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EXISTENCE THEOREM OF A WEAK SOLUTION FOR
NAVIER-STOKES TYPE EQUATIONS ASSOCIATED
WITH THE DE RHAM COMPLEX
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Abstract: Let {d;, A’} be the de Rham complex on a smooth,
compact, closed manifold X over R? with Laplacians A,. We consider
operator equations associated with the parabolic differential operators
O; + Ay 4+ N? on the second step of the complex with a nonlinear
bi-differential operator of zero order N2. Using projection on the
next step of the complex, we show that the equation has a unique
solution in special Bochner-Sobolev type functional spaces for some
(sufficiently small) time 7.

Keywords: elliptic differential complexes, parabolic nonlinear equations,
open mapping theorem.

1 Introduction

The Navier-Stokes equations have remained one of the central challenges
for both mathematicians and fluid dynamics specialists for many decades
(see, for example, [13], [26]). These equations have also been studied within
the framework of the theory of differential complexes, see works such as
[6], [16], and many others. In [29], the problem was investigated for the de
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Rham complex in R™ within special Bochner-Sobolev spaces. In particular,
at the first step of the complex, the problem coincides with the Navier-
Stokes equations for incompressible fluids. For such problems, open mapping
theorems were established; however, the question of the existence of solutions
for arbitrary degrees of the complex remains unresolved. This paper focuses
on studying the existence of solutions to the problem at the second step of
the de Rham complex in R3.

Namely, consider the de Rham complex on a Riemannian n-dimensional
smooth compact closed manifold X with vector bundles A? of exterior forms
of degree q over X,

0 — 2°(x) % 1(x) Dy . Dl grix) o, (1)

Here (2,(X) denotes the space of all differential forms of degree ¢ with
smooth coeflicients on X. In this case the Laplacians Ay = dydg +dg—1d;_;,
qg=0,1,...,n, of the complex are second-order strongly elliptic differential
operators on X, where operator dy is a formal adjoint to d,. As usual, we
assume that for ¢ < 0 and ¢ > n, d, is equal to zero.

We want to study non-linear problems associated with the complex. To
this end, we define two bilinear bi-differential operators of zero order M; ;

(see [5] or [24]),
Mga(-,-) : (2971(X), 29(X)) = 29(X),

Mya(-) : (29(X), 29(X)) = Q1-1(X). 2)
We set for a differential form u of degree ¢
N(u) =: My 1(dqu,u) + dg—1 Mgy 2(u, u). (3)

Note that the operator N%(u) is nonlinear.

Let time T > 0 be finite. Then for any fixed positive number p the
operators 0; + 1A, are parabolic on the cylinder X x (0,T) (see [7]). Consider
the following initial problem: given sufficiently regular differential forms f
of the induced bundle A%(¢) (the variable t enters into this bundle as a
parameter) and ug of the bundle A?, find differential forms u of the induced
bundle A%(t) and p of the induced bundle A9~!(¢) such that

Ou+ pAgu+ N9(u) +dyg—1p=f in X x (0,7),

d&i_ju=0 in X x [0,7], n
di_yp =0 in X x [0,7],
u(x,0) = ug in X,

For general elliptic complexes, this problem was considered in the works
[21], [22] and [28], where the open mapping theorems were proved in special
spaces of Holder (see [22], [21]) and Sobolev (see [28]) types. This means
that the range of the non-linear operator A, related to the problem, is open
in these constructed spaces. However, obtaining an existence theorem for
a solution (even a so-called weak one) and closedness of the range for the
related non-linear operator in such spaces appears to be a more difficult task.
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For example, if we take ¢ = 1 and a suitable nonlinear term, we may
treat (4) as the initial problem for the well-known Navier-Stokes equations
for incompressible fluid over the manifold X (see, for instance, [16] or [29]).
Note that the equation with respect to p is actually missing in this case,
because d* ; = 0.

