

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru ISSN 1813-3304

Vol. 22, No. 2, pp. 1073-1079 (2025) https://doi.org/10.33048/semi.2025.22.066 УДК 512.542 MSC 20D10, 20D20

ON SSH-SUBGROUPS OF FINITE GROUPS

CHANGWEN LI

Communicated by I.B. Gorshkov

Abstract:In this paper, we investigate the influence of SSHsubgroups on the structure of finite groups and some new results on
the p-nilpotency and p-supersolvability of finite groups are obtained.

Keywords: s-permutable, SSH-subgroups, p-supersolvable, p-nil-potent.

1 Introduction

All groups mentioned in this paper are considered to be finite. Most of terminologies and notations are standard. The reader is referred to [9] and [10]. G always denotes a finite group and |G| is the order of G. A group G is said to be p-supersolvable if all chief factors of G having order divisible by p are exactly of order p. It is known that the class of all p-supersolvable groups is a saturated formation.

Let H be a subgroup of G. H is said to be s-permutable or s-quasinormal in G, if H permutes with all Sylow subgroups of G (see [11]); H is said to be C-normal in G if G has a normal subgroup T such that G = HT and $H \cap T \leq H_G$, where H_G is the normal core of H in G (see [14]); H is said to be an \mathcal{H} -subgroup of G if $H^g \cap N_G(H) \leq H$ for all $g \in G$ (see [5]); H is called a weakly \mathcal{H} -subgroup of G if it has a normal subgroup T such that

Changwen Li, On $\mathcal{SSH} ext{-subgroups}$ of finite groups.

^{© 2025} Changwen Li.

The project is supported by the Natural Science Foundation of China (grant 11401264 and 11571145).

G = HT and $H \cap T$ is an \mathcal{H} -subgroup of G (see [1]); H is said to be weakly \mathcal{H} -embedded in G if G has a normal subgroup T such that $H^G = HT$ and $H \cap T$ is an \mathcal{H} -subgroup of G, where H^G is the normal clousre of H in G (see [3]); H is called an $\mathcal{H}C$ -subgroup of G if there exists a normal subgroup T of G such that G = HT and $H^g \cap N_T(H) \leq H$ for all $g \in G$ (see [15]); H is said to be weakly $\mathcal{H}C$ -embedded in G if G has a normal subgroup T such that $H^G = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$ (see [2]). Using these concepts, many interesting results on the structure of finite groups have been obtained in [1, 2, 3, 5, 14, 15, 16].

More recently, T. M. Al-Gafri and S. K. Nauman [7] introduced a new subgroup embedding property that extends all the above mentioned concepts as follows:

Definition 1. A subgroup H of G is said to be an SSH-subgroup in G if there exists an s-permutable subgroup T of G such that $H^{sG} = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$, where H^{sG} is the intersection of all s-permutable subgroups of G containing H.

In [7], the authors studied the structure of finite groups under the assumption that certain subgroups of prime power orders are SSH-subgroups. In this paper, we continue the work and present some sufficient conditions for a group to be p-supersolvable and p-nilpotent.

2 Preliminaries

Lemma 1 ([7, Lemma 2.4]). Suppose that H is an SSH-subgroup in G.

- (1) If $H \leq K \leq G$, then H is an SSH-subgroup in K.
- (2) If $N \subseteq G$ and $N \subseteq H \subseteq G$, then H/N is an SSH-subgroup in G/N.
- (3) If H is a p-subgroup and N is a normal p'-subgroup of G, then HN and HN/N are SSH-subgroups in G and G/N, respectively.

Lemma 2 ([5, Theorem 6 (2)]). Let H be an \mathcal{H} -subgroup of G. If H is subnormal in G, then H is normal in G.

Lemma 3 ([6] and [11]). Suppose that H be a subgroup of G and H is s-permutable in G. Then

- (1) H is subnormal in G.
- (2) If $K \leq G$ and K is s-permutable in G, then $H \cap K$ is s-permutable in G.
 - (3) H/H_G is nilpotent.

Lemma 4 ([13, Theorem A]). If P is an s-permutable p-subgroup of G for some prime p, then $N_G(P) \geq O^p(G)$.

