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Abstract: We construct examples of groups which have the same
set of conjugacy class sizes as nilpotent groups, while having a
trivial centre. This answers a question posed by A. R. Camina in
2006.
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1 Introduction

Let G be a �nite group. In [1], Baer de�ned the index of x in G, denoted
by IndG(x), as |G : CG(x)|, which represents the size of the conjugacy class
of G containing x. In [11], It�o de�ned the conjugate type vector of G as
(n1, n2, . . . , nr), where n1 > n2 > . . . > nr = 1 are the indices of all elements
in G. Since we are not interested in the ordering of these indices, we will
denote the set of indices (sizes of conjugacy classes) by N(G), i.e., N(G) =
{n1, n2, . . . , nr}.

Many authors have studied the relationship between the structure of �nite
groups and the sizes of their conjugacy classes. It�o proved that if N(G) =
{1, n}, then G must be the direct product of a p-group and an abelian p′-
group [11]. Ishikawa proved that the nilpotent class of such groups is at most
3 [10]. More results can be found in [4].
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It is easy to see that if G is nilpotent, then N(G) = N(P1) × N(P2) ×
. . . × N(Pk), where P1, P2, . . . , Pk are the Sylow subgroups of G. A natural
question is whether the converse holds:

Question 1 ([3, Question 1]). Let G and H be �nite groups with H being
nilpotent. Suppose G and H have the same sets of conjugacy class sizes, is
G nilpotent?

In [6], Cossey proved that every �nite set of p-powers containing 1 can be
a set of conjugacy class sizes of some p-group. Therefore, the above question
can be restated as follows: If N(G) = Ω1 × Ω2 × · · · × Ωr, where Ωi is a
�nite set of pi-powers containing 1 and p1, p2, . . . , pr are distinct primes, is
G nilpotent? The answer is positive in some special cases. For example, if
N(G) = {1, pm1

1 } × {1, pm2
2 } × · · · × {1, pmk

k }, where pm1
1 , pm2

2 , . . . , pmk
k are

powers of distinct primes, then G is nilpotent [5]. More generally, if N(G) =
{1, n1} × {1, n2} × · · · × {1, nr}, where n1, n2, . . . , nr are pairwise coprime
integers, then G is nilpotent [9]. A more general question is as follows:

Question 2 ([8, Question 0.1]). Let G be a group such that N(G) = Ω×∆.
Which ∆ and Ω guarantee that G ∼= A × B, where A and B are subgroups
such that N(A) = Ω and N(B) = ∆?

However, the answer to Question 1 is not always positive, as some
counterexamples are provided in [3]. In that paper, A. R. Camina posed
a number of questions about the structure of groups with the same set of
conjugacy class sizes as nilpotent groups. One of them goes as follows:

Question 3 ([3, Question 4]). Let G and H be �nite groups with H nilpotent.
Suppose N(G) = N(H), but G is not nilpotent. Does G have a nontrivial
centre?

Using GAP[7], we �nd that Question 3 does not have a positive answer
in general. The smallest counterexamples are two groups of order 486 =
35 × 2, with the set of conjugacy class sizes {1, 3, 27} × {1, 2}. One of them
is SmallGroup(486, 36), and the other is SmallGroup(486, 38). Moreover, we
constructed the following series of counterexamples.

Main Theorem. Let p and q be primes such that p = 2q + 1. Let G =
H ⋊ (A⋊B), where H, A and B are de�ned as follows:

1) H = K/N , where K = ⟨k1⟩ × ⟨k2⟩ × . . .× ⟨kp⟩ is the direct product of
p cyclic groups of order p, and N = ⟨k1k2 . . . kp⟩;

2) A ⋊ B is a subgroup of the symmetric group Symp: A = ⟨α⟩ and
B = ⟨β⟩, where α = (12 . . . p) and β = (m1 . . .mq)(n1 . . . nq), with

{m1, . . . ,mq, n1, . . . , nq} = {2, 3, . . . , p}. Additionally, αβ = αr where 1 <
r < q and rq ≡ 1 (mod p). For any γ ∈ A ⋊ B and kx1

1 kx2
2 . . . k

xp
p N ∈ H,

(kx1
1 kx2

2 . . . k
xp
p N)γ = kx1

1γk
x2
2γ . . . k

xp

pγN .

Then N(G) = {1, p, pp−2} × {1, q}, and Z(G) = 1.

From this theorem, the following corollary can be derived.
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Corollary. Let p and q be primes such that p = 2q + 1. Let G, H and A
be as de�ned above. Let L = P ×Q, where P = H ⋊ A and Q = Cq2 ⋊ Cq.
Then, we have N(G) = N(L).

A prime number q such that 2q + 1 is also a prime is called a Sophie
Germain prime. As of now, the largest known Sophie Germain prime is
2618163402417 × 21290000 − 1 [2]. It is conjectured that there are in�nitely
many Sophie Germain primes, but this has not been proven. So we cannot
conclude that there are in�nitely many counterexamples to Question 3.

2 Preliminaries

Lemma 1. Let G be a �nite group, H ≤ G and x ∈ G. If n is an integer
and (n, |x|) = 1, then CH(x) = CH(xn).