We consider problem (4) in the case n = 3, ¢ = 2 and a special nonlinearity
Mg 1(dgu,u) = (dgu)u. It is easy to see that in this case we can treat the de
Rham differentials as do = div, d; = rot, d5 = —V, dj = rot and then (4)
transforms to

Ou + pAou + N%(u) +rotp = f in X x (0,7),

rotu =0 in X x [0,7], (5)
divp=20 in X x [0,7],
u(z,0) = ug in X,
where
N?%(u) = (div u)u + rot (Mg 2(u,u)), (6)

and Laplacian
Agu = dids + di1d] = —Vdivu + rotrot u = —Au.

Here Aw is the standard Laplace operator applied component-wise to the
differential form v in the space variable x.

Using projection to the next step of the complex (1), we prove an existence
theorem for a weak (distributional) solution in the constructed Bochner-
Sobolev type spaces for some (small enough) time 7. Note that, considering
general non-linear perturbations of linear parabolic equations, one has to
impose essential restrictions on the non-linear term N?2(u) in order to achieve
the existence of weak solutions. For example, one such condition can be the
positiveness of the nonlinear operator N2(u). However, we do not impose
such strong conditions on the non-linear term, but still achieve the existence
of weak solutions due to the special properties of the de Rham complex.

More specifically, Section 2 of this work is devoted to the construction of
special Bochner-Sobolev spaces.The main theorem of this chapter is Theorem
2, which describes the well-posedness of the action of the main operators in
the introduced spaces. The proof is based on Hélder’s inequality and the
Gagliardo-Nirenberg interpolation inequalities (see, for example, [29] for the
de Rham complex or [28] for arbitrary elliptic complexes).

The main results are presented in Section 3. Namely, by projecting problem
(5) onto the next step of the complex, we obtain the problem (20), which
is related to the original one. In Theorem 3, we prove that the projected
problem admits a weak solution g, provided the right-hand sides are sufficiently
regular and the time ¢y € (0,7 is sufficiently small. Then, in Theorem 4, we
demonstrate that for any fixed weak solution of the projected problem, there
exists a unique weak solution to the original problem (5). This result enables
us to "reconstruct"the solution to the original problem from the solution
to the projected problem. Next, in Theorem 5, we consider the projected
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problem in the Bochner-Sobolev spaces we have constructed and prove that,
in these spaces, a sufficiently regular solution exists for sufficiently small time
Ty € (0,T1]. Finally, in Theorem 6, we demonstrate that the original problem
also has a sufficiently regular solution for bounded time, and, moreover, this
solution is unique.

2 Functional spaces

Denote by Lf,, 1 < p < oo, the space of differential forms of degree
q with coefficients in the Lebesgue space LP(X). Similarly, we designate
the spaces of forms on X whose components are of Sobolev class or have
continuous partial derivatives. We denote these by Wiqp and C}, respectively

with smoothness s. In the particular case of p = 2, we denote H3, := Wi’f.
For calculations, it is convenient to use the fractional powers of the Laplace
operator. Namely, for a differential form u of degree ¢ we denote by

m, .
un.—

{AZL/2U, m is even, (M)

(dg ® d;_l)Aém_l)pu, m is odd.
It is easy to see that integration by parts yields
3 iy, =195l

Now, we want to recall the standard Hodge theorem for elliptic complexes.
For this purpose, we denote by H? the harmonic space of the complex (1),
ie.

H!={ueCf  dju=0and d; ju=0in X}, (8)

and by II' the orthogonal projection from L%q onto H9.
Theorem 1. Let 0 < q <n, s € Zy. Then the operator
Ag: HY? — HR, (9)

s Fredholm:
(1) the kernel of the operator (9) equals the finite-dimensional space HY;
(2) given v € H3,, there is a form u € Hit? such that Agu = v if and
only if (v, h)Liq =0 for all h € HY;

(3) there exists a pseudo-differential operator ¢ on X such that the operator
¢! Hio — Hy,”, (10)
induced by o9, is linear, bounded, and with the identity I we have
©IAy =1—117 on Hf\jl'Q, Agp? =111 on H}, (11)
Proof. See, for instance, |24, Theorem 2.2.2]. O
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Denote by Vi, == Hi, N Sd2_1 the space of all differential forms v € H3y,
satisfying dj_;u = 0 in the sense of distributions in X. Let now L*(1,H3,)
be the Bochner space of L?-mappings

u(t) : I — Hjyq,

where I = [0, 7], see, for instance, [14]. It is a Banach space with the norm

T
2 2
el gy = | g .

