

and φS̄S̄1
4 (U) ∈ U ∩ F ⊆ Ui, that is, φ

S̄S̄1
4 (U)Ui = Ui. Thus, we proved that

GB ⊨ βS̄(S̄1, g, φ4
S̄S̄1).

Let γS̄(S̄1, S̄2, S, φ1
S̄S̄1S , φ2

S̄S̄2S) ∈ Γ, where S̄1, S̄2 ⊂ S̄, S ∈ S̄, φ1
S̄S̄1S :

U
S̄S̄1S
1 → G, φ2

S̄S̄2S : U
S̄S̄2S
2 → G. By condition 3), there exists Ui0 , i0 ∈

{1, . . . , k}, such that S ∩F ⊆ U ∪Ui0 and U ∩F ∩Ui0 ⊆ S for every U ∈ S̄.
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We show that

GB ⊨
∧

U∈U S̄S̄1S
1

(φ1
S̄S̄1S(U)Ui0 = Ui0) ∧

∧
U∈U S̄S̄2S

2

(φ2
S̄S̄2S(U)Ui0 ̸= Ui0).

Let U ∈ U
S̄S̄1S
1 . Then S \ U ̸= ∅. Besides, φ1

S̄S̄1S(U) ∈ (S ∩ F ) \ U .
Therefore, by condition 3), φ1

S̄S̄1S(U) ∈ Q ∪ Ui0 for every Q ∈ S̄, in

particular, φ1
S̄S̄1S(U) ∈ U ∪ Ui, that is, φ1

S̄S̄1S(U) ∈ Ui0 . Let U ∈ U
S̄S̄2S
2 .

Then U \S ̸= ∅. Besides, φ2
S̄S̄1S(U) ∈ (U ∩F ) \S. If φ2

S̄S̄2S(U) ∈ Ui0 then

φ2
S̄S̄2S(U) ∈ U ∩ F ∩ Ui, that is, φ2

S̄S̄2S(U) ∈ S, contradiction. Therefore,

φ2
S̄S̄2S(U) ̸∈ Ui0 . Thus, GB ⊨ γS̄(S̄1, S̄2, S, φ1

S̄S̄1S , φ2
S̄S̄2S).

Let δS̄(φ3
S̄) ∈ Γ, where

⋃
S̄ ̸∈ S̄, φ3

S̄ : U
S̄
3 → G and 1 ≤ i ≤ k. By

condition 4), there exists a group U ∈ S̄ such that
⋃
S̄ ∩ Ui ∩ F ⊆ U . Since⋃

S̄ ̸∈ S̄ and U ∈ S̄, then
⋃
S̄ \ U ̸= ∅, that is, U ∈ U

S̄
3 . So φ3

S̄(U) ∈
(
⋃
S̄ ∩ F ) \ U and φ3

S̄(U) ̸∈ Ui. Therefore, GB ⊨ δS̄(φ3
S̄).

Let εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1) ∈ Γ, where S̄1 ⊂ S̄,
⋃
S̄1 ̸∈ S̄, φ5

S̄S̄1 : U
S̄S̄1

5 →
G, φ6

S̄S̄1 : U
S̄S̄1

6 → G and 1 ≤ i ≤ k. Suppose that φS̄S̄1
5 (U)Ui = Ui

for every U ∈ U S̄S̄1
5 . Since

⋃
S̄1 ̸∈ S̄, then

⋃
S̄1 \ U ̸= ∅ and U ∈ U

S̄S̄1

5

for every U ∈ S̄1. Since φ5
S̄S̄1(U) ∈ Ui ∩ F and φ5

S̄S̄1 ∈
⋃
S̄1 \ U , then

(
⋃
S̄1 ∩ Ui ∩ F ) \ U ̸= ∅ for every U ∈ S̄1. By condition 5), there exists

U ∈ S̄ such that (U ∩ F ) \
⋃
S̄1 ̸= ∅ and (U ∩ F ) \

⋃
S̄1 ⊆ Ui. Since

φ6
S̄S̄1(U) ∈ (U ∩ F ) \

⋃
S̄1, then φ6

S̄S̄1(U) ∈ Ui, that is, φ6
S̄S̄1(U)Ui = Ui.

