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Abstract: Let {dq,Λq} be the de Rham complex on a smooth,
compact, closed manifoldX over R3 with Laplacians∆q. We consider
operator equations associated with the parabolic di�erential operators
∂t +∆2 +N2 on the second step of the complex with a nonlinear
bi-di�erential operator of zero order N2. Using projection on the
next step of the complex, we show that the equation has a unique
solution in special Bochner-Sobolev type functional spaces for some
(su�ciently small) time T ∗.

Keywords: elliptic di�erential complexes, parabolic nonlinear equations,
open mapping theorem.

1 Introduction

The Navier-Stokes equations have remained one of the central challenges
for both mathematicians and �uid dynamics specialists for many decades
(see, for example, [13], [26]). These equations have also been studied within
the framework of the theory of di�erential complexes, see works such as
[6], [16], and many others. In [29], the problem was investigated for the de
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Rham complex in Rn within special Bochner-Sobolev spaces. In particular,
at the �rst step of the complex, the problem coincides with the Navier-
Stokes equations for incompressible �uids. For such problems, open mapping
theorems were established; however, the question of the existence of solutions
for arbitrary degrees of the complex remains unresolved. This paper focuses
on studying the existence of solutions to the problem at the second step of
the de Rham complex in R3.

Namely, consider the de Rham complex on a Riemannian n-dimensional
smooth compact closed manifold X with vector bundles Λq of exterior forms
of degree q over X,

0 −→ Ω0(X)
d0−→ Ω1(X)

d1−→ · · · dn−1−−−→ Ωn(X) −→ 0. (1)

Here Ωq(X) denotes the space of all di�erential forms of degree q with
smooth coe�cients on X. In this case the Laplacians ∆q = d∗qdq + dq−1d

∗
q−1,

q = 0, 1, . . . , n, of the complex are second-order strongly elliptic di�erential
operators on X, where operator d∗q is a formal adjoint to dq. As usual, we
assume that for q < 0 and q ≥ n, dq is equal to zero.

We want to study non-linear problems associated with the complex. To
this end, we de�ne two bilinear bi-di�erential operators of zero order Mi,j

(see [5] or [24]),

Mq,1(·, ·) :
(
Ωq+1(X), Ωq(X)

)
→ Ωq(X),

Mq,2(·, ·) :
(
Ωq(X), Ωq(X)

)
→ Ωq−1(X).

(2)

We set for a di�erential form u of degree q

N q(u) =: Mq,1(dqu, u) + dq−1Mq,2(u, u). (3)

Note that the operator N q(u) is nonlinear.
Let time T > 0 be �nite. Then for any �xed positive number µ the

operators ∂t+µ∆q are parabolic on the cylinder X×(0, T ) (see [7]). Consider
the following initial problem: given su�ciently regular di�erential forms f
of the induced bundle Λq(t) (the variable t enters into this bundle as a
parameter) and u0 of the bundle Λq, �nd di�erential forms u of the induced
bundle Λq(t) and p of the induced bundle Λq−1(t) such that

∂tu+ µ∆qu+N q(u) + dq−1p = f in X × (0, T ),

d∗q−1u = 0 in X × [0, T ],

d∗q−2p = 0 in X × [0, T ],

u(x, 0) = u0 in X,

(4)

For general elliptic complexes, this problem was considered in the works
[21], [22] and [28], where the open mapping theorems were proved in special
spaces of H�older (see [22], [21]) and Sobolev (see [28]) types. This means
that the range of the non-linear operator Aq, related to the problem, is open
in these constructed spaces. However, obtaining an existence theorem for
a solution (even a so-called weak one) and closedness of the range for the
related non-linear operator in such spaces appears to be a more di�cult task.
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For example, if we take q = 1 and a suitable nonlinear term, we may
treat (4) as the initial problem for the well-known Navier-Stokes equations
for incompressible �uid over the manifold X (see, for instance, [16] or [29]).
Note that the equation with respect to p is actually missing in this case,
because d∗−1 = 0.

We consider problem (4) in the case n = 3, q = 2 and a special nonlinearity
Mq,1(dqu, u) = (dqu)u. It is easy to see that in this case we can treat the de
Rham di�erentials as d2 = div, d1 = rot, d∗2 = −∇, d∗1 = rot and then (4)
transforms to

∂tu+ µ∆2u+N2(u) + rot p = f in X × (0, T ),

rotu = 0 in X × [0, T ],

div p = 0 in X × [0, T ],

u(x, 0) = u0 in X,

(5)

where
N2(u) = (div u)u+ rot (Mq,2(u, u)), (6)

and Laplacian

∆2u = d∗2d2 + d1d
∗
1 = −∇div u+ rot rotu = −∆u.

Here ∆u is the standard Laplace operator applied component-wise to the
di�erential form u in the space variable x.

Using projection to the next step of the complex (1), we prove an existence
theorem for a weak (distributional) solution in the constructed Bochner-
Sobolev type spaces for some (small enough) time T ∗. Note that, considering
general non-linear perturbations of linear parabolic equations, one has to
impose essential restrictions on the non-linear term N2(u) in order to achieve
the existence of weak solutions. For example, one such condition can be the
positiveness of the nonlinear operator N2(u). However, we do not impose
such strong conditions on the non-linear term, but still achieve the existence
of weak solutions due to the special properties of the de Rham complex.

More speci�cally, Section 2 of this work is devoted to the construction of
special Bochner-Sobolev spaces.The main theorem of this chapter is Theorem
2, which describes the well-posedness of the action of the main operators in
the introduced spaces. The proof is based on H�older's inequality and the
Gagliardo-Nirenberg interpolation inequalities (see, for example, [29] for the
de Rham complex or [28] for arbitrary elliptic complexes).

