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Abstract: The main results of the article concern the model theory
of T-pseudofinite acts over abelian groups, where T is the theory of
all acts over the group. A left act over a group G is a set on which
G acts unitarily from the left. We give characteristic properties
of an abelian group G that are necessary for the existence of a
T-pseudofinite G-act in the class K g and sufficient for the class
K¢ 5 to be T-pseudofinite, where T' is the theory of all G-acts,
S is a finite set of subgroups of G, and Kg g is the class of all
coproducts of G-acts of the form ¢(G/G1), Gy € S. It follows from
this result that for a finitely generated abelian group G the class
K¢ 5 is T-pseudofinite; for the multiplicative group of rational
numbers G the class K g is also T-pseudofinite. It is noted that
there exists an abelian group G and a G-act A such that A is
not T-pseudofinite but is pseudofinite, where T is the theory of all
G-acts, namely, for a quasicyclic group G as a divisible group, the
G-act ¢G is not T-pseudofinite, but is pseudofinite.
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Introduction

The structure I in language L is called pseudofinite if every sentence
true in 9N has a finite model. The theory of pseudofinite structures is a well-
developed theory. A significant number of works are devoted to the theory
of pseudofinite structures ([1]-[4]). In [5] the authors of this work considered
the issues of pseudofiniteness of connected unars without cycles, in [6] the
pseudofinite acts over monoid with finite number of isomorphism types of
finite cyclic subacts are studied; in particular, it is proven that a coproduct
of finite acts over monoid is pseudofinite; as a consequence, it is shown that
every act over finite group is pseudofinite.

In [7], the concept of T-pseudofiniteness is introduced for the model of
theory T'. A model 91 of a theory T is called T-pseudofinite if every sentence
true in 91 is also true in some finite model of T'. It is clear that T-pseudofinite-
ness implies pseudofiniteness for every theory T', and pseudofiniteness implies
T-pseudofiniteness for every finite axiomatizable theory T In [7], necessary
and sufficient conditions for the T-pseudofiniteness of acts over an abelian
group with a finite number of isomorphism types of connected subacts are
given.

It is known that a structure 97 in a language L is pseudofinite if and only
if M is elementarily equivalent to an ultraproduct of finite structures of L. In
this paper, a similar result is proved for T-pseudofinite structures (Theorem

1).

For an abelian group G and a finite set S of subgroups of G, we define the
class K g of all coproducts of G-acts of the form ¢(G/G1), where G; € S.
This class is axiomatizable (Corollary 1). Note that for any theory T in the
language L and any class K of models of T, if there exists a T-pseudofinite
structure MM € K, then K is a T-pseudofinite class. In this paper, we give
characteristic properties of the abelian group G that are necessary for the
existence of a T-pseudofinite G-act in the class K g and sufficient for the
class K¢ g to be T-pseudofinite, where T is the theory of all G-acts and
S is a finite set of subgroups of G (Theorem 2). As a consequence of this
theorem we obtain the following result: if for every subgroup G; € S of
group G and every finite set F' C G\ G there exists a finite index subgroup
Go of group G such that G; € Gy and F'N Gy = @, then the class KG,S
is T-pseudofinite (Corollary 2). It follows from this result that for a finitely
generated abelian group G the class K g is T-pseudofinite (Proposition 2);
for the multiplicative group of rational numbers G the class K g is also
T-pseudofinite (Proposition 1).

It is noted that there exists an abelian group G and an act over G such that
this act is not T-pseudofinite but is pseudofinite, where T is the theory of all
G-acts (Corollary 4), namely, for a quasicyclic group G as a divisible group,
the act G over G is not T-pseudofinite (Proposition 3), but is pseudofinite
(Corollary 3).
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1 Preliminary information

Let us recall some definitions and facts from act theory and model theory
(see [8,9, 10]). Let S be a monoid with identity 1. A structure (A; s)seg in the
language Lg = {s | s € S} consisting of unary operation symbols is a (left)
S-act if s1(s2a) = (s182)a and la = a for all s1,s9 € S and a € A. An S-act
(A; s)ses is denoted by sA. Elements z, y of an S-act gA are called connected
(denoted by z ~ y) if there exist n € w, ag,...,a, € A, $1,...,8, € S such
that =z = ag, ¥y = a,, and a; = s;a;_1 or a;_1 = s;a;. An S-act gA is called
connected if we have x ~ y for every x,y € gA. It is easy to check that ~
is a congruence relation on the S-act gA. The classes of this relation are
called connected components of the S-act gA. A coproduct of S-acts gA; is a
disjunctive union of this S-acts. The coproduct of S-acts gA; is denoted by
[T sA;. It is known [8] that every S-act gA can be uniquely represented as a
iel
c%product of connected components. Let G be a group and H be a subgroup
of G. By ¢G/H we denote G-act ¢{gH | g € G} with unary operations
defined as follows: g(aH) = (ga)H for every g,a € G. Each connected G-act
has the form ¢G/H for some subgroup H of G and it has no proper subacts.