Thus, GB ⊨ εS̄(S̄1, φ5
S̄S̄1 , φ6

S̄S̄1). □

Corollary 2. Let G be an abelian group, S1, . . . , Sn be pairwise distinct
subgroups of the group G, S̄ = {S1, . . . , Sn}, and T be the theory of all G-
acts. If for every subgroup G1 ∈ S̄ of group G and every �nite set F ⊆ G\G1

there exists a �nite index subgroup G2 of group G such that G1 ⊆ G2 and
F ∩G2 = ∅, then the class KG,S̄ is T -pseudo�nite.

Proof. Let the conditions of Corollary 2 be satis�ed, S1, . . . , Sk ∈ S̄ be
in�nite index subgroups of G, Sk+1, . . . , Sn ∈ S̄ be �nite index subgroups of
G, and F be a �nite subset of G. If k = 0, i.e. the set S̄ has no in�nite index
subgroups of G, then by Fact 1 the class KG,S̄ is T -pseudo�nite. Let k ≥ 1,
F be a �nite subset of G. By the condition of Corollary 2, for every group Si,
1 ≤ i ≤ k, there exists a �nite index subgroup Li of G such that Si ⊆ Li and
Fi∩Li = ∅, where Fi = F \Si. Let us prove that conditions 1)-5) of Theorem
2 are satis�ed for the sets F and U , where U = {L1, . . . , Lk, Sk+1, . . . , Sn}.

Let f ∈ F ∩
⋃
U . If f ∈ Si for some i ∈ {k + 1, . . . , n}, then f ∈

⋃
S.

If f ∈ Lj for some j ∈ {1, . . . , k}, then by construction of the group Lj ,

we have Sj ⊆ Lj and Fj ∩ Lj = ∅, that is, f ∈ Sj and f ∈
⋃
S. Thus,

F ∩
⋃
U ⊆

⋃
S̄ and condition 1) is satis�ed.

Let S̄1 ⊂ S̄ and U ∈ U such that (F ∩ U) \
⋃
S̄1 ̸= ∅. If U = Si for

some i ∈ {k + 1, . . . , n}, then U ̸∈ S̄1 and U ∩ F ⊆ Si. Let U = Lj for
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some j ∈ {1, . . . , k}. By construction of the group Lj , we have Sj ⊆ Lj and
Fj ∩Lj = ∅. Therefore, Sj ∩ F = Lj ∩ F , (F ∩ Sj) \

⋃
S̄1 ̸= ∅, Sj ∈ S̄ \ S̄1,

and Sj ∩ F ⊆ Lj . Thus, condition 2) is satis�ed.

Let S ∈ S̄. If S = Si ∈ U for some i ∈ {k+ 1, . . . , n}, then S ∩F ⊆ U ∪Si
and U ∩ F ∩ Si ⊆ S for every U ∈ S̄. Let S = Sj for some j ∈ {1, . . . , k}.
By construction of the group Lj , we have Sj ⊆ Lj and Fj ∩ Lj = ∅. Then
S ∩ F = Lj ∩ F ⊆ U ∪ Lj and U ∩ F ∩ Lj ⊆ S for every U ∈ S̄. Thus,
condition 3) is satis�ed.

Let U ∈ U . If U = Si ∈ S̄ for some i ∈ {k+ 1, . . . , n}, then
⋃
S̄ ∩U ∩F ⊆

Si. Let U = Lj for some j ∈ {1, . . . ,m}. By construction of the group Lj , we
have Sj ⊆ Lj and Fj ∩Lj = ∅. Then Sj ∩F = Lj ∩F and

⋃
S̄∩U ∩F ⊆ Sj .

Thus, condition 4) is satis�ed.
Let S̄1 ⊂ S̄ and U ∈ U . If U = Si for some i ∈ {k + 1, . . . , n}, then

U ∈ S̄ and (
⋃
S̄1 ∩ U ∩ F ) \ Si = ∅. Let U = Lj for some j ∈ {1, . . . , k}.

By construction of the group Lj , we have Sj ⊆ Lj and Fj ∩ Lj = ∅. Then
Sj ∩ F = Lj ∩ F and (

⋃
S̄1 ∩ U ∩ F ) \ Sj = ∅. Therefore, condition 5) is

satis�ed.
Thus, by Theorem 2, the class KG,S̄ is T -pseudo�nite. □

By Fact 1 every coproduct of �nite S-acts is a T -pseudo�nite S-act, where
T is the theory of all S-acts. Then we have

Remark 1. Let G be a group and S̄ consists of �nite index subgroups of G.
Then the class KG,S̄ is T -pseudo�nite.