We need to introduce suitable Bochner-Sobolev type spaces, see [29] for the
de Rham complex and [28] for the general elliptic complexes. Namely, for
s € Z+ denote by Bg’fesl’s(XT) the space of all differential forms of degree q

over X7 := X X [0,7] with variable ¢ € [0,7] as a parameter, such that
u € C(I,VER) N LA(1, Vit
Vo € C(I, V") n L1, v 22
for all m 4+ 2j < 2s. It is a Banach space with the norm

2 ! 112 I+1 i 12

e > IVeVERullg 2+ VG VA ule o -
ve m+25<2s
0<i<k

k,2s,s

q,for (X7) to consist of all

Similarly, for s,k € Z, we define the space B
differential forms

f e CUHG) N L1, HRH
with the property that
Vmaj O(I Hk+2s—m—2j L2 I Hk+25—m—2j+1
q tf € ( I Aa ) N ( ) Ad )

for all m + 25 < 2s. We endow the space Bg’i‘?s(XT) with the natural norm
I j I j
1 zee = D IVeVGO e az,) + VG V0 T 12,
a.ror m+25<2s
0<i<k
Lastly, the space for the differential form p is denoted by Bffi’;ff(XT).
This space consists of all forms p from the space C(1, Hiiff“)ﬂLz (I, Hiiffﬁ)
such that dg_1p € B;’é‘?s(XT), ds_op =0 and for all h € HI1
(p, h)LQ . =0. (12)
A4

It is a Banach space with the norm
41,25, — d — ,28,8 -
||p|hgj;j11,l§re |dq 1pHB§,£‘;r
Define now, for suitable forms v and w of degree ¢, a bi-differential operator

By (w,v) = Mg 1(dgw,v) + Mg (dqu, w) + dg—1 (Mg 2(w,v) + Mg (v,w)),
(13)
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with the operators M, and M, o satisfying
(Mg (u,0)| < cqulul [of, | Mg(u,v)| < ¢q2ful |v] on X (14)

with some positive constants ¢; j. The following theorem allows us to see the
correctness of the operators in these spaces.

Theorem 2. Suppose that s € N, k € Zy and 2s +k > 5 — 1. Then the
mappings

vgl : Bk:,2(sfl),sfl(XT) _ ‘kam,Z(sfl),sfl(‘XT)7 m<k

q,for q,for
X k,2s,s k,2(s—1),s—1
Aq : Bq,vel (XT) — Bq,for (XT),
. k,2s,s k,2(s—1),s—1
8t : Bq,vel (XT) — Bq,for (XT),
k+2,2(s—1),5—1

are continuous. Besides, if w,v € B (X7) then the mappings

i,vel

Bq(w’ .) . Bk+2,2(5—1)78—1(XT) N Bk,2(8—1)78—1(XT)’

avel k2 %f;(r 1),5-1 (15)
b b §— 78_
Bq(w7 ) : Bq:vslS(XT) — Bq,for (XT),

are continuous, too. In particular, for all w,v € B;tj’Q(s_l)’s_l(XT) there is

a positive constant c, i, independent of v and w, such that

||Bq (w, U) ||B§:f20(r571)7571 < Cs.k |w||B§’tezl,2(sfl),sf1 ||UHB[1;;21,2(571),571 . (16)
Proof. See, for instance, [29] or [28]. O

k,2(s—1),s—1 (XT)

Let us introduce now the Helmholtz type projection P? from qu for

to the kernel of the operator dj.