The main results are presented in Section 3. Namely, by projecting problem
(5) onto the next step of the complex, we obtain the problem (20), which
is related to the original one. In Theorem 3, we prove that the projected
problem admits a weak solution g, provided the right-hand sides are su�ciently
regular and the time t0 ∈ (0, T ] is su�ciently small. Then, in Theorem 4, we
demonstrate that for any �xed weak solution of the projected problem, there
exists a unique weak solution to the original problem (5). This result enables
us to "reconstruct"the solution to the original problem from the solution
to the projected problem. Next, in Theorem 5, we consider the projected
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problem in the Bochner-Sobolev spaces we have constructed and prove that,
in these spaces, a su�ciently regular solution exists for su�ciently small time
Tk ∈ (0, T ]. Finally, in Theorem 6, we demonstrate that the original problem
also has a su�ciently regular solution for bounded time, and, moreover, this
solution is unique.

2 Functional spaces

Denote by Lp
Λq , 1 ≤ p ≤ ∞, the space of di�erential forms of degree

q with coe�cients in the Lebesgue space Lp(X). Similarly, we designate
the spaces of forms on X whose components are of Sobolev class or have
continuous partial derivatives. We denote these byW s,p

Λq and Cs
Λq respectively

with smoothness s. In the particular case of p = 2, we denote Hs
Λq := W s,2

Λq .
For calculations, it is convenient to use the fractional powers of the Laplace

operator. Namely, for a di�erential form u of degree q we denote by

∇m
q u :=

{
∆

m/2
q u, m is even,

(dq ⊕ d∗q−1)∆
(m−1)/2
q u, m is odd.

(7)

It is easy to see that integration by parts yields∑
|α|=m

∥∂αu∥2L2
Λq

= ∥∇m
q u∥2L2

Λq
.

Now, we want to recall the standard Hodge theorem for elliptic complexes.
For this purpose, we denote by Hq the harmonic space of the complex (1),
i.e.

Hq =
{
u ∈ C∞

Λq : dqu = 0 and d∗q−1u = 0 in X
}
, (8)

and by Πi the orthogonal projection from L2
Λq onto Hq.

Theorem 1. Let 0 ≤ q ≤ n, s ∈ Z+. Then the operator

∆q : H
s+2
Λq → Hs

Λq (9)

is Fredholm:
(1) the kernel of the operator (9) equals the �nite-dimensional space Hq;
(2) given v ∈ Hs

Λq , there is a form u ∈ Hs+2
Λq such that ∆qu = v if and

only if (v, h)L2
Λq

= 0 for all h ∈ Hq;

(3) there exists a pseudo-di�erential operator φi on X such that the operator

φq : Hs
Λq → Hs+2

Λq , (10)

induced by φq, is linear, bounded, and with the identity I we have

φq∆q = I −Πq on Hs+2
Λq , ∆qφ

q = I −Πq on Hs
Λq (11)

Proof. See, for instance, [24, Theorem 2.2.2]. □
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Denote by V s
Λq := Hs

Λq ∩ Sd∗q−1
the space of all di�erential forms u ∈ Hs

Λq

satisfying d∗q−1u = 0 in the sense of distributions in X. Let now L2(I,Hs
Λq)

be the Bochner space of L2-mappings

u(t) : I → Hs
Λq ,

where I = [0, T ], see, for instance, [14]. It is a Banach space with the norm

∥u∥2L2(I,Hs
Λq )

=

∫ T

0
∥u∥2Hs

Λq
dt.

We need to introduce suitable Bochner-Sobolev type spaces, see [29] for the
de Rham complex and [28] for the general elliptic complexes. Namely, for

s ∈ Z+ denote by Bk,2s,s
q,vel (XT ) the space of all di�erential forms of degree q

over XT := X × [0, T ] with variable t ∈ [0, T ] as a parameter, such that

u ∈ C(I, V k+2s
Λq ) ∩ L2(I, V k+2s+1

Λq )

and
∇m

q ∂j
t u ∈ C(I, V k+2s−m−2j

Λq ) ∩ L2(I, V k+2s+1−m−2j
Λq )

for all m+ 2j ≤ 2s. It is a Banach space with the norm

∥u∥2
Bk,2s,s

q,vel

:=
∑

m+2j≤2s
0≤l≤k

∥∇l
q∇m

q ∂j
t u∥2C(I,L2

Λq )
+ ∥∇l+1

q ∇m
q ∂j

t u∥2L2(I,L2
Λq )

.

Similarly, for s, k ∈ Z+, we de�ne the space Bk,2s,s
q,for (XT ) to consist of all

di�erential forms

f ∈ C(I,H2s+k
Λq ) ∩ L2(I,H2s+k+1

Λq )

with the property that

∇m
q ∂j

t f ∈ C(I,Hk+2s−m−2j
Λq ) ∩ L2(I,Hk+2s−m−2j+1

Λq )

for all m+2j ≤ 2s. We endow the space Bk,2s,s
q,for (XT ) with the natural norm

∥f∥2
Bk,2s,s

q,for

:=
∑

m+2j≤2s
0≤l≤k

∥∇l
q∇m

q ∂j
t f∥2C(I,L2

Λq )
+ ∥∇l+1

q ∇m
q ∂j

t f∥2L2(I,L2
Λq )

.

Lastly, the space for the di�erential form p is denoted by Bk+1,2s,s
q−1,pre (XT ).

This space consists of all forms p from the space C(I,H2s+k+1
Λq−1 )∩L2(I,H2s+k+2

Λq−1 )

such that dq−1p ∈ Bk,2s,s
q,for (XT ), d

∗
q−2p = 0 and for all h ∈ Hq−1

(p, h)L2
Λq−1

= 0. (12)

It is a Banach space with the norm

∥p∥
Bk+1,2s,s

q−1,pre
= ∥dq−1p∥Bk,2s,s

q,for
.