The following examples show that the T -pseudo�niteness of the classKG,S̄

depends not only on the group G, but also on the choice of the set S̄ of
subgroups of G.

Example 1. Let G = Cp∞ × Cp and T be the theory of all G-acts. The
unique �nite index subgroups of G are G and G1 = Cp∞ × {1}.

1) If S̄1 = {G1} then by Remark 1 the class KG,S̄1
is T -pseudo�nite.

2) If S̄2 = {G2}, where G2 = {(a, 1) | a ∈ Cp∞ , ap = 1}, then the class
KG,S̄2

is not T -pseudo�nite. Indeed,
∐
i∈I G(G/G2)i ⊨ Φ for every nonempty

I, where Φ ⇋ ∀x⌝((b, 1)x = x), bp
2

= 1, bp ̸= 1, b ∈ Cp∞ , but GG/G ⊨⌝Φ
and GG/G1 ⊨⌝Φ.

Proposition 1. Let Q⋆ be a multiplicative group of rational numbers,
S1, . . . , Sn be pairwise distinct subgroups of the group Q⋆, S̄ = {S1, . . . , Sn}
and T be the theory of all Q⋆-acts. Then KQ⋆,S̄ is T -pseudo�nite.

Proof. Let the conditions of Proposition be satis�ed, G ∈ S̄ be a in�nite
index subgroup of Q⋆, and F = F1 ∪ F2 be a �nite subset of Q⋆, where
F1 ∩G = ∅ and F2 ⊆ G. By Zorn's Lemma, there is a maximal subgroup U
of the group Q⋆ with the property: F1 ∩U = ∅ and F2 ⊆ U . By Corollary 2,
to prove Proposition it is su�cient to prove that U is a �nite index subgroup
of the group Q⋆.
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Note that every positive rational number, other than one, can be represen-
ted as pk11 · . . . · pknn , where p1 . . . pn are pairwise distinct prime numbers,
k1, . . . , kn are nonzero integers. For a prime number p and a rational number
a we will write p | a, if |a| = pk ·pk11 · . . . ·pknn , p, p1 . . . pn are pairwise distinct
prime numbers, k, k1, . . . , kn are nonzero integers. By construction of the
group U , we have p ∈ U for every prime p such that p ∤ a for all a ∈ F1.

Let us prove that for every prime p, if p | a for some a ∈ F1, then there
exists k > 0 such that pk ∈ U . Assume the opposite. Let p be prime number,
a ∈ F1, p | a and pk ̸∈ U for every k ̸= 0. There exists a maximal positive
n such that b = pεn · c for some b ∈ F1, c ∈ Q⋆, p ∤ c, ε ∈ {1,−1}. By
Uj , j ≥ 1, we denote the group {p(n+j)id | d ∈ U, i ∈ Z}. It is clear that
U ⊂ Uj ⊂ Q⋆ for every j ≥ 1. Since U is maximal subgroup of the group
Q⋆ with the property: F1 ∩ U = ∅ and F2 ⊆ U , then for every j ≥ 1
there exists fj ∈ F1 ∩ Uj , that is, fj = p(n+j)ijdj for some dj ∈ U , ij ∈ Z.
Since the set F1 is �nite, then there exist 0 < j1 < j2 < . . . such that
fj1 = fj2 = . . .. If djk ̸= djl for some di�erent jk and jl, then djk = psdjl for
some s ̸= 0; therefore, ps ∈ U , a contradiction. Hence djk = djl for all jk, jl,
that is, (n + jk)ijk = (n + jl)ijl for all jk, jl. Since 0 < j1 < j2 < . . ., then
|ij1 | > |ij2 | > . . ., a contradiction. Since f ̸∈ U , then i ̸= 0. This contradicts
the choice n. Thus, for every prime p, if p | a for some a ∈ F2, then there
exists kp > 0 such that pkp ∈ U .

Let us prove that U is a �nite index subgroup of the group Q⋆. By P we
denote a set of prime numbers p such that p | f for some f ∈ F1. It is clear
that P is a �nite set. Let U ′ = {

∏
p∈P p

kpia | i ∈ Z, a ∈ Q⋆, ∀p ∈ P (p ∤ a)}.
Then U ′ is a �nite index subgroup of the group Q⋆, U ′ ⊆ U . Therefore, U is
a �nite index subgroup of the group Q⋆. Proposition has been proven. □

Proposition 2. Let G be a �nitely generated abelian group, S1, . . . , Sn be
pairwise distinct subgroups of the group G, S̄ = {S1, . . . , Sn}, and T be the
theory of all G-acts. Then the class KG,S̄ is T -pseudo�nite.