Lemma 1. If s, k € Z, then for each q, the pseudo-differential operator
P? = dydgp? + 117 on X induces a continuous map

P?: B (X)) — B2 (X, (17)
such that
PloPlu = Plu, (Plu,v)r2 (x) = (u,P)p2 (x), (Plu,(I-Pu)p2 x) =0
for all u,v € B;’é(rs_l)’s_l.
Proof. See, for instance, [28]. O

The following lemma is just a consequence of Hodge Theorem 1.

j:é(rs—l)ys—l(XT) satisfy P1F = 0 in Xr. Then there

is a unique section p € B;ﬂjllﬁﬁg_l)’s_l(XT) such that (12) holds and

dy_1p=F in X x [0, 7). (18)

Lemma 2. Let F € B

Now we are ready to move on to the main part of this paper.
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3 Existence theorem

In order to get an existence theorem for Problem (5) we use a projection
to the next step of the complex (1). Namely, applying the operator dy = div
to equation (5) we have

{thivu — pdiv(Vdivu) + div((dive)u) = divf in X x (0,7), (19)
divu(z,0) = divug in X,
because rot u = 0 and div o rot = 0. Now,
div((divu)u) = (divu)? + Au - u = (divu)? 4+ Vdivu - u.
By Theorem 1
u = > Aou + IT?u = ©?*Vdivu 4 IT%u.
Denote
g = divu,

then we can rewrite (19) in the following way

{&gg — udiv(Vg) + g2 + Vg - (¢*Vg + TI2u) = divf in X x (0,7), (20)

g(z,0) = divug in X.

Theorem 3. Given any pair (f,uo) € L*(I,(Vy:)') x Vis, there emists a
time to € (0,T] such that for all t € [0,to] there exists a differential form
g€ C(I,L3;) N L*(I, Hy,) with Org € L*(I,(H,s)"), satisfying

d .
{ g.0)z, +u(Vg, V)2, = (divf = g? = Vg (¢ Vg + u),v),
g(‘, 0) = diVU()
1)
forallv e H/]{3 with k > 2.

Proof. Let {u,,} be the sequence of Faedo-Galerkin approximations, namely,

M
um =3¢ (B)by(@), (22)
j=1
then
M
gm = divu, = Z cg-m)(t) div b;(z), (23)
j=1

where the system {b;}jen is a L%,(X)-orthogonal basis in V}, and the
functions u,, satisfy the following relations

d _ .
a(gm,dlv bj)LiS + 1(Vgm, Vdiv bj)Li? = (24)

(div f = g, = Vgm - 0 Vgm — Vgm - P, div b)),
gm(x,0) = div ugm(x),
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for all 0 < j < m with the initial data uo,m from the linear span L£({b;}71,),

such that the sequence {ug, } converges to ug in Vy,. For instance, as {uom}
we may take the orthogonal projection onto the linear span L£({b;}7",).

Multiplying (24) by cg.m) (t) and summing over j we have

(Ocgms gm) 2, +1(Vgm: Vgm) 12, = (i f=95, =V g 0* Vgm—V g Tt gGm).
(25)
It follows from the Lemma by J.-L. Lions (see, for instance, [26, Ch. III, § 1,
Lemma 1.2]) that
d
%Hgm(" t)”%is =2 <8tgma gm>'

Then, integrating over t € [0, 7], we see that
t
o3, + 2 [ 19l it = (26)
¢
”gm(‘a O)H%ia + 2/ (din - gr2n - ng : 902 ng - va ’ H2um7gm>dt'
0
Since f € L*(I,L3,), then div f € L*(1,(V;)) and

t t
2| v fgmiar] <2 [ v Sl plonly s @)

4 [ 2 poft 2 poft 2
o i i e+ 5 [ 1Vl e+ 4 [ lonls

On the other hand
t t
2| [ <g?n,gm>dt‘ <2 [ gnlls (28)
0 0 A3

Note that in our case V3 = —V with n = 3. Then, from the Gagliardo-
Nirenberg inequality (see [20] or [4, Theorem 3.70]) we have

t
3
2 [ gl < 29
1

t 1 1 3
.
[ (190mlzz, + lomliz, ) lomlEs, +lomliz, | a <

t 1 1 3
o [ [19aml s onls, + lanlliz, | a <

t 3 3
2 2 3
cr [ (190l lom I, + ol ) dt <

t t
M 5 ; .
b [ 190 e+ ca [ (lonlity, + lonl) d
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with positive constants ¢, ci, and cs. The last expression is a consequence
of the standard Young’s inequality. Moreover, there are positive constants ¢

and c¢; such that

t t 4
3 6 2
| (alita, + g, )t < [ anla, (14 lawlsz, ) dt <

t t
2 6
or ([ amzg e+ [ amly at).