De�ne now, for suitable forms v and w of degree q, a bi-di�erential operator

Bq(w, v) = Mq,1(dqw, v) +Mq,1(dqv, w) + dq−1

(
Mq,2(w, v) +Mq,2(v, w)

)
,

(13)
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with the operators Mq,1 and Mq,2 satisfying

|Mq,1(u, v)| ≤ cq,1|u| |v|, |Mq,2(u, v)| ≤ cq,2|u| |v| on X (14)

with some positive constants ci,j . The following theorem allows us to see the
correctness of the operators in these spaces.

Theorem 2. Suppose that s ∈ N, k ∈ Z+ and 2s + k > n
2 − 1. Then the

mappings

∇m
q : B

k,2(s−1),s−1
q,for (XT ) → B

k−m,2(s−1),s−1
q,for (XT ), m ≤ k

∆q : Bk,2s,s
q,vel (XT ) → B

k,2(s−1),s−1
q,for (XT ),

∂t : Bk,2s,s
q,vel (XT ) → B

k,2(s−1),s−1
q,for (XT ),

are continuous. Besides, if w, v ∈ B
k+2,2(s−1),s−1
i,vel (XT ) then the mappings

Bq(w, ·) : B
k+2,2(s−1),s−1
q,vel (XT ) → B

k,2(s−1),s−1
q,for (XT ),

Bq(w, ·) : Bk,2s,s
q,vel (XT ) → B

k,2(s−1),s−1
q,for (XT ),

(15)

are continuous, too. In particular, for all w, v ∈ B
k+2,2(s−1),s−1
q,vel (XT ) there is

a positive constant cs,k, independent of v and w, such that

∥Bq(w, v)∥Bk,2(s−1),s−1
q,for

≤ cs,k∥w∥Bk+2,2(s−1),s−1
q,vel

∥v∥
B

k+2,2(s−1),s−1
q,vel

. (16)

Proof. See, for instance, [29] or [28]. □

Let us introduce now the Helmholtz type projection Pq fromB
k,2(s−1),s−1
q,for (XT )

to the kernel of the operator d∗q .

Lemma 1. If s, k ∈ Z+, then for each q, the pseudo-di�erential operator
Pq = d∗qdqφ

q +Πq on X induces a continuous map

Pq : B
k,2(s−1),s−1
q,for (XT ) → B

k,2(s−1),s−1
q,vel (XT ), (17)

such that

Pq◦Pqu = Pqu, (Pqu, v)L2
Λq (X) = (u,Pqv)L2

Λq (X), (Pqu, (I−Pq)u)L2
Λq (X) = 0

for all u, v ∈ B
k,2(s−1),s−1
q,for .

Proof. See, for instance, [28]. □

The following lemma is just a consequence of Hodge Theorem 1.

Lemma 2. Let F ∈ B
k,2(s−1),s−1
q,for (XT ) satisfy PqF = 0 in XT . Then there

is a unique section p ∈ B
k+1,2(s−1),s−1
q−1,pre (XT ) such that (12) holds and

dq−1p = F in X × [0, T ]. (18)

Now we are ready to move on to the main part of this paper.



EXISTENCE THEOREM 1045

3 Existence theorem

In order to get an existence theorem for Problem (5) we use a projection
to the next step of the complex (1). Namely, applying the operator d2 = div
to equation (5) we have{

∂tdivu− µ div(∇div u) + div((div u)u) = divf in X × (0, T ),

div u(x, 0) = div u0 in X,
(19)

because rotu = 0 and div ◦ rot ≡ 0. Now,

div((div u)u) = (div u)2 +∆u · u = (div u)2 +∇div u · u.

By Theorem 1

u = φ2∆2u+Π2u = φ2∇div u+Π2u.

Denote

g = div u,

then we can rewrite (19) in the following way{
∂tg − µ div(∇g) + g2 +∇g · (φ2∇g +Π2u) = divf in X × (0, T ),

g(x, 0) = div u0 in X.
(20)

Theorem 3. Given any pair (f, u0) ∈ L2(I, (V 0
Λ2)

′) × V 1
Λ2, there exists a

time t0 ∈ (0, T ] such that for all t ∈ [0, t0] there exists a di�erential form
g ∈ C(I, L2

Λ3) ∩ L2(I,H1
Λ3) with ∂tg ∈ L2(I, (H1

Λ3)
′), satisfying{

d

dt
(g, v)L2

Λ3
+ µ(∇g,∇v)L2

Λ2
= ⟨div f − g2 −∇g · (φ2∇g +Π2u), v⟩,

g(·, 0) = div u0
(21)

for all v ∈ Hk
Λ3 with k ≥ 2.

Proof. Let {um} be the sequence of Faedo-Galerkin approximations, namely,

um =
M∑
j=1

c
(m)
j (t)bj(x), (22)

then

gm = div um =

M∑
j=1

c
(m)
j (t) div bj(x), (23)

where the system {bj}j∈N is a L2
Λ2(X)-orthogonal basis in V 1

Λ2 and the
functions um satisfy the following relations

d

dt
(gm, div bj)L2

Λ3
+ µ(∇gm,∇div bj)L2

Λ2
= (24)

⟨div f − g2m −∇gm · φ2∇gm −∇gm ·Π2um, div bj⟩,
gm(x, 0) = div u0,m(x),
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for all 0 ≤ j ≤ m with the initial data u0,m from the linear span L({bj}mj=1),

such that the sequence {u0,m} converges to u0 in V 1
Λ2 . For instance, as {u0,m}

we may take the orthogonal projection onto the linear span L({bj}mj=1).

Multiplying (24) by c
(m)
j (t) and summing over j we have

(∂tgm, gm)L2
Λ3
+µ(∇gm,∇gm)L2

Λ2
= ⟨div f−g2m−∇gm·φ2∇gm−∇gm·Π2um, gm⟩.