The structure 9N in language L is called pseudofinite if every sentence
true in 9 has a finite model. It is known that the structure 97 in language
L is pseudofinite iff 91 is elementary equivalent to an ultraproduct of finite
structures in language L ([11]).

Let T be a consistent (but possibly incomplete) theory in the language L.
The model M of the theory T is called T-pseudofinite if every sentence true
in 901 is also true in some finite model of the theory T. From the proof of
Theorem 1 [6] we get

Fact 1. Every coproduct of finite S-acts is a T-pseudofinite S-act, where T
is the theory of all S-acts.

A class K of models of the theory T is called T-pseudofinite if whenever
K E ¢, then ¢ is true in some finite model of the theory T

Fact 2. Let a group G have only o finite number of finite index subgroups
and T be the theory of all G-acts. Then a G-act ¢ A is T-pseudofinite if and
only if A is elementarily equivalent to the coproduct of finite G-acts, i.e. by
Fact 1, oA is T-pseudofinite.

Fact 3. [12] Every finitely generated abelian group is isomorphic to a group
of the form
Z"e L/ ® - L/,

where n > 0, and the numbers qi,...,qu are powers of (not necessarily
distinct) prime numbers.

For an arbitrary set of sentences in language L and a structure 9 in
language L, instead of writing 9t € Mod(I") we will use the notation 9t F I'.
We will distinguish between the notations A C B and A C B.



T-PSEUDOFINITE ACTS OVER ABELIAN GROUP 1083

Theorem 1. Let T be a theory in language L and 9N be a model of T. Then
M is o T-pseudofinite structure if and only if M is elementary equivalent to
the ultraproduct of finite models of the theory T.

Proof. Necessity. Let 91 be a T-pseudofinite model of T. We denote the set
{@ | ME ¢} by ®. By the definition of a T-pseudofinite structure, for every
sentence ¢ € ® there exists a finite model N, of the theory T" such that
Ny, F . Let Dy, ={1p € @ | ¢}, where p € &, and D' = {D,, | ¢ € ®}.
It is clear that D’ is the family of sets with finite intersection property. Then
D’ is contained in some ultrafilter D on the set ®. We will prove that 91 is
elementary equivalent to the ultraproduct H¢e¢ Ny/D. Let M E ¢. Note
that ¢ € D, implies My, = . Then D, C {¢p € ® | Ny, E ¢}. Since Dy, € D,
then {¢y € ® | My, F ¢} € D. By the definition of ultraproduct, we have
[Tyca My/D E @. Thus, M = [ Ny/D.

Sufficiency. Let 9 is elementary equivalent to the ultraproduct [ [;c; 9%:/D
of finite models of the theory T"and 9t = ¢. Then [[,c;9%/D F ¢. By Los’s
Theorem ([13], chapter 3, § 17) Ipn ={it € I | M F ¢} € D. If ig € Iy then
M, E . Thus M is a T-pseudofinite model of 7. g

Let G be an abelian group, Si,...,5, be pairwise distinct subgroups of
G. For sets S={S,...,5}, 51 CS, 5% CS,SeS andelements g; & J S,
g2 & |J S1, we define the functions

(plggls :Ufgls — G’ Ufgls = {U S Sl ’ S\U # @}, Solggls(U) € S\U7
025925 T3P L 6 U = (U € 8, | U\ S £ 0}, 02555(U) e U\ S,
_ 75, 7Sv - = g Q
ps® Ty — G, Uy = (U eS| JS\U#2}, o5(U) €| JS\T,

eSS T S G T = U eS| U¢&}, o5 U) e,
o™ TS 5 G T = U e SIUSi\U#2), i 0) e S\,

es™ T 5 G, U = U e S|U\S £ 2}, ¢85 (U) e U\ 5,
and the formulae
ag(g1) = V(o # @),
B5(51,92.04%) = Va((gar =) =\ (02T (V) = ),
UGUfgl
v5(S1, S2, S, Smggls,mggﬁ) =
=3k N\ @ e=a)n N\ (@75 0) £ 2),

ver; e Uel, 2°

55(03°%) = o \/ (03 (U)x # 2),
UeU3§
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—

e5(S1, 05751, pg%51) =
=va( N\ ("0 =2)= \ (o W)z =2)).