Lemma 5 ([7, Theorem 3.1]). Let P be a Sylow p-subgroup of a group G, for some prime p. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and every maximal subgroup of P is an SSH-subgroup in G.

Lemma 6. Let H be a p-subgroup of a group G for some prime p. If N is normal in G and (|N|, p) = 1, then $N_{G/N}(HN/N) = N_G(H)N/N$.

Proof. By [7, Lemma 2.3], we have $N_G(HN) = N_G(H)N$. Consequently, $N_{G/N}(HN/N) = N_G(HN)/N = N_G(H)N/N$.

Lemma 7 ([4, Theorem 2.1.6]). If G is p-supersoluble and $O_{p'}(G) = 1$, then the Sylow p-subgroup of G is normal in G.

Lemma 8 ([12, Theorem 1.3]). Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G|. If every maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 9 ([8, Theorem 8.3.1]). Let P be a Sylow p-subgroup of G, where p is an odd prime divisor of |G|. Then G is p-nilpotent if and only if $N_G(Z(J(P)))$ is p-nilpotent, where J(P) is the Thompson subgroup of P.

Lemma 10. Suppose that $N \subseteq G$ and $H \subseteq G$. If $N \subseteq \Phi(H)$, then $N \subseteq \Phi(G)$.

Proof. Assume that $N \nleq \Phi(G)$. Then G has a maximal subgroup M such that $N \nleq M$ and G = NM. Hence $H = H \cap NM = N(H \cap M) = \Phi(H)(H \cap M) = H \cap M$. It follows that $H \leq M$ and so $N \leq M$, a contradiction. \square

3 Main results

Theorem 1. Let P be a Sylow p-subgroup of a p-solvable G for some prime p. If every maximal subgroup of P is an SSH-subgroup in G, then G is p-supersolvable.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. Then:

(1)
$$O_{p'}(G) = 1$$
.

Assume that $O_{p'}(G) \neq 1$. Note that $P/O_{p'}(G)$ is a Sylow p-subgroup of $G/O_{p'}(G)$, where $G/O_{p'}(G)$ is p-solvable. Let $M/O_{p'}(G)$ be a maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$. Then $M = (M \cap P)O_{p'}(G)$, where $M \cap P$ is a maximal subgroup of P. Since $M \cap P$ is an SSH-subgroup in P and P is a normal P-subgroup of P, then P is an P-subgroup in P-subgrou

(2) G has a unique minimal normal subgroup N such that N is an elementary abelian p-group and G/N is p-supersolvable.

Since G is p-solvable, we may assume that G has a minimal normal subgroup N. In view of step (1), N is an elementary abelian p-group and so $N \leq P$. If N = P, then G/N is a p'-group and hence G/N is p-supersolvable. Now assume that N < P. Clearly, P/N is a Sylow p-subgroup of G/N. Let M/N be a maximal subgroup of P/N. Then P/N is a maximal subgroup of P/N. By hypothesis, P/N is an P/N-subgroup in P/N. Therefore the maximal subgroups of P/N are P/N-subgroups in P/N. Thus P/N is P/N-supersolvable by the minimal choice of P/N and P/N are two distinct minimal normal subgroups of P/N such that P/N and P/N and P/N are P/N are P/N and P/N are P/N and P/N are P/N are P/N and P/N are P/N and P/N are P/N and P/N are P/N are P/N and P/N are P/N are P/N are P/N are P/N are P/N and P/N are P/N are P/N and P/N are P/N are P/N are P/N are P/N are P/N are P/N and P/N are P/N are P/N are P/N are P/N and P/N are P/N are

proof. Since G is isomorphic to a subgroup of $G/N_1 \times G/N_2$, it follows that G is p-supersolvable. This contradiction shows that N is a unique minimal normal subgroup of G.

- (3) |N| > p, $\Phi(G) = 1$ and $N = F(G) = O_p(G)$.
- If $\Phi(G) > 1$, then $N \leq \Phi(G)$ and $G/\Phi(G) \cong (G/N)/(\Phi(G)/N)$ is p-supersolvable by step (2). Since the class of all p-supersolvable groups is saturated, it follows that G is p-supersolvable. This contradiction shows that $\Phi(G) = 1$. Since the Fitting subgroup of a group with unit Frattini subgroup coincides with the product of all abelian minimal normal subgroups, we have $N = F(G) = O_p(G)$. If |N| = p, then G/N is p-supersolvable by step (2) and so G is p-supersolvable, a contradiction.
 - (4) There exists a maximal subgroup R of P such that $N \nsubseteq R$.