(25)
It follows from the Lemma by J.-L. Lions (see, for instance, [26, Ch. III, � 1,
Lemma 1.2]) that

d

dt
∥gm(·, t)∥2L2

Λ3
= 2 ⟨∂tgm, gm⟩.

Then, integrating over t ∈ [0, T ], we see that

∥gm(·, t)∥2L2
Λ3

+ 2µ

∫ t

0
∥∇gm∥2L2

Λ2
dt = (26)

∥gm(·, 0)∥2L2
Λ3

+ 2

∫ t

0
⟨div f − g2m −∇gm · φ2∇gm −∇gm ·Π2um, gm⟩dt.

Since f ∈ L2(I, L2
Λ2), then div f ∈ L2(I, (V 1

Λ3)
′) and

2

∣∣∣∣∫ t

0
⟨div f, gm⟩dt

∣∣∣∣ ≤ 2

∫ t

0
∥div f∥(V 1

Λ3 )
′∥gm∥V 1

Λ3
dt ≤ (27)

4

µ

∫ t

0
∥div f∥2(V 1

Λ3 )
′dt+

µ

4

∫ t

0
∥∇gm∥2L2

Λ2
dt+

µ

4

∫ t

0
∥gm∥2L2

Λ3
dt.

On the other hand

2

∣∣∣∣∫ t

0
⟨g2m, gm⟩dt

∣∣∣∣ ≤ 2

∫ t

0
∥gm∥3L3

Λ3
dt. (28)

Note that in our case ∇3 = −∇ with n = 3. Then, from the Gagliardo-
Nirenberg inequality (see [20] or [4, Theorem 3.70]) we have

2

∫ t

0
∥gm∥3L3

Λ3
dt ≤ (29)

c

∫ t

0

[(
∥∇gm∥L2

Λ2
+ ∥gm∥L2

Λ3

) 1
2 ∥gm∥

1
2

L2
Λ3

+ ∥gm∥L2
Λ3

]3
dt ≤

c1

∫ t

0

[
∥∇gm∥

1
2

L2
Λ2
∥gm∥

1
2

L2
Λ3

+ ∥gm∥L2
Λ3

]3
dt ≤

c2

∫ t

0

(
∥∇gm∥

3
2

L2
Λ2
∥gm∥

3
2

L2
Λ3

+ ∥gm∥3L2
Λ3

)
dt ≤

µ

2

∫ t

0
∥∇gm∥2L2

Λ2
dt+ c3

∫ t

0

(
∥gm∥3L2

Λ3
+ ∥gm∥6L2

Λ3

)
dt
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with positive constants c, c1, and c2. The last expression is a consequence
of the standard Young's inequality. Moreover, there are positive constants c
and c1 such that∫ t

0

(
∥gm∥3L2

Λ3
+ ∥gm∥6L2

Λ3

)
dt ≤ c

∫ t

0
∥gm∥2L2

Λ3

(
1 + ∥gm∥L2

Λ3

)4
dt ≤

c1

(∫ t

0
∥gm∥2L2

Λ3
dt+

∫ t

0
∥gm∥6L2

Λ3
dt

)
.

Then we conclude that

2

∫ t

0
∥gm∥3L3

Λ3
dt ≤ µ

2

∫ t

0
∥∇gm∥2L2

Λ2
dt+ c

∫ t

0
∥gm∥2L2

Λ3
dt+ c

∫ t

0
∥gm∥6L2

Λ3
dt

(30)
with some constant c > 0. Next,∫ t

0
⟨∇gm · φ2∇gm, gm⟩dt =

3∑
j=1

∫ t

0

∫
X

∂jgm(φ2∂jgm)gm dx dt =

−
3∑

j=1

∫ t

0

∫
X

gm(φ2∂jgm)∂jgm dx dt−
∫ t

0

∫
X

g3m dx dt,

because φ2∆gm = gm. It means that∫ t

0
⟨∇gm · φ2∇gm, gm⟩dt = −1

2

∫ t

0

∫
X

g3m dx dt,

and hence

2

∣∣∣∣∫ t

0
⟨∇gm · φ2∇gm, gm⟩dt

∣∣∣∣ ≤ ∫ t

0
∥gm∥3L3

Λ3
dt. (31)

Finally,∫ t

0
⟨∇gm ·Π2um, gm⟩dt =

3∑
j=1

∫ t

0

∫
X

∂jgm(Π2ujm)gm dx dt =

−
3∑

j=1

∫ t

0

∫
X

gm(Π2ujm)∂jgm dx dt−
3∑

j=1

∫ t

0

∫
X

g2m∂j(Π
2ujm) dx dt,

and then ∫ t

0
⟨∇gm ·Π2um, gm⟩dt = 0, (32)

because divΠ2um = 0.
Now, inequalities (26) - (32) give

∥gm(·, t)∥2L2
Λ3

+ 2µ

∫ t

0
∥∇gm∥2L2

Λ3
dt ≤ ∥gm(·, 0)∥2L2

Λ3
+ (33)

4

µ

∫ t

0
∥div f∥2(V 1

Λ3 )
′dt+ µ

∫ t

0
∥∇gm∥2L2

Λ2
+

µ

4

∫ t

0
∥gm∥2L2

Λ3
dt+
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2c

∫ t

0
∥gm∥2L2

Λ3
dt+ 2c

∫ t

0
∥gm∥6L2

Λ3
dt,

and then

∥gm(·, t)∥2L2
Λ3

+ µ

∫ t

0
∥∇gm∥2L2

Λ3
dt ≤ ∥gm(·, 0)∥2L2

Λ3
+ (34)

4

µ
∥div f∥2

L2
(
I,(V 1

Λ3 )
′
) +

(µ
4
+ 2c

)∫ t

0
∥gm∥2L2

Λ3
dt+ 2c

∫ t

0
∥gm∥6L2

Λ3
dt.