Uers versS

Let us introduce one more notation:

Ig = {as(e) | g ¢ | J 8
U{Bs(S1,9,04°%) | 81 € S, 9 ¢ ) S1}U
U {75(S1, 52, S, mgm 02352%) | §1, 8, C SIU
U{65(es”) | | S ¢ SIU
U{es(S1, 957, 06°) | S1 € S, S ¢ S}

Lemma 1. Let G be an abelian group, Si,..., Sy be pairwise distinct sub-
groups of G, S ={S1,...,Sn}. Then cAETg iff

cA2 [[a(G/S)iu...u ] a(G/Sn)i

iEIl ieln

for some nonempty sets I, ..., I,.

Proof. Necessity. Let ¢A F I'g and ¢A = [[,c;¢(G/K;), where K; are
subgroups of G (5 € J).

Let us show that K; € S. We consider two cases.

(1) Kj #JS. Let S ={S€S5|SCK;} Then J5S; C Kj.

We will show that (JS1 = K. Suppose that there exists g € K; \ [J 5.
Then gK; = K;. Let S; C S, that is, S\ S1 # &. By the definition of
the set S1, we have U ¢ Kj for every group U € S\ S, that is, there
is gy € U\ Kj and gvK; # Kj. We define the function ;%1 as follows:

075 (U) = gy for every U € U4 . Since S; C S, then by condition,
cAE Bs(S1, g, g04551), contradiction. Therefore, S=281,9€K;\US and
gK; = Kj, but ¢AF ag(g), and again a contradiction. Thus, | JS; = Kj.
Now we will show that K; € S. Suppose the opposite. Then [JS; & S.
Note that U C |JS; for every U € S;. Therefore, for every U € S there is
gu € US1\ U. Since |JS1 = Kj, then gy € Kj; and gyK; = Kj. Let us

define the function 5551 as follows: 5551 (U) = gy for every U € U?Sl.

Since K; # |JS, then S, € |JS and there is a group U’ € S such that

U’\US1 4 @. Then S; € S and U’ € UG . For every U € S such that
U\US: # @, we choose rpy € U\ JS1. Slnce US: = Kj, then rpK; #
Kj. Let us define the function @6551 as follows: wﬁssl(U) = ry for every

U e U6 . As noted above, U6 # @. Since JS; ¢ S, then by condition,

cAE 55(51,905551,906551) Consequently, there exists a group U € Ugsl

such that 7y € Kj, contradiction. Therefore, K € S.
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(2) Kj = US. Let us assume that K; ¢ S, that is, [JS ¢ S. Then
UsS # U for every U € S. Therefore for every U € S there is gy € U S\U.
We define the function ¢3° as follows: p3°(U) = gu for every U € U3 Since
K; =85, then gy K; = Kj for every gy. Since (J S & S, then by condition,
GAE §5(p3° 5), contradiction. Therefore, Kj € S.

Let us show that for every S € S there is j € J such that § = K.
Suppose that there is S € S such that S # K; for every j € J. Then for
every j € J either K; C S or K; \ S # @. LetSl—{K | K; C S}, and

So={K; | K;\ S # 2}. SlnceK € S for every j € J, then 51,57 C S. It
is clear that U g K = Si U Sl For every U € S; we choose the element
gu € S\ U. We define the function golssls as follows: wlssls(U) = gy for

every U € Ufsls. For every U € Sy we choose the element 7y € U \ S. We

define the function 95525 as follows: 25525 (U) = ry for every U € UgSQS.

Let j € J. If K; C S, that is, K; € Sy, then 9k, K; # Kj; if K;\ S # &,
that is, K; € Sy, then rx, K; = K. By condition,

GA = 75‘(5'17 Si, Sa ()0155157 9025525)7

contradiction. Consequently, for every S € S thereis j € J such that S = K;.

Thus, K; € S for every j € J.

Sufficiency. Let gA = gB and ¢B = [[;c7, ¢(G/S1)il...Ul e, a(G/Sn)i-
Let us show that A F I'g.

Let g ¢ |JS. Then gS # S for every S € S. Therefore, g A F as( ).