Assume that $N \leq \Phi(P)$. Then $N \leq \Phi(G) = 1$ by Lemma 10, a contradiction. Hence $N \nleq \Phi(P)$ and there exists a maximal subgroup R of P such that $N \nsubseteq R$.

(5) $R \cap N \neq 1$.

Assume that $R \cap N = 1$. Then $|N| = |N|/|R \cap N| = |NR/R| = |P/R| = p$ by step (4), a contradiction.

(6) $R \cap N$ is not normal in G.

If not, we have $R \cap N = 1$ or $R \cap N = N$ by the minimal normality of N, which contradicts (4) and (5).

(7) There exists an s-permutable subgroup T of G such that RT is s-permutable in G and $R^g \cap N_T(R) \leq R$ for all $g \in G$, where T > 1.

By the hypothesis of the theorem, R is an \mathcal{SSH} -subgroup in G. Therefore G has an s-permutable subgroup T such that $R^{sG} = RT$ and $R^g \cap N_T(R) \leq R$ for all $g \in G$. By Lemma 3(2), RT is s-permutable in G. If T = 1, then R is s-permutable in G. By Lemma 4, $O^p(G) \leq N_G(R)$. It follows that R is normal in $PO^p(G) = G$. Consequently, $R \cap N$ is a normal subgroup of G, which contradicts (6).

(8) $N \not\subset T$.

Assume that $N \leq T$. Noticing that N is abelian, we have $(R \cap N)^g \cap N_G(R \cap N) = R^g \cap N \cap N_G(R \cap N) = R^g \cap N \cap T \cap P \leq R^g \cap N \cap T \cap N_G(R) = R^g \cap N \cap N_T(R)$. By step (7), we have $(R \cap N)^g \cap N_G(R \cap N) \leq R \cap N$. This shows that $R \cap N$ is an \mathcal{H} -subgroup of G. Obviously, $R \cap N$ is subnormal in G. In view of Lemma 2, $R \cap N$ is normal in G, which contradicts (6).

(9) T is a p-group.

Since T is s-permutable in G, it follows from Lemma 3(3) that T/T_G is nilpotent. If $T_G \neq 1$, then $N \leq T_G$ by step (2). Consequently, $N \leq T$, which contradicts (8). Hence $T_G = 1$ and T is nilpotent. In view of Lemma 3(1), $T \triangleleft \triangleleft G$. Let $T_{p'}$ be the normal Hall p'-subgroup of T. Obviously, $T_{p'} \triangleleft \triangleleft G$. Hence $T_{p'} \leq O_{p'}(G) = 1$. This implies that T is a p-group.

(10) The final contradiction.

By the maximality of R in P, RT = R or P. Since RT is s-permutable in G, we have $RT \subseteq PO^p(G) = G$ by Lemma 4. If RT = R, then $N \subseteq R$ by step (2), which contradicts (4). If RT = P, then $N = P = O_p(G)$ is elementary

abelian by step (2) and so $T \subseteq P$. Furthermore, $T \subseteq PO^p(G) = G$ by Lemma 4. By step (2), N = T, contrary to step (8).

Theorem 2. Let P be a Sylow p-subgroup of a group G, for some odd prime p. Then G is p-nilpotent if and only if every maximal subgroup P_1 of P not having a p-nilpotent supplement in G is an SSH-subgroup in G and $N_G(P_1)$ is p-nilpotent.

Proof. If G is p-nilpotent, then every maximal subgroup P_1 of P not having a p-nilpotent supplement in G is an \mathcal{SSH} -subgroup in G by [7, Lemma 2.5] and $N_G(P_1)$ is p-nilpotent. For the converse, we suppose that the result is false and let G be a counterexample of minimal order.

(1) If $P \leq K < G$, then K is p-nilpotent.