It follows from the Gronwall-Perov's Lemma (see, for instance [18, p. 360])
that there exists a time t0 ∈ (0, T ] and a positive constant Ct0 such that

∥gm(·, t)∥2L2
Λ3

≤ Ct0 (35)

for all t ∈ [0, t0]. Then the sequence gm is bounded in L∞(It0 , L
2
Λ3), where

It0 = [0, t0]. Moreover, it follows from (34) and (35) that ∥∇gm(·, t)∥2
L2(It0 ,L

2
Λ3 )

is also bounded. This means that there exists a subsequence that converges
weakly-∗ in L∞(It0 , L

2
Λ3) and weakly in L2(It0 , H

1
Λ3) to some g ∈ L∞(It0 , L

2
Λ3)∩

L2(It0 , H
1
Λ3). We use the same designation gm for such a subsequence. Then

the standard arguments show (see, for instance, [15], [26] or [13]) that we
can pass to the limit in (24) with respect to m → ∞ and conclude that the
element g satis�es equation (21).

□

Let us now return to the Problem (5). Denoting again g = div u and
multiplying (5) scalar in L2

Λ2 by a di�erential form v ∈ V k
Λ2 we get{

d

dt
(u, v)L2

Λ2
+ µ(g, div v)L2

Λ3
= ⟨f − gu, v⟩,

u(x, 0) = u0.
(36)

Theorem 4. Let g ∈ C(I, L2
Λ3)∩L2(I,H1

Λ3) be the solution to (21) for any

given pair (f, u0) ∈ L2(I, V 0
Λ2)× V 1

Λ2. Then there exists a unique di�erential

form u ∈ C(I, V 1
Λ2) ∩ L2(I, V 2

Λ2) satisfying (36) for all v ∈ V k
Λ3 with k ≥ 2.

Proof. Indeed, let {um} be the sequence of Faedo-Galerkin approximations
(see (22)) such that the sequence {gm} = {div um} converges to g ∈ C(I, L2

Λ3)∩
L2(I,H1

Λ3). Substituting um into (36) instead of u, v and integrating by
t ∈ [0, t0] we have

∥um(·, t)∥2L2
Λ2

+2µ∥gm∥2L2(It0 ,L
2
Λ3 )

= ∥um(x, 0)∥2L2
Λ2

+2

∫ t0

0
⟨f −gmum, um⟩dt.

(37)
As usual, we evaluate using the H�older inequality

2

∣∣∣∣∫ t0

0
⟨f, um⟩dt

∣∣∣∣ ≤ ∫ t0

0
∥um∥2L2

Λ2
dt+

∫ t0

0
∥f∥2L2

Λ2
dt
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and by the Gagliardo-Nirenberg inequality

2

∣∣∣∣∫ t0

0
⟨gmum, um⟩dt

∣∣∣∣ ≤ ∫ t0

0
∥um∥2L4

Λ2
∥gm∥L2

Λ3
dt ≤

c

∫ t0

0
∥gm∥L2

Λ3

(
∥gm∥3/2

L2
Λ3
∥um∥1/2

L2
Λ2

+ ∥um∥2L2
Λ2

)
dt ≤

2µ

∫ t0

0
∥gm∥2L2

Λ3
dt+ c1

∫ t0

0
∥gm∥4L2

Λ3
∥um∥2L2

Λ2
dt+ c2

∫ t0

0
∥gm∥L2

Λ3
∥um∥2L2

Λ2
dt

with some positive constants c, c1 and c2. Then

∥um(·, t)∥2L2
Λ2

≤ ∥u0∥2L2
Λ2

+

∫ t0

0
∥f∥2L2

Λ2
dt+ c

∫ t0

0
∥um∥2L2

Λ2
dt (38)

with a constant c > 0 independent of m. It follows from Gronwall's Lemma
that

∥um(·, t)∥2L2
Λ2

≤ C, (39)

where constant C depends on the norms ∥f∥2
L2(It0 ,L

2
Λ2 )

, ∥u0∥2L2
Λ2

and ∥g∥C(It0 ,L
2
Λ2 )

,

but is independent of m.
It follows that the sequence um is bounded in L∞(It0 , L

2
Λ3) and there is a

subsequence that converges weakly-∗ in L∞(It0 , L
2
Λ3) to some u ∈ L∞(It0 , L

2
Λ3).

We again use the same designation um for such a subsequence. Under the
hypothesis of this Theorem, the sequence gm = div um converges to g ∈
C(I, L2

Λ3)∩L2(I,H1
Λ3), then actually u ∈ C(I, V 1

Λ3)∩L2(I, V 2
Λ3). Passing to

the limit in (37) with respect to m → ∞ we conclude that the element u
satis�es (36).

Let now u′ and u′′ be two solutions of (36) such that div u′ = div u′′ = g.
Hence, the di�erential form u = u′−u′′ satis�es (36) with zero data (f, u0) =
(0, 0). It follows from (38) and Gronwall-Perov's Lemma that ∥g(·, t)∥L2

Λ3
=

0. Therefore, the Problem (36) has a unique solution.
Moreover, if u1, u2 are two solutions to (36), corresponding to the solutions

g1 = div u1 and g2 = div u2 of (21), then the di�erential form u = u1 − u2
satis�es {

d

dt
(u, v)L2

Λ2
+ µ(g, div v)L2

Λ3
= ⟨−gu, v⟩,

u(x, 0) = 0,
(40)

where g = g1 − g2.