Proof. It is clear that CH(x) ≤ CH(xn). By Euler's theorem, we have nt ≡ 1

(mod |x|), where t = φ(|x|). Hence x = (xn)n
t−1

and so CH(xn) ≤ CH(x).
Therefore CH(x) = CH(xn). □

Lemma 2. Let G = H⋊⟨a⟩, where H is an abelian group and (|H|, |a|) = 1.
Then for any element h of H, IndG(ha) = IndG(a) = |H : CH(a)|.
Proof. Let |a| = n. It is easy to verify that CG(a) = CH(a)⟨a⟩ and

IndG(a) = |H : CH(a)|. Since (ha)n = hha
−1

. . . ha
1−n

an = hha
−1

. . . ha
1−n ∈

H, n is a divisor of |ha|. Let t = |ha|/n. We have (ha)t is an element
of order n and ⟨(ha)t⟩ is a complement to H in G. Hence G = H ⋊
⟨(ha)t⟩ and so CG((ha)

t) = CH((ha)t)⟨(ha)t⟩. Since (|H|, n) = 1, we
have (t, n) = 1. By Lemma 1, CH((ha)t) = CH(at) = CH(a). Since
CH(a)⟨(ha)t⟩ ≤ CG(ha) ≤ CG((ha)

t), we have CG(ha) = CH(a)⟨(ha)t⟩.
Therefore IndG(ha) = IndG(a) = |H : CH(a)|. □

3 Proof the main theorem

Let G,A,B,H,N, p, q be as de�ned in the main theorem. For convenience,
we use (x1, x2, . . . , xp) to represent the element kx1

1 kx2
2 . . . k

xp
p N of H,

x1, . . . , xp ∈ N. Under this notation, we have (x, x, . . . , x) = 1, ∀x ∈ N.
We can always set x1 = 0, in which case x2, . . . , xp are determined. Let
h = (0, x2, . . . , xp) ∈ H, a ∈ A, b ∈ B and h, a, b ̸= 1. It is clear that
|G| = ppq. We break the proof into the following steps.

(1) |CH(a)| = p and IndG(a) = pp−2q.
By Lemma 1, it su�ces to consider the case a = α, i.e., when

(0, x2, . . . , xp−1, xp)
a = (xp, 0, x2, . . . , xp−1). If h ∈ CH(a), we have 0− xp ≡

x2−0 ≡ . . . ≡ xp−xp−1 (mod p). If xp = 1, then h = (0, p−1, p−2, . . . , 1).
In fact, CH(a) = ⟨(0, p− 1, p− 2, . . . , 1)⟩. Therefore |CH(a)| = p.

Let h1a1b1 ∈ CG(a), where h1 ∈ H, a1 ∈ A and b1 ∈ B. We have h1a1b1 =

(h1a1b1)
a = ha1a1b

a
1 = ha1(a1a

−1ab
−1
1 )b1. It follows that h1 ∈ CH(a) and

b1 = 1. Hence CG(a) = CH(a)A. Thus, |CG(a)| = p2 and so IndG(a) = pp−2q.
(2) |CH(b)| = p2 and IndG(b) = pp−2.
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It is easy to verify that CH(b) = ⟨km1 . . . kmqN, kn1 . . . knqN⟩. Therefore,
CH(b) = p2. Moreover, CH(a) ∩ CH(b) = 1.

If h1a1b1 ∈ CG(b), then h1a1b1 = (h1a1b1)
b = hb1a

b
1b1. It follows that

h1 ∈ CH(b) and a1 = 1. Therefore CG(b) = CH(b)B. We have |CG(b)| = p2q
and so IndG(b) = pp−2.

(3) IndG(ab) = pp−2.
By Sylow's theorems, AB has p Sylow q-subgroups. Since that p(q− 1) +

p = pq = |AB|, every element in AB − A has order q. Hence ab must be
contained in some conjugate of B. Thus, IndG(ab) = IndG(b) = pp−2.

(4) {IndG(h) | h ∈ H} = {p, q, pq}.
It is clear that H ≤ CG(h). If h ∈ CG(a), then CG(h) = HA and

IndG(h) = q. If h ∈ CG(b) or CG(ab), then CG(h) = HB or H⟨ab⟩ and
IndG(h) = p. The number of such h in all the cases above is at most
|CH(a)| + p|CH(b)| = p3 + p. By our initial assumption, p must be greater
than or equal to 5, so p3 + p < pp−1 = |H|. Hence there exists h ∈ H such
that CG(H) = H. For such h, IndG(h) = pq.

(5) IndG(ha) = pp−2q.
Let h1a1b1 ∈ CG(ha), where h1 ∈ H, a1 ∈ A and b1 ∈ B. We have

ha = (ha)h1a1b1 = (hh−1
1 ha

−1

1 )a1b1ab1 . Hence b1 = 1 and so CG(ha) =

CHA(ha). We have (ha)p = (hha
−1
ha

−2
. . . ha

1−p
)ap = hha

−1
ha

−2
. . . ha

1−p
.

If h = (x1, x2, . . . , xp), then hha
−1
ha

−2
. . . ha

1−p
= (x1 + . . . + xp, . . . , x1 +

. . . + xp) = 1. Hence ha is an element of order p. Since ⟨ha⟩ ∩ H = 1, We
have HA = H ⋊ ⟨ha⟩. Therefore CG(ha) = CH(ha)⟨ha⟩ = CH(a)⟨ha⟩. Thus
|CG(ha)| = p2 and so IndG(ha) = pp−2q.

(6) IndG(hab) = IndG(hb) = pp−2.
By (3), ab and b are conjugate, so hab must be conjugate to h′b where

h′ is some element in H. Thus, we only need to consider IndG(hb). Let
h1a