Let S; € S, g € JS1, S € S and the function @4551 : U4 _—>_G
is defined. We assume that gS = S. Then S ¢ Sy, that is, S € S\ 5.
Therefore, p4°°1(S)S = S and gAFE 55(51,9,g04551,§0_4551).

Let 51,85 € S, S € S and the functions @15515 : USSlS — G and cp2§§2s :

Ugsls — G are defined. Then (plggls(U)S S for every U € Ufsls nd

0251 (U)S # S for every U € U 552 Therefore,

GA = '75'(517 g,a S7 9015515? SOQSSQS)‘

Let (JS € 5, S € S and the function 035 U?)g — G is defined. Then

SclSand S e U3 Therefore, 3°(5)S # S and gA F 5g(<p3§).

Let 5, C S, (JS; ¢ S and the functions @555 : Ussl — G and ¢g%51
T ~ G are defined. Suppose that § € S and @55%1(U)S = S for all
U e U5 , that is, for all U € S such that |JS; \ U # @. Let us show that
S e Ugsl that is, S\ JS1 # @. Assume that S C [JS;. If S = J S, then
U S:1 € S, acontradiction. Therefore, S C |JS1, S € U?Sl and£5§§1(8) €s,

but ¢5551(S) € [J 51\ S, a contradiction. So we proven S € qusl. Therefore,
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©6°51(S) € S\ |JS1. This implies the equality pg551(5)S = S and
GA = 65‘(5’17 905§517 SDGSSI)

U
Let K g denote the class of all G-acts of the form
[Te@G/sniu...u ] a(G/Sh)i,
where I, ..., I,, are some nonempty sets and S = {S1,...,S,}. From Lemma

1 we obtain the following corollary.

Corollary 1. Let G be an abelian group, Si,...,Sn be pairwise distinct
subgroups of G. Then the class K¢ g is aziomatizable.

2 T-pseudofiniteness of class K g

Note that for any theory T in the language L and any class K of models
of T, if there exists a T-pseudofinite structure 9t € K, then K is a T-
pseudofinite class. Theorem 2 gives us characteristic properties of the abelian
group G that are necessary for the existence of a T-pseudofinite G-act in the
class K 5 and sufficient for the class K g to be T-pseudofinite, where T' is
the theory of all G-acts.

Theorem 2. Let G be an abelian group, T be the theory of all G-acts,
S1, ..., S, be pairwise distinct subgroups of the group G, S = {S1,...,S,}.
Then
(a) = (b) = (o),

where

(a) there exists gA € K¢ g such that gA is T-pseudofinite;

(b) for every finite set F' C G there are finite index subgroups Uy, ..., Uy
of group G such that following conditions are satisfied:

1) FOUicie Ui CUS;
2) for every set S1 C S and for every group U;
(FRU)\|JS1 #2=3U €S\ S (UNF CUy);

8) for every S € S there exists Uy, ig € {1,...,k}, such that SNF C
UUU, and UNFNU;, CS for every U € S;

4)if US & S, then for every group U; there is a group U € S such that
UsSnu,nF CU;

5) for every set S1 C S such that |JS1 € S, and for every group U;

VU € S(|JSinUin F)\U # ) =
=W e S(UNF\JSi#2AUNF)\|JS €U
(c) the class K¢ g is T-pseudofinite.
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Proof. Let the conditions of Theorem be satisfied.
(a) = (b) Let ¢A be a T-pseudofinite G-act,

cA = HGG/51 LIHgG/S

i€l i€l

where ¢(G/Sk); are the copies of ¢G/Sk, I1,...,I, are nonempty sets, F' be
a finite subset of G, I' be a set of sentences from I'g in language

Lr={f|feF}CLc

It is clear that I' is a finite set. Let © denote the conjunction of all sentences
from I'. By Lemma 1, gA F I'g. Therefore, A F ©. Since ¢A is a T-
pseudofinite G-act, there is a finite G-act @B such that @B F ©. Then
aB=¢G/UU...UgG/Ug, where Uy,..., Uy are finite index subgroups of
group G.

Let us show that condition 1) is satisfied. Suppose that there is an element
g€ (FNUy<j< U)\US. Since ¢gBE©, g€ G\|JS and g € F, then ¢B F
ag(g). So gU; # U;, that is, g & U;, for every 4, 1 < i < k. Contradiction.
Condition 1) has been proven.