Let M be a maximal subgroup of P not having a p-nilpotent supplement in K. If M has a p-nilpotent supplement L in G, then M has a p-nilpotent supplement $L \cap K$ in K, a contradiction. Thus M is a maximal subgroup of P not having a p-nilpotent supplement in G. By hypothesis, M is an SSH-subgroup in G. By Lemma 1(1), M is an SSH-subgroup in K. Since $N_K(M) = K \cap N_G(M)$ and $N_G(M)$ is p-nilpotent, it follows that $N_K(M)$ is p-nilpotent. Therefore, K satisfies the hypothesis of the theorem, and so K is p-nilpotent by the minimal choice of G.

(2) $O_{p'}(G) = 1$.

If $O_{p'}(G) \neq 1$, we consider $G/O_{p'}(G)$. Let $M/O_{p'}(G)$ be a maximal subgroup of the Sylow p-subgroup $PO_{p'}(G)/O_{p'}(G)$ of $G/O_{p'}(G)$ not having a p-nilpotent supplement in $G/O_{p'}(G)$. Then $M = (M \cap P)O_{p'}(G)$, where $M \cap P$ is a maximal subgroup of P. If $M \cap P$ has a p-nilpotent supplement L in G, then $M/O_{p'}(G)$ has a p-nilpotent supplement $LO_{p'}(G)/O_{p'}(G)$ in $G/O_{p'}(G)$, a contradiction. Thus $M \cap P$ is a maximal subgroup of P not having a p-nilpotent supplement in G. By hypothesis, $M \cap P$ is an SSH-subgroup in G. By Lemma O0, In view of Lemma O0,

$$\begin{split} N_{G/O_{p'}(G)}(M/O_{p'}(G)) &= N_{G/O_{p'}(G)}((M \cap P)O_{p'}(G)/O_{p'}(G)) \\ &= N_G(M \cap P)O_{p'}(G)/O_{p'}(G) \end{split}$$

Since $N_G(M \cap P)O_{p'}(G)/O_{p'}(G) \cong N_G(M \cap P)/(N_G(M \cap P) \cap O_{p'}(G))$ and $N_G(M \cap P)$ is p-nilpotent, it follows that $N_{G/O_{p'}(G)}(M/O_{p'}(G))$ p-nilpotent. Therefore $G/O_{p'}(G)$ satisfies the hypothesis of the theorem. The minimal choice of G yields that $G/O_{p'}(G)$ is p-nilpotent, and so G is p-nilpotent, a contradiction.

(3) $O_p(G) \neq 1$.

Since G is not p-nilpotent, it follows from Lemma 9 that $N_G(Z(J(P)))$ is not p-nilpotent, where J(P) is the Thompson subgroup of P. Noticing that Z(J(P)) is a characteristic subgroup of P, $P \leq N_G(Z(J(P)))$. In view of step (1), we have $N_G(Z(J(P))) = G$ and so $O_p(G) \neq 1$.

(4) Let L be a normal p-subgroup of G such that 1 < L < P, then G/L is p-nilpotent.

It is easy to see that the hypothesis of the theorem holds for G/L by Lemma 1(2). Hence G/L is p-nilpotent.