Then we conclude that

t t t t
3 <P 2 2 6
2 [anliy @t < § [ 190nls i+ [ lanlds e e [ ol a

with some constant ¢ > 0. Next,

t 3.yt
/ (Vgm - #* Vgm, gm)dt = Z/O /ajgm(¢23jgm)gm do dt =
0 -
Jj=1 X

3 ;
—Z/ /gm(<p28jgm)8jgmdxdt—/ /gf’n dz dt,
=170 ¢ 0y

because Y?Ag = gm. It means that

t 1 t
j[ <‘7gn1' ¢Q ‘7gnzygnz>dt:: _‘J/ u/ngglda:dt,
0 2 0 e

and hence

t t
2 /<ng-902ng,gm>dt‘ S/ lgmll3s_dt.
0 0 A3

Finally,

t 3.t A
U/P<‘7gﬂl'112uﬂlagnl>dt = E J/ u/nébgn1(112uﬁn)gnldatdt::
0 - 0
j=1 X

3.t . 3t .
—Z/ /gm(HQU%)@gmdmdt—Z/ /gfnﬁj(HQUfn) dx dt,
=170 % =179 %
and then .
/ (Vgm - TPy, g )dt = 0,
0

because div IT?u,, = 0.
Now, inequalities (26) - (32) give

t
2 2 2
o3, + 2 [ 1980l 0t < a0l +

4 [t 2 ! 2 I ! 2
o i B vt [ 10l + 5 [ ol de

(30)

(31)

(32)
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t t
2 6
2 [ ol at +2 [ oz

and then

t
o3, 0 [ Vol @t < o0z + G

4, 2 H ! 2 ‘ 6
L 12, o+ (5 420) /0 lgm22 d + 2¢ /0 Jom 32 .

It follows from the Gronwall-Perov’s Lemma (see, for instance [18, p. 360])
that there exists a time to € (0,7] and a positive constant Cy, such that

Hgm('vt)H%iS < Cto (35)

for all ¢ € [0,t9]. Then the sequence gy, is bounded in L>(Iy,, L3;), where
I, = [0,to]. Moreover, it follows from (34) and (35) that || Vgm (-, t)H%Q(ItO,LQg)
is also bounded. This means that there exists a subsequence that convergAes
weakly-* in L (I, L3 ;) and weakly in L?(I;,, H 3) to some g € L (I, L3;)N
L*(I,, H}\?,) We use the same designation gy, for such a subsequence. Then
the standard arguments show (see, for instance, [15], [26] or [13]|) that we
can pass to the limit in (24) with respect to m — oo and conclude that the

element ¢ satisfies equation (21).
(]

Let us now return to the Problem (5). Denoting again g = divu and
multiplying (5) scalar in Liz by a differential form v € Vfg we get

d
{CH(u,v)LiQw(g,divv)Lig = (- gu), 36)
u(xz,0) = wup.

Theorem 4. Let g € C(I,L3;) N L*(I, Hy3) be the solution to (21) for any
given pair (f,ug) € L*(I, VI&) X V/{g. Then there exists a unique differential
formu e C(I, V) NLA(I,VE) satisfying (36) for all v € VI with k > 2.

Proof. Indeed, let {u,} be the sequence of Faedo-Galerkin approximations
(see (22)) such that the sequence {gm } = {div u,, } converges to g € C(I, L35)N
L?*(I,H},). Substituting u, into (36) instead of u, v and integrating by
t € [0,to] we have

to
et 1, + 2031, 12, = e O, 2 [ 07 =t )t

(37)
As usual, we evaluate using the Holder inequality

to to 5 to 5
2| [ <f,um)dt‘< |l e [ 51
0 0 A2 0 A2




EXISTENCE THEOREM 1049

and by the Gagliardo-Nirenberg inequality

to
2 / (Grm U, Uy Yt
0

to
2
< [ iy Nl <

to
3/2 1/2 2
clnwu%@%mymm%+wﬁﬁjﬁs

to to to
2 4 2 2
o [l dt+er [ lanlta ol detex [ aliz, ol o

with some positive constants ¢, ¢; and co. Then

to to
. 2 < 2 2 2
o, < Wolla, + [ 10 e+ [y 39

with a constant ¢ > 0 independent of m. It follows from Gronwall’s Lemma
that

Jum DI, < C. (39)
where constant C' depends on the norms HfH%Q(ItO,LiQ)’ HUOH%iQ and \|gHC(It07Li2),
but is independent of m.