Let us show that condition 2) is satisfied. Let S C g, 1 <4<k and
(FNU;)\US1 # @. Then there exists g € (FNU;)\|JS1 and gU; = U;. Let
us show that there exists a group U € S\S; such that UNF C U;. Assume the

converse. Then for every group U € S\ S; (that is, for every group U € U4 D

there is gy € (U N F) \ U;. We define the functlon 04551 Ufsl

follows: @4551(U) = gy for every group U € U4 . Since @B F O, then

aBFE Bg(gl,g,¢4ssl) Consequently, gyU; = U; for some group U € Ufsl,

that is, g € U;, contradiction. Thus, there is a group U € S\ S; such that
U N F C U;. Condition 2) has been proven.

Let us show that condition 3) is satisfied. Assume the converse. Then
there is S € S such that for every U;, 1 < i < k, there exists a group R; € S
satisfying the relation S N F ¢ R; U U;, or there exists a group Q; € S
satisfying the relation @; N FNU; € S. Let K; be a subset of {1,...,k}
such that ¢ € Kj if and only if the group R; is defined, and let Ko be a
subset of {1,...,k} such that i € Ky if and only if the group Q; is defined.
Let Sy denote the set {R; | i € K1}, and Sy denote the set {Q; | i € Ka}.

Then Ufsls = S, UgSQS = Sy. For every i € K; we choose g; € (SN F)\
(R; UU;) and for every i € Kz we choose r; € (Q; N FNU;) \ S. We define

358 . 35515 55,5 . U*;SQS

— G as

the functions ¢ — G and 902 — G as follows:

©1 SSlS(R ) = gz for every group R; € U1 and @25§25(Qi) = g; for every

group Q; € U2 . Since ¢B F O, then ¢B F v5(S1, Sa, S, 019515 095929),
Consequently, there exists U;,, ig € {1,...,k}, such that g; € U;, for every
i € Ky and r; ¢ Uy, for every i € Ky. If ig € K; then g;, € U, contradiction.
If ip € K5 then r;, € U;,, contradiction. Condition 3) has been proven.
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Let us show that condition 4) is satisfied. Let (JS ¢ S. Assume the
converse, that is, there is a group U; such that (JSNU; N F C U, that

is, U € U?, for every group U € S. Therefore, for every group U € S there

exists gy € (USNU;NF)\ U. We define the function 035 : U?: — G as
follows: 3°(U) = gy. Since ¢B F © and US & S, then ¢B F 55(p3”).

Then for the group U; there is a group U € U§ such that gyU; # U;, that
is, gu ¢ Uj;, contradiction. Thus, condition 4) is proven.

Let us show that condition 5) is satisfied. Assume the converse. Then there
exist a set S1 C S and a group U; with the following properties: | J S1 & S, for
every group U € S the set (| J S1NU;NF)\U is nonempty and for every group
U’ € Ssuch that (U'NF)\J S # @, we have (U'NF)\JS1 € U;. Therefore,

Ue U?Sl for every group U € S, and (U' N F)\ (US1UU;) # @ for every
group U’ € S such that (U’ N F)\ JS1 # 9, that is, for every group U’ €

Uﬁsl. For every U € _U_?Sl we choose the element gy € (US1 NU; N F)\ U,
and for every U’ € Ugsl we choose the element ¢ € (U'NF)\ (JS1UU;).

Note that gyU; = U; and ryU; # U;. Functions cp5§§1 : U?Sl — G and

0551 Ugsl — G is defined as follows: <p75f§§1(U) = gy for every U € U?Sl
and @1 (U') = ryr for every U e Ug:gl. Since @B £ ©, S; C S and
Us: ¢ S, then ¢B F £5(S1, 5751, pe¥51). Consequently, there exists a

group U € Ugsl such that ryU; = U;. Contradiction. Thus, condition 5) is
proven.

(b) = (c) Assume that conditions 1)-5) of Theorem are satisfied and
Kg g E ©. By Lemma 1 and Corollary 1, I's = ©. Then there is a finite
subset I' of the set I'g such that I' = ©. Let F' denote a finite subset of
G such that © is a formula in language Lr. By condition of Theorem, for
F' there exist finite index subgroups Ui, ..., Uy of the group G such that
conditions 1)-5) are satisfied. Let ¢ B = ¢G/U;U...UgG/Ug. To prove that
the class K g is T-pseudofinite, we will show that ¢B F ©. It is enough to
prove that B F I

Let ag(g) € T, where g € F and g ¢ |JS. By condition 1), g & U; for
every i, 1 <14 < k. Therefore, B F ag(g).