∥u(·, t)∥2L2
Λ2

+ 2µ∥g∥2L2(It0 ,L
2
Λ3 )

= −2

∫ t0

0
⟨gu, u⟩dt. (41)

Applying the Gagliardo-Nirenberg inequality, we have

2

∣∣∣∣∫ t0

0
⟨gu, u⟩dt

∣∣∣∣ ≤ c1

∫ t0

0
∥g∥L2

Λ3

(
∥∇u∥3/4

L2
Λ2
∥u∥1/4

L2
Λ2

+ ∥u∥L2
Λ2

)2

dt ≤

c2

∫ t0

0

(
∥g∥5/2

L2
Λ2
∥u∥1/2

L2
Λ2

+ ∥u∥2L2
Λ2
∥g∥L2

Λ3

)
dt ≤
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2µ∥g∥2L2(It0 ,L
2
Λ3 )

+ c3

(
∥g∥4C(It0 ,L

2
Λ3 )

+ ∥g∥C(It0 ,L
2
Λ3 )

)∫ t0

0
∥u∥L2

Λ2
dt

with positive constants c1, c2, and c3. The last inequality, (41), and Gronwall-
Perov's Lemma yield

∥u(·, t)∥2L2
Λ2

≤ 0,

then u1 = u2 and the Problem (36) has a unique solution.
□

Corollary 1. Under the hypothesis of Theorem 3, let g ∈ C(I, L2
Λ3) ∩

L2(I,H1
Λ3) be a solution of (21) and let u ∈ C(I, V 1

Λ2) ∩ L2(I, V 2
Λ2) be the

solution of (36), corresponding to g. If moreover g ∈ C(I,H1
Λ3)∩L2(I,H1

Λ3),
then the solution g is unique.

Proof. Indeed, let g1, g2 ∈ C(I,H1
Λ3) ∩ L2(I,H1

Λ3) be two solutions of (21)

with corresponding forms u1, u2 ∈ C(I,H1
Λ3) ∩ L2(I,H1

Λ3) satisfying (36).
Hence, the di�erential form g = g1 − g2 satis�es

d

dt
∥g∥2L2

Λ3
+ µ∥∇g∥2L2

Λ2
=

〈
−(g21 − g22)−

(
∇g1 · (φ2∇g1 +Π2u1)−

∇g2 · (φ2∇g2 +Π2u2)
)
, v
〉
,

g(·, 0) = 0.
(42)

Integrating by t ∈ It0 we get

∥g(·, t∥2L2
Λ3

+ 2µ

∫ t0

0
∥∇g∥2L2

Λ2
dt ≤ 2

∫ t0

0
|⟨g(g1 + g2)+ (43)(

∇g1 · (φ2∇g1 +Π2u1)−∇g2 · (φ2∇g2 +Π2u2)
)
, v
〉∣∣ dt,

We have to estimate the right side of (43). First, it follows from the Gagliardo-
Nirenberg interpolation inequality that

2

∫ t0

0
|⟨g(g1 + g2), g⟩| dt ≤ (44)

c∥(g1 + g2)∥C(It0 ,L
2
Λ3 )

∫ t0

0

(
∥∇g∥3/2

L2
Λ3
∥g∥1/2

L2
Λ3

+ ∥g∥2L2
Λ3

)
dt ≤

µ

∫ t0

0
∥∇g∥2L2

Λ3
dt+ c1

∫ t0

0
∥g∥2L2

Λ3
dt

with positive constants c and c1. Next,

2

∫ t0

0

∣∣〈∇g1 · φ2∇g1 −∇g2 · φ2∇g2 +∇g1 · φ2∇g2 −∇g1 · φ2∇g2, g
〉∣∣ dt ≤

(45)

2

∫ t0

0

∣∣〈∇g1 · φ2∇g, g
〉∣∣ dt+ 2

∫ t0

0

∣∣〈∇g · φ2∇g2, g
〉∣∣ dt ≤

c1∥g1∥C(It0 ,H
1
Λ3 )

∫ t0

0

(
∥∇g∥3/4

L2
Λ3
∥g∥5/4

L2
Λ3

+ ∥g∥2L2
Λ3

)
dt+
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c2∥g1∥C(It0 ,H
1
Λ3 )

∫ t0

0

(
∥∇g∥7/4

L2
Λ3
∥g∥1/4

L2
Λ3

+ ∥g∥2L2
Λ3

)
dt ≤

µ

∫ t0

0
∥∇g∥2L2

Λ3
dt+ c

∫ t0

0
∥g∥2L2

Λ3
dt

with some positive constants c, c1, and c2. Finally,

2

∫ t0

0

∣∣〈∇g1 ·Π2u1 −∇g2 ·Π2u2 +∇g2 ·Π2u1 −∇g2 ·Π2u1, g
〉∣∣ dt ≤ (46)

2

∫ t0

0

∣∣〈∇g ·Π2u1, g
〉∣∣ dt+ 2

∫ t0

0

∣∣〈∇g2 ·Π2(u1 − u2), g
〉∣∣ dt

The Theorem 4 implies that u1 = u2. On the other hand, integrating by
parts, we easily see that

2

∫ t0

0

∣∣〈∇g ·Π2u1, g
〉∣∣ dt = 0,

and then (46) equals to zero.
Finally, using (43) - (46), we get

∥g(·, t∥2L2
Λ3

≤ c

∫ t0

0
∥g∥2L2

Λ3
dt

with some constant c > 0. Then, it follows from the Gronwall-Perov's Lemma
that ∥g(·, t)∥L2

Λ3
= 0, and thus the Problem (21) has a unique solution. □

Theorem 5. Let s ∈ N and k ∈ Z+ with k > 3/2. Then for all

(f, u0) ∈ B
k+1,2(s−1),s−1
Λ2,for

(XT )× V 2s+k+1
Λ2

there exists a time Tk ∈ (0, T ] such that the Problem (20) has a solution

g ∈ Bk,2s,s
Λ3,for

(XTk
).