Proof. Let the conditions of Proposition be satis�ed, G1 ∈ S̄ be a in�nite
index subgroup of G, and F = F1∪F2 be a �nite subset of G, where F1 ⊆ G1

and F2 ∩G1 = ∅. By Zorn's Lemma, there is a maximal proper subgroup U
of the group G with the property: F1 ⊆ U and F2 ∩U = ∅. By Lemma 2, to
prove Proposition it is su�cient to prove that U is a �nite index subgroup
of the group G. Let

G = U ∪
⋃
f∈F2

(f + U) ∪
⋃
i∈ω

(ai + U),

where ai ̸∈ U for all i ∈ ω.
Let us prove that f + U is an element of the factor group G/U of �nite

order for every f ∈ F2. Suppose the opposite, that is, nf + U ̸= mf + U
for some f ∈ F2 and every n,m ∈ ω, n ̸= m. There exists k ∈ ω such that
f ′ ̸∈ k′f + U for all f ′ ∈ F2 and |k′| ≥ k. Then for the group U ′ generated
by the set U ∪ {kf}, we have U ⊂ U ′ ⊂ G. By the construction of group U ,
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f ′ ∈ U ′ for some f ′ ∈ F2, that is, f
′ ∈ lkf +U . Since f ̸∈ U then l ̸= 0. This

contradicts the choice of k. Thus, f + U is an element of the factor group
G/U of �nite order for every f ∈ F2.

Let us prove that ai + U is an element of the factor group G/U of �nite
order for every i ∈ ω. By U ′′ we denote the group generated by the set
U ∪ {ai}. By the construction of group U , we have f ∈ U ′′ for some f ∈ F2,
that is, f ∈ lai + U . Since f + U is an element of the factor group G/U of
�nite order then ai +U is an element of the factor group G/U of �nite order
too.

Note that G/U as a homomorphic image of a �nitely generated abelian
group is a �nitely generated abelian group. Thus, G/U is a periodic �nitely
generated Abelian group. By Fact 3, G/H is a �nite group, that is, U is a
�nite index group. Proposition has been proven. □

3 T -pseudo�niteness and pseudo�niteness of acts over

abelian groups

From the facts that divisible groups, in particular the additive groups of
rational numbers, of real numbers, of complex numbers, the multiplicative
group of positive real numbers, a quasicyclic group, have no proper �nite
index subgroups, and the multiplicative group of real numbers has exactly
two �nite index subgroups, and from Fact 2 we obtain Propositions 3 and 4:

Proposition 3. Let G be a divisible group and T be the theory of all G-
acts. Then G-act GA is T -pseudo�nite if and only if GA is a coproduct of
one-element G-acts.

Proposition 4. Let G be the multiplicative group of real numbers and T be
the theory of all G-acts. Then the G-act GA is T -pseudo�nite if and only if

GA is a coproduct of one-element and two-element G-acts.

Proposition 5. Let G be a locally �nite group. Then every G-act is pseudo-
�nite.

Proof. Let G be a locally �nite group, GA be a G-act, GA ⊨ Θ, where Θ is
a formula in the language LG, and the set F consists of all symbols from
LG, that occur in Θ. By the condition of Proposition, the subgroup G1 of
the group G generated by F is a �nite group. Then the G1-act G1A, which
is the restriction of the G-act GA to the language LG1 ⊆ LG, is a coproduct
of �nite G1-acts and G1A ⊨ Θ. By Fact 1, G1A is T -pseudo�nite, where T
is the theory of all G1-acts. Therefore, there exists �nite G1-act G1B such
that G1B ⊨ Θ. Let us arbitrarily extend the structure G1B in the language
LG1 to the structure GB in the language LG. Thus, GB ⊨ Θ and G-act GA
is pseudo�nite. □

Corollary 3. Let G be a quasicyclic group. Then every G-act is pseudo�nite.
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Since a quasicyclic group G is a divisible then the G-act GG is not T -
pseudo�nite (see Proposition 3), where T is the theory of all G-acts. So we
get

Corollary 4. There exists an abelian group G and a G-act GA such that GA
is pseudo�nite but not T -pseudo�nite, where T is the theory of all G-acts.
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