Let B5(S1,9,¢4°%) € T, where S; C S, 451 : Ufsl - G, gofsl(U) €
UNF for every U € Ufsl, g € F\ |JS;. Assume that gU; = U;. Then we
have g € (FNU;) \ JSh, that is, (FNU;) \ US1 # @. By condition 2),
there is a group U € S\ S; such that U N F C U;. Consequently, U € Ufsl
and cpfsl(U) e UNF C U, that is, wfsl(U)Ui = U;. Thus, we proved that
B F B5(S1,9,04%%). o -

Let v5(S1, 52,5, 019519 p99%29) € T, where 51,5, € S, S € S, 7515 :
Ufsls — G, 795 ﬁgSQS — G. By condition 3), there exists Uj,, ig €
{1,...,k}, such that SNF CUUU;, and UNFNU;, C S for every U € S.
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We show that
¢BE N\ (@O, =U )~ N\ (2”500, # Usy).

Ueﬁfgls UGUESQS
Let U € Ufsls. Then S\ U # @. Besides, ¢15515(U) € (SN F)\U.
Therefore, by condition 3), p5515(U) € Q U Ui, for every Q@ € S, in
particular, 15515 (U) € U U U;, that is, ¢555(U) € Ui,- Let U € U‘;S?S.
Then U\ S # @. Besides, 02515 (U) € (UNF)\ S. If ¢35525(U) € Uy, then
gOQSSQS(U) e UN FNU;, that is, @25§2S(U) € S, contradiction. Therefore,
QOQSgQS(U) ¢ Ui, Thus, ¢ B F v5(S1, S9, S, @155}5’8025‘525)_

Let 55(903§) € T, where |JS ¢ S, @35 : U}? — G and 1 <i < k. By
condition 4), there exists a group U € S such that | JSNU; N F C U. Since
US & Sand U € S, then |JS\ U # @, that is, U € Uy. So ¢3°(U) €
(USNF)\U and 35(U) & U;. Therefore, B E d5(¢3%).

Let sg(ghsﬁg)?gl,soeggl) €I, where S; c S, JS1 € S, 905§5‘1 :U?Sl
G, SDGSISI : U~6951 — G and 1 < ¢ < k. Suppose that (p?sl(U)Ui - U

for every U € qusl. Since JS1 ¢ S, then |JS1\U # @ and U € U?Sl
for every U € §). Since 5°51(U) € U; N F and @555 € |JS; \ U, then
(US1NnU;NF)\U # @ for every U € S;. By condition 5), there exists
U € S such that (UNF)\US1 # @ and (UNF)\ [JS1 € U;. Since
@s°21(U) € (UNF)\ USi, then o1 (U) € Uy, that is, 06”1 (U)U; = Us.
Thus, GB E 85(51, @5551,906351). U

Corollary 2. Let G be an abelian group, Si,...,Sp be pairwise distinct
subgroups of the group G, S = {S1,...,S,}, and T be the theory of all G-
acts. If for every subgroup G1 € S of group G and every finite set F C G\ Gy
there exists a finite index subgroup Go of group G such that G1 C G and
FNGy= g, then the class K g 15 T-pseudofinite.

Proof. Let the conditions of Corollary 2 be satisfied, Si,...,S, € S be
infinite index subgroups of G, Sk41,...,S, € S be finite index subgroups of
G, and F be a finite subset of G. If k = 0, i.e. the set S has no infinite index
subgroups of G, then by Fact 1 the class K g is T-pseudofinite. Let k& > 1,
F be a finite subset of G. By the condition of Corollary 2, for every group S;,
1 <4 < k, there exists a finite index subgroup L; of G such that S; C L; and
F;NL; = @, where F; = F'\ S;. Let us prove that conditions 1)-5) of Theorem
2 are satisfied for the sets F' and U, where U = {L1,..., L, Ski1,---,Sn}-

Let f € FNYU.If f € S; for some i € {k+1,...,n}, then f € |JS.
If f € L; for some j € {1,...,k}, then by construction of the group L;,
we have S; C L; and F; N L; = @, that is, f € S; and f € JS. Thus,
FNUU C S and condition 1) is satisfied.

Let S; € S and U € U such that (FNU)\ U
some i € {k+1,...,n}, then U ¢ S; and UN F

_1 7&@ If U = 5; for
g Sz Let U = Lj for
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some j € {1,...,k}. By construction of the group L;, we have S; C L; and
F;NLj=@. Therefore, S;NF =L;NF, (FNS;)\US1 #2, S; €S\ 5y,
and S; N F' C Lj. Thus, condition 2) is satisfied.