Moreover, the solution g is unique, if the form u in (19) satis�es (36).

Proof. First of all, denote by

Λr =

{
Λ3, r is even,

Λ2, r is odd.

As before, let gm be the Faedo-Galerkin approximations (see (23)). We
start with the following apriori estimates.

Lemma 3. Under the hypothesis of Theorem 5, if (f, u0) ∈ Bk+1,0,0
2,for (XT )×

V k+3
Λ2 with some k ∈ Z+, then there exists a time Tk ∈ (0, T ] such that

∥∇k′
2 gm∥2C(ITk ,L

2
Λk′

) + µ ∥∇k′+1
2 gm∥2L2(ITk ,L

2
Λk′+1

) ≤ Ck′ (47)

for any 0 ≤ k′ ≤ k + 2, where ITk
= [0, Tk] and the constants Ck′ =

Ck′(µ, f, u0) > 0 depend on k′, µ, and the norms ∥f∥
Bk+1,0,0

2,for (XTk
)
, ∥u0∥V k+3

Λ2

but not on m.
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Proof. Indeed, if k′ = 0 then (47) follows immediately from (34) and Gronwall-
Perov's Lemma. Now, substituting gm and ∇2r

3 gm in (20) instead of g and v
respectively, with some r ∈ N, and integrating by t ∈ [0, T ] we get

∥∇r
3gm(·, t)∥2L2

Λr

+ 2µ

∫ t

0
∥∇r+1

3 gm∥2L2
Λ3
dt = (48)

∥∇r
3gm(·, 0)∥2L2

Λr

+2

∫ t

0
⟨div f − g2m−∇gm ·φ2∇gm−∇gm ·Π2um,∇2r

3 gm⟩dt.

We have to estimate the right side of (48). First,

2

∣∣∣∣∫ t

0
⟨div f,∇2r

3 gm⟩dt
∣∣∣∣ ≤ 2

∫ t

0
∥∇r−1

3 div f∥L2
Λr−1

∥∇r+1
3 gm∥L2

Λr+1
dt ≤ (49)

4

µ

∫ t

0
∥∇r−1

3 div f∥2L2
Λr−1

dt+
µ

4

∫ t

0
∥∇r+1

3 gm∥2L2
Λr+1

dt.

Further,

2

∣∣∣∣∫ t

0
⟨g2m,∇2r

3 gm⟩dt
∣∣∣∣ ≤ 2

∫ t

0
∥∇r−1

3 (g2m)∥L2
Λr−1

∥∇r+1
3 gm∥L2

Λr+1
dt. (50)

Let r ≥ 2, using H�older and Gagliardo-Nirenberg inequalities, we get

∥∇r−1
3 (g2m)∥L2

Λr−1
≤

∑
|α|+|β|=r−1

cαβ∥∂αgm∥L4
Λ3
∥∂βgm∥L4

Λ3
≤ (51)

∑
|α|+|β|=r−1

cαβ

((
∥∇|α|+1

3 gm∥L2
Λ|α|+1

+ ∥∇|α|
3 gm∥L2

Λ|α|

)3/4

∥∇|α|
3 gm∥1/4

L2
Λ|α|

+

+∥∇|α|
3 gm∥L2

Λ|α|

)((
∥∇|β|+1

3 gm∥L2
Λ|β|+1

+ ∥∇|β|
3 gm∥L2

Λ|β|

)3/4

∥∇|β|
3 gm∥1/4

L2
Λ|β|

+

+∥∇|β|
3 gm∥L2

Λ|β|

)
≤ c

(
∥gm∥2

Hr−1

Λ3
+ ∥gm∥5/4

Hr−1

Λ3

∥∇r
3gm∥3/4

L2
Λr

)
with some positive constants c and cαβ . For the exception case r = 1, the
last inequality takes the form

∥∇3(g
2
m)∥L2

Λr−1
≤ c

(
∥gm∥2L2

Λ3
+ ∥gm∥1/2

L2
Λ3
∥∇3gm∥3/2

L2
Λ2

)
, (52)

because in (51) there arises a case when |α| = |β| = r − 1 = 0. It follows
from (50), (51) and Young's inequality that

2

∣∣∣∣∫ t

0
⟨g2m,∇2r

3 gm⟩dt
∣∣∣∣ ≤ µ

4

∫ t

0
∥∇r+1

3 gm∥2L2
Λr+1

dt+ (53)

c∥gm∥4
C(I,Hr−1

Λ3 )
+ c∥gm∥5/2

C(I,Hr−1

Λ3 )

∫ t

0
∥∇r

3gm∥3/2
L2
Λr

dt

for r ≥ 2 and

2

∣∣∣∣∫ t

0
⟨g2m,∇2

3gm⟩dt
∣∣∣∣ ≤ µ

4

∫ t

0
∥∇2

3gm∥2L2
Λ3
dt+ (54)
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c∥gm∥4C(I,L2
Λ2 )

+ c∥gm∥C(I,L2
Λ2 )

∫ t

0
∥∇3gm∥3L2

Λ2
dt

for r = 1, with some constant c > 0.
Next,

2

∣∣∣∣∫ t

0
⟨∇gm · φ2∇gm,∇2r

3 gm⟩dt
∣∣∣∣ ≤ (55)

2

∫ t

0
∥∇r−1

3

(
∇gm · φ2∇gm

)
∥L2

Λr−1
∥∇r+1

3 gm∥L2
Λr+1

dt.