It follows that the sequence u,, is bounded in L™ (1y,, L3\3) and there is a
subsequence that converges weakly-x in L (I, L) to some u € L (Iy,, L35).
We again use the same designation wu,, for such a subsequence. Under the
hypothesis of this Theorem, the sequence g, = divu,, converges to g €
C(I,L%;) N L*(I, H},), then actually u € C(I, V) N L3(I,V2). Passing to
the limit in (37) with respect to m — oo we conclude that the element u
satisfies (36).

Let now v and u” be two solutions of (36) such that dive' = divu” = g.
Hence, the differential form u = «' —u' satisfies (36) with zero data (f,ug) =
(0,0). It follows from (38) and Gronwall-Perov’s Lemma that Hg(-,t)HLi3 =

0. Therefore, the Problem (36) has a unique solution.
Moreover, if u1, ug are two solutions to (36), corresponding to the solutions
g1 = divuy and go = divug of (21), then the differential form u = u; — ug

satisfies
d

a(u’v)LiQ Jr,u(g,div U)LiS = <fgu,v>, (40)
u(z,0) = 0,
where g = g1 — ¢o.

to
2 2 —
I, + 2l 1 = =2 [ guade. @)

Applying the Gagliardo-Nirenberg inequality, we have

to to 2
3/4 1/4
[t < e [tz (19 + ol ) e <

to
5/2 1 111/2 9 <
er [ (Mol Il + Nl oz, )

2
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to
2 4
2mmw%ﬁywdw%%ﬁgﬂmm%%ﬂé|wqﬁ

with positive constants ¢y, ¢, and 3. The last inequality, (41), and Gronwall-
Perov’s Lemma yield

2
. <
||u( at)HLiz = O’

then w; = uy and the Problem (36) has a unique solution.
O

Corollary 1. Under the hypothesis of Theorem 3, let g € C(I,L3;) N
L*(I,H},) be a solution of (21) and let u € C(I,Vi,) N L*(1,VZ) be the
solution of (36), corresponding to g. If moreover g € C(I, H}\g,)ﬂLQ(I, H}Xg,),
then the solution g is unique.

Proof. Indeed, let g1, 92 € C(I,Hy,) N L*(I, Hy3) be two solutions of (21)
with corresponding forms ui,up € C(I,Hjs) N L*(I,H}5) satisfying (36).
Hence, the differential form g = g1 — go satisfies

d
Glalzz, +ulVeliz, = (=(of = 68) = (Vor - (¢* Vau + Pur)—
v.g2 : (902 v.gZ + H2u2)> 7U> )
g(-,0) = 0.
(42)

Integrating by t € I, we get
2 o 2 fo
loCtle, + 2 [ Vol de <2 [ llolon ot (@)
A3 0 A2 0

(Va1 (¢* Vg1 + TPuy) — Vg - (¢* Vgo + IT%uy)) ,v)|dt,
We have to estimate the right side of (43). First, it follows from the Gagliardo-
Nirenberg interpolation inequality that

to
2Arw@+@»mms (44)
to 3/2 1/2 2
s+ iz [ (IVaIZE Nl + Lol ) <

to 9 to )
w [ IVl ke [ lals

with positive constants ¢ and c¢;. Next,

to
2/ (Vg1 ¢° Vg1 —Vga - 9> Vo + Vg1 - > Vs — Vg1 - ¢* Vg, g)| dt <
0
(45)

to to
2/0 \<V91-¢2Vg,g>\dt+2/0 (Vg ¢*Vgs,g)|dt <

to
3/4 5/4 2
il [ (19035 M3 + gl ) des
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fo 7/4 \ 1/4 2
sl [ (19015 ol + ol ) de <

to 5 to 9
ey T

with some positive constants ¢, c1, and ce. Finally,

to
2/ (Vg1 - TPuy — Vg - ITPug + Vga - TPuy — Vo - T%uq, g)| dt < (46)
0

to

2/00}<Vg'ﬂ2u1,g>|dt+2/0 }<V92'H2(u17u2),g>‘dt

The Theorem 4 implies that u; = ws. On the other hand, integrating by
parts, we easily see that