Let S€ S.IfS=S; €U forsome i € {k+1,...,n}, then SNF CUUS;
and UNFNS; C S forevery U € S. Let S =5, for some j € {1,...,k}.
By construction of the group Lj;, we have S; C L; and F; N L; = @. Then
SNF=L,NFCUULjand UNFNL; CS§ for every U € S. Thus,
condition 3) is satisfied.

Let UcU.IfU=S5; € Sforsomei € {k+1,...,n}, then JSNUNF C
S;. Let U = L; for some j € {1,...,m}. By construction of the group L;, we
have S; C Lj and F;NL; = @. Then S;NF = L; N F and USNnUNF C S;.
Thus, condition 4) is satisfied.

Let S C Sand U € U. If U = S; for some i € {k+1,...,n}, then
UeSand (JSiNUNF)\S; =9. Let U = L; for some j € {1,...,k}.
By construction of the group L;, we have S; C L; and F; N L; = @. Then
S;NF=L;NnFand (JS1NUNF)\S; = 3. Therefore, condition 5) is
satisfied.

Thus, by Theorem 2, the class K g is T-pseudofinite. O

By Fact 1 every coproduct of finite S-acts is a T-pseudofinite S-act, where
T is the theory of all S-acts. Then we have

Remark 1. Let G be a group and S consists of finite index subgroups of G.
Then the class Kq g 15 T-pseudofinite.

The following examples show that the T-pseudofiniteness of the class K; g

depends not only on the group G, but also on the choice of the set S of
subgroups of G.

Example 1. Let G = Cp x C, and T be the theory of all G-acts. The
unique finite index subgroups of G are G and G = Cpeo x {1}.

1) If Sy = {G1} then by Remark 1 the class K¢ s, is T-pseudofinite.

2) If Sy = {Ga}, where Go = {(a,1) | a € Cpeo,aP = 1}, then the class
Kg s, is not T-pseudofinite. Indeed, [[;c; c(G/Ga)i E @ for every nonempty
I, where ® = Vo ((b,1)z = ), " =1, B # 1, b € Cpeo, but ¢G/G E1®
and ¢G/G1 E7®.

Proposition 1. Let Q* be a multiplicative group of rational numbers,
S1,..., Sy be pairwise distinct subgroups of the group Q*, S = {Sy,...,Sn}
and T' be the theory of all Q*-acts. Then Kg. 5 15 T-pseudofinite.

Proof. Let the conditions of Proposition be satisfied, G € S be a infinite
index subgroup of Q*, and F = F; U F» be a finite subset of Q*, where
FiNG =@ and F, C G. By Zorn’s Lemma, there is a maximal subgroup U
of the group Q* with the property: F1NU = @ and F, C U. By Corollary 2,
to prove Proposition it is sufficient to prove that U is a finite index subgroup
of the group Q.
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Note that every positive rational number, other than one, can be represen-
ted as plfl e p’,ﬁ”, where py...p, are pairwise distinct prime numbers,
ki,...,ky, are nonzero integers. For a prime number p and a rational number
a we will write p | a, if |a| = p¥ ~p]f1 o ..opkn pop1 ... p, are pairwise distinct
prime numbers, k, kq,...,k, are nonzero integers. By construction of the
group U, we have p € U for every prime p such that pta for all a € F}.

Let us prove that for every prime p, if p | a for some a € Fy, then there
exists k& > 0 such that p* € U. Assume the opposite. Let p be prime number,
a € F, p|aand pF ¢ U for every k # 0. There exists a maximal positive
n such that b = p* - ¢ for some b € F1, ¢ € Q*, pfe¢ e € {1,-1}. By
Uj, j > 1, we denote the group {p("*t9)d | d € U,i € Z}. It is clear that
U cU; C QF for every 7 > 1. Since U is maximal subgroup of the group
Q* with the property: Fi1 NU = @ and F, C U, then for every j > 1
there exists f; € Fy NUj, that is, f; = p™*7)id; for some d; € U, i; € Z.
Since the set F} is finite, then there exist 0 < j; < jo < ... such that
fin = fj = -... If dj, # dj, for some different ji, and j;, then d;, = p°d;, for
some s # 0; therefore, p® € U, a contradiction. Hence d;, = d;, for all j, ji,
that is, (n + ji)ij, = (n + ji)ij, for all ji,j;. Since 0 < j; < jo < ..., then
lij,| > |ij,] > ..., a contradiction. Since f ¢ U, then i # 0. This contradicts
the choice n. Thus, for every prime p, if p | a for some a € Fy, then there
exists k, > 0 such that pkr € U.