- (5) G is p-solvable.
- If $O_p(G) = P$, then G is p-solvable obviously. If $O_p(G) < P$, then $G/O_p(G)$ is p-nilpotent by step (4). Consequently, G is p-solvable.
- (6) G has a unique minimal normal subgroup N and G/N is p-nilpotent. Let N be a minimal normal subgroup of G. Then by steps (2) and (5), $N \leq O_p(G)$. If N = P, then G/N is a p'-group and hence G/N is p-nilpotent. Now assume that N < P. In view of step (4), G/N is p-nilpotent. If N_1 and N_2 are two distinct minimal normal subgroups of G such that $N_1, N_2 \leq P$, then G/N_1 and G/N_2 are p-nilpotent by the above proof. Since G is isomorphic to a subgroup of $G/N_1 \times G/N_2$, it follows that G is p-nilpotent. This contradiction shows that N is a unique minimal normal subgroup of G.
 - (7) $\Phi(G) = 1$ and $N = F(G) = O_p(G)$.
- If $\Phi(G) > 1$, then $N \leq \Phi(G)$ and $G/\Phi(G) \cong (G/N)/(\Phi(G)/N)$ is p-nilpotent by step (6). Since the class of all p-nilpotent groups is saturated, it follows that G is p-nilpotent. This contradiction shows that $\Phi(G) = 1$. Since the Fitting subgroup of a group with unit Frattini subgroup coincides with the product of all abelian minimal normal subgroups, we have $N = F(G) = O_p(G)$.
 - (8) |N| > p.
- If |N| = p, then G/N is p-nilpotent by step (6) and so G is p-supersolvable. In view of Lemma 7, P is normal in G and so $P = O_p(G)$. By step (7), |P| = p. Then the maximal subgroup of P is 1. By the hypothesis of the theorem, 1 has a p-nilpotent supplement G or $N_G(1) = G$ is p-nilpotent, a contradiction.
 - (9) N has a p-nilpotent supplement M in G.
- Since $\Phi(G) = 1$ by step (7), it follows that G has a maximal subgroup M such that $N \nsubseteq M$ and so G = NM. It is easy to see that $N \cap M$ is normal in G. Consequently, $N \cap M = 1$ and $M \cong G/N$ is p-nilpotent by step (6).
- (10) There exists a maximal subgroup R of P such that R has no p-nilpotent supplement in G. Then R is an \mathcal{SSH} -subgroup in G by hypothesis. This follows from Lemma 8.
 - $(11) N \nsubseteq R.$
- If $N \leq R$, then R has a p-nilpotent supplement M in G by step (9), contrary to step (10).
 - (12) The final contradiction.

See the similar arguments to those used in the proof of Theorem 1. \square

References

- [1] M. Asaad, A.A. Heliel, M.M. Al-Shomrani, On weakly H-subgroups of finite groups, Commun. Algebra, 40:9 (2012), 3540-3550. Zbl 1278.20014
- M. Asaad, M. Ramadan, On weakly HC-embedded subgroups of finite groups, J. Algebra Appl., 15:5 (2016), Article ID 1650077. Zbl 1338.20017
- [3] M. Asaad, M. Ramadan, On weakly H-embedded subgroups of finite groups, Commun. Algebra 44:10 (2016), 4564-4574. Zbl 1347.20020
- [4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, Walter de Gruyter, Berlin, 2010. Zbl 1206.20019
- [5] M.A. Bianchi, A. Gillio Berta Mauri, M. Herzog, L. Verardi, On finite solvable groups in which normality is transitive relation, J. Group Theory, 3:2 (2000), 147–156. Zbl 0959.20024
- [6] W.E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125– 132. Zbl 0114.02004
- [7] T.M. Al-Gafri, S.K. Nauman, On SSH-subgroups of finite groups, Ann. Univ. Ferrara,
 Sez. VII, Sci. Mat., 64:2 (2018), 209-225. Zbl 1499.20043
- [8] D. Gorenstein, Finite Groups, Chelsea, New York, 1980. Zbl 0463.20012
- [9] W. Guo, The theory of classes of groups, Kluwer Academic Publishers, Dordrecht, 2000. Zbl 1005.20016
- [10] B. Huppert, Endiche Gruppen I, Springer-Verlag, Berlin, 1967. Zbl 0217.07201
- [11] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. Zbl 0102.26802
- [12] G. Qian, Finite groups whose maximal subgroups of Sylow p-subgroups admit a p-soluble supplement, Sci. China Math., **56**:5 (2013), 1015-1018. Zbl 1270.20014
- [13] P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207:1 (1998), 285-293. Zbl 0910.20015
- [14] Y. Wang, C-normality of groups and its properties, J. Algebra, 180:3 (1996), 954-965.
 Zbl 0847.20010
- [15] X. Wei, X. Guo, On HC-subgroups and the structure of finite groups, Commun. Algebra, 40:9 (2012), 3245–3256. Zbl 1278.20025
- [16] X. Wei, Z. Hu, On HC-subgroups of finite groups, São Paulo J. Math. Sci., 11:1 (2017), 36-45. Zbl 1378.20024

Changwen Li School of Mathematics and Statistics,

JIANGSU NORMAL UNIVERSITY, XUZHOU, 221116, CHINA

Email address: lcwxz@jsnu.edu.cn