¢
2/0 ‘<Vg-H2u1,g>|dt:O,
0

and then (46) equals to zero.
Finally, using (43) - (46), we get

to
2. < 2
llg( ’tHLiB <c ; |’9”Li3dt

with some constant ¢ > 0. Then, it follows from the Gronwall-Perov’s Lemma,
that Hg(-,t)||L23 = 0, and thus the Problem (21) has a unique solution. [
A

Theorem 5. Let s € N and k € Zy with k > 3/2. Then for all

k+1,2(s—1),5—1
(f,uo0) € BA;for(s b (Xr) x Vi§+k+1

there exists a time Ty, € (0,T) such that the Problem (20) has a solution

k72 )
g€ BA?’;oi(XTk)'

Moreover, the solution g is unique, if the form w in (19) satisfies (36).
Proof. First of all, denote by

A — A3, r is even,
" A2, r is odd.

As before, let g, be the Faedo-Galerkin approximations (see (23)). We
start with the following apriori estimates.

Lemma 3. Under the hypothesis of Theorem 5, if (f,ug) € Bngrolr,O,O(XT) X

V/f;g with some k € Zy, then there exists a time Ty, € (0,T] such that

K2 K41 2
I 0018 1, 1198 0l iz, <G 0D
for any 0 < k' < k + 2, where Iy, = [0,T}] and the constants C =
Cir (1, f,uo) > 0 depend on k', p, and the norms || f|| srk+1,0,0 s lwolly x+s
BQ’for (XTk) VA2

but not on m.



1052 A.N. POLKOVNIKOV

Proof. Indeed, if k' = 0 then (47) follows immediately from (34) and Gronwall-
Perov’s Lemma. Now, substituting g,,, and V2" gy, in (20) instead of g and v
respectively, with some r € N, and integrating by ¢ € [0,7] we get

t
V50013 +20 [ 1957 gl ot = (15)

t
vagm('7 O)H%RT + 2/(; <diV f - gr2n - va : 902 va - va : H2uma V§T9m>dt'
We have to estimate the right side of (48). First,

t t
2| [ vy, VEgnlde| <2 [ 195 v Fliy 195 gl e < (49)
0 0 Ap_1 Aprta

4 t B . L t
,U/o V3 1d1Vf||ii 1dt+4/0 vaﬂgm”%i +1dt.
Further,
‘ ! 17,2 1
/ (620, V3 G dt\ <2 / V5 @2 s V5 gmllig  dt. (50)
0 r—1 r+1

Let r > 2, using Holder and Gagliardo-Nirenberg inequalities, we get

-1/ 2
IV <gm>uLiMsl+§wj woll0anl, Pgulliy, < 61)
«@ =r—

3/4
+1 1/4
> Caﬁ<<”va| gl z2 +Hv'agm||Li> IVElg e+
jal+|Bl=r—1 o ! Hle

3/4
«a 1 1/4
+Iv 'gmnp)«nvﬁ'* PSR b PP I

2

Alg|

5/4 3/4
I anlzg | ) < (Il + ol 1 50l )
A3

Al
with some positive constants ¢ and c,g. For the exception case r = 1, the
last inequality takes the form