Let us prove that U is a finite index subgroup of the group Q*. By P we
denote a set of prime numbers p such that p | f for some f € Fy. It is clear
that P is a finite set. Let U’ = {Hpeppkpia |i€Z,aeQ*,Vpe P(pta)}.
Then U’ is a finite index subgroup of the group Q*, U’ C U. Therefore, U is
a finite index subgroup of the group Q*. Proposition has been proven. [

Proposition 2. Let G be a finitely generated abelian group, Si,...,Sn be
pairwise distinct subgroups of the group G, S = {S1,...,Sn}, and T be the
theory of all G-acts. Then the class K¢ g is T-pseudofinite.

Proof. Let the conditions of Proposition be satisfied, G; € S be a infinite
index subgroup of G, and F' = Fj; UF5 be a finite subset of GG, where F; C Gy
and Fo NG = @. By Zorn’s Lemma, there is a maximal proper subgroup U
of the group G with the property: F; C U and F» NU = &. By Lemma 2, to
prove Proposition it is sufficient to prove that U is a finite index subgroup
of the group G. Let

G=vu lJr+nuJla+0),
feF> 1Ew
where a; ¢ U for all ¢ € w.

Let us prove that f + U is an element of the factor group G /U of finite
order for every f € F5. Suppose the opposite, that is, nf + U # mf + U
for some f € F» and every n,m € w, n # m. There exists k € w such that
' kf+Uforall f/ € Fy and |k'| > k. Then for the group U’ generated
by the set U U {kf}, we have U C U’ C G. By the construction of group U,
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f' € U’ for some f’' € Fy, that is, f’ € lkf +U. Since f ¢ U then [ # 0. This
contradicts the choice of k. Thus, f + U is an element of the factor group
G /U of finite order for every f € F.

Let us prove that a; + U is an element of the factor group G/U of finite
order for every i € w. By U” we denote the group generated by the set
U U {a;}. By the construction of group U, we have f € U” for some f € Fb,
that is, f € la; + U. Since f + U is an element of the factor group G/U of
finite order then a; + U is an element of the factor group G/U of finite order
too.

Note that G/U as a homomorphic image of a finitely generated abelian
group is a finitely generated abelian group. Thus, G/U is a periodic finitely
generated Abelian group. By Fact 3, G/H is a finite group, that is, U is a
finite index group. Proposition has been proven. ([

3 T-pseudofiniteness and pseudofiniteness of acts over
abelian groups

From the facts that divisible groups, in particular the additive groups of
rational numbers, of real numbers, of complex numbers, the multiplicative
group of positive real numbers, a quasicyclic group, have no proper finite
index subgroups, and the multiplicative group of real numbers has exactly
two finite index subgroups, and from Fact 2 we obtain Propositions 3 and 4:

Proposition 3. Let G be a divisible group and T be the theory of all G-
acts. Then G-act ¢A is T-pseudofinite if and only if ¢A is a coproduct of
one-element G-acts.

Proposition 4. Let G be the multiplicative group of real numbers and T be
the theory of all G-acts. Then the G-act g A is T-pseudofinite if and only if
aA is a coproduct of one-element and two-element G-acts.

Proposition 5. Let G be a locally finite group. Then every G-act is pseudo-
finite.

Proof. Let G be a locally finite group, ¢ A be a G-act, A E ©, where O is
a formula in the language L¢g, and the set F' consists of all symbols from
Lg, that occur in ©. By the condition of Proposition, the subgroup G; of
the group G generated by F' is a finite group. Then the Gj-act ¢, A, which
is the restriction of the G-act A to the language Lg, C Lg, is a coproduct
of finite Gi-acts and ¢, A F ©. By Fact 1, ¢, A is T-pseudofinite, where T’
is the theory of all Gi-acts. Therefore, there exists finite Gi-act g, B such
that ¢, B F ©. Let us arbitrarily extend the structure ¢, B in the language
L¢, to the structure ¢ B in the language Lg. Thus, ¢B F © and G-act ¢A
is pseudofinite. ([l

Corollary 3. Let G be a quasicyclic group. Then every G-act is pseudofinite.
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Since a quasicyclic group G is a divisible then the G-act ¢G is not T-
pseudofinite (see Proposition 3), where T is the theory of all G-acts. So we
get

Corollary 4. There exists an abelian group G and a G-act g A such that ¢ A
is pseudofinite but not T-pseudofinite, where T is the theory of all G-acts.
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