Analogous to (51), we have

∥∇r−1
3

(
∇gm · φ2∇gm

)
∥L2

Λr−1
≤ (56)

c

(
∥gm∥Hr−1

Λ3
∥φ2gm∥Hr+1

Λ3
+ ∥gm∥1/4

Hr−1

Λ3

∥φ2gm∥Hr+1

Λ3
∥∇r

3gm∥3/4
L2
Λr

+

∥∇r
3gm∥1/4

L2
Λr

∥φ2gm∥Hr+1

Λ3
∥∇r+1

3 gm∥3/4
L2
Λr

)
with r ∈ N and some constant c > 0. Theorem 1 implies that ∥φ2gm∥Hr+1

Λ3
≤

c∥gm∥Hr−1

Λ3
with some positive constant c, then

2

∣∣∣∣∫ t

0
⟨∇gm · φ2∇gm,∇2r

3 gm⟩dt
∣∣∣∣ ≤ µ

4

∫ t

0
∥∇r+1

3 gm∥2L2
Λr+1

dt+ (57)

c∥gm∥4
C(I,Hr−1

Λ3 )
+ c∥gm∥5/2

C(I,Hr−1

Λ3 )

∫ t

0
∥∇r

3gm∥3/2
L2
Λr

dt+

c∥gm∥10
C(I,Hr−1

Λ3 )

∫ t

0
∥∇r

3gm∥2L2
Λr

dt

with c > 0.
Finally,

2

∣∣∣∣∫ t

0
⟨∇gmΠ2um,∇2r

3 gm⟩dt
∣∣∣∣ ≤ (58)

2

∫ t

0
∥∇r+1

3 gm∥L2
Λr+1

∥∇r−1
3

(
∇gm ·Π2um

)
∥L2

Λr−1
dt,

and we have again

∥∇r−1
3

(
∇gm ·Π2um

)
∥L2

Λr−1
≤ (59)

c

(
∥gm∥Hr−1

Λ3
∥Π2um∥Hr

Λ2
+ ∥gm∥1/4

Hr−1

Λ3

∥Π2um∥Hr
Λ2
∥∇r

3gm∥3/4
L2
Λr

+

∥∇r
3gm∥1/4

L2
Λr

∥Π2um∥Hr
Λ3
∥∇r+1

3 gm∥3/4
L2
Λr

)
with positive constant c. Operator Π2 is bounded in L2

Λ2 by the Hodge
Theorem 1. On the other hand, Theorem 4 yields that the sequence {um} is
bounded in L2

Λ2 (see (39)), then ∥Π2um∥Hr
Λ2

≤ c∥gm∥Hr−1

Λ3
and we obtain
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2

∣∣∣∣∫ t

0
⟨∇gmΠ2um,∇2r

3 gm⟩dt
∣∣∣∣ ≤ µ

4

∫ t

0
∥∇r+1

3 gm∥2L2
Λr+1

dt+ (60)

c∥gm∥4
C(I,Hr−1

Λ3 )
+ c∥gm∥5/2

C(I,Hr−1

Λ3 )

∫ t

0
∥∇r

3gm∥3/2
L2
Λr

dt+

c∥gm∥10
C(I,Hr−1

Λ3 )

∫ t

0
∥∇r

3gm∥2L2
Λr

dt

with c > 0.
It follows from (48) - (60) and Gronwall-Perov's Lemma that if (f, u0) ∈

Bk+1,0,0
2,for (XT )×V k+3

Λ2 and the norm ∥gm∥C(I,Hr−1

Λ3 ) is bounded for some r ∈ N,
r ≤ k + 2, then there exists a time tr ∈ (0, t0] and a positive constant Cr,
which depends on the norms ∥f∥

Br+1,0,0
2,for (XTk

)
and ∥u0∥V r+3

Λ2
, such that

∥∇r
3gm(·, t)∥2L2

Λr

+ µ

∫ tr

0
∥∇r+1

3 gm∥2L2
Λ3
dt ≤ Cr(µ, f, u0). (61)

Using (61) consistently for r = 1, . . . , k + 2 we get a family of times tr.
Denote Tk = min

r≤k+2
tr, then, (61) yields that for any k ∈ Z+ there exists a

time Tk such that (3) is ful�lled. □

Theorem 3 implies that there exists a solution g ∈ C(I, L2
Λ3)∩L2(I,H1

Λ3)
of (21). On the other hand, it follows from Lemma 3 that for each (f, u0) ∈
B

k+1,2(s−1),s−1
Λ2,for

(XT )×V 2s+k+1
Λ2 there exists a time Tk ∈ (0, T ] and a subsequence

{gm′ = div um′} such that {gm′} converges weakly in L2(ITk
, L2

Λ3) and ∗-

weakly in L∞(ITk
, Hk+2

Λ3 )∩L2(I,Hk+3
Λ3 ) to an element g, then g ∈ Bk,2s,s

Λ3,for
(XTk

).

Moreover, the uniqueness of g immediately follows from Corollary 1.
□

Theorem 6. Let s ∈ N and k ∈ Z+ with k ≥ 2. Then for all

(f, u0) ∈ B
k+1,2(s−1),s−1
Λ2,for

(XT )× V 2s+k+1
Λ2

there exists a time T ∗ ∈ (0, T ] such that the Problem (5) has a unique solution

(u, p) ∈ Bk+1,2s,s
Λ2,vel

(XTk
)×B

k+2,2(s−1),s−1
Λ2,pre

(XTk
).

Proof. Indeed, applying the projection P 2 (see Lemma 1 above) to the
equation (5) we have{

∂tu+ µ∆2u+ P 2N2(u) = P 2f in X × (0, T ),

u(x, 0) = u0 in X,
(62)

then the form p actually has to satisfy the equation

rot p = (I − P 2)(f −N2(u)) in X × (0, T ). (63)

Multiplying (62) by v ∈ V k
Λ3 we get the Problem (36). Then, the existence

and regularity of the solution u follows immediately from Theorems 4 and
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5. On the other hand, it follows from Lemma 2 that there exists a unique

di�erential form p ∈ B
k+2,2(s−1),s−1
Λ2,pre

(XTk
), satisfying (63).

□
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