3/2
IVsla2los, << (lomlz, +lonll2 1900055 ) (52)

because in (5 ) there arises a case when |a| = |8| = r —1 = 0. It follows
from (50), (51) and Young’s inequality that

o| [t o] <& [105tantty ae o

5/2 3 2
A P A 1
A3
for r > 2 and

t t
7]
2' / <gfn,v§gm>dt] <7 / IV3gml7  dt+ (54)
0 0 A3
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t
Nl )+ elgnlornaz,y | Va0l i

for r = 1, with some constant ¢ > 0.
Next,

t
2 / <ng ' 902 nga V§T9m>dt‘ S (55)
0

t
-1 2 1
2 [ 195 (Von - V) Iz 195+ 0l
Analogous to (51), we have

V5 (Vgm - 9> Vgm) 12 < (56)
Ar_1

1/4

3 4
e (Rambga 1620l + Nl 1% 0m s | 50

1/4 3/4
IV39m I35 16 m 1195 )

with r € N and some constant ¢ > 0. Theorem 1 implies that Hg02gmHHr§1 <
A

c||gm|lyr-1 with some positive constant c, then
A3

t t
/ (Vagm - ¢ ng,V3 Im) t‘ < Z/ va—HgmHi?\ dt+ (57)
0 r+1

5/2 3/2
sl st + el s, [ 15l

o, [ 150l

with ¢ > 0.
Finally,

/0 (VgmIPupy, V3’ gm>dt' < (58)

t
+1 -1 2
and we have again

V5™ (Vg - IPum) Iz < (59)

r—1

1/4

3 4
e (om g TPl + el VP | 503
A

1/4 3/4
95 0m 35 ITCunlr, 195 g )

with positive constant c. Operator 12 is bounded in LiQ by the Hodge
Theorem 1. On the other hand, Theorem 4 yields that the sequence {u,,} is
bounded in L3, (see (39)), then HH2umHH/r\2 < cHgm]]H;g1 and we obtain



1054 A.N. POLKOVNIKOV

2

t t
(Vg V3 gm)dt| < & [ V5 gullFs  dt+ (60)
0 4 0 At
t
4 5/2 3/2
CHgmHC(LH;?) +CHgm‘C(I,H1T\31)/O vagmHLdet""_

t
Ay [ V5ol de

with ¢ > 0.
It follows from (48) - (60) and Gronwall-Perov’s Lemma that if (f,ug) €

Bg;}lr,O,O(XT) X ij?’ and the norm ||gmHC([7HX§1) is bounded for some r € N,

r < k + 2, then there exists a time ¢, € (0,%] and a positive constant C,,
which depends on the norms HfHBQJ&,lr'O’O(XTk) and Hu()HVHs, such that

tr
V50 +ie [ IV5 gl e < Colie frwn). (o)

Using (61) consistently for r = 1,...,k + 2 we get a family of times t,.
Denote T}, = mkin2 t., then, (61) yields that for any k € Z, there exists a
+

r<

time T}, such that (3) is fulfilled. O

Theorem 3 implies that there exists a solution g € C(I, L3,) N L*(1, Hys,)
of (21). On the other hand, it follows from Lemma 3 that for each (f,ug) €
Bﬁi}(’j(&l)’s*l (X7) forfJ“kH there exists a time T}, € (0, 7] and a subsequence
{gm; = divuyy} such that {g,} converges weakly in L*(I,, L3,) and *-
weakly in L% (Ir,, HY$*)NL*(I, HY$?) to an element g, then g € B/’iSQ‘zO‘i(XTk)
Moreover, the uniqueness of g immediately follows from Corollary 1.

O
Theorem 6. Let s € N and k € Z, with k > 2. Then for all

k+1,2(s—1),5—1
(f,u0) € Byt 27D (Xp) x VEHEH

there exists a time T € (0,T] such that the Problem (5) has a unique solution

k4-1,2s, k+2,2(s—1),5—1
(u,p) € BYEL2(Xg,) x Byt 22070 ().

Proof. Indeed, applying the projection P? (see Lemma 1 above) to the
equation (5) we have

{6tu+uA2u+P2N2(u) = P%f in X x (0,T), (62
u(z,0) = ugp in X,
then the form p actually has to satisfy the equation
rotp = (I — P?)(f — N*(u)) in X x (0,7). (63)
Multiplying (62) by v € V% we get the Problem (36). Then, the existence
and regularity of the solution u follows immediately from Theorems 4 and
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5. On the other hand, it follows from Lemma 2 that there exists a unique

differential form p € Bi;i’i(sfl)’sfl(XTk), satisfying (63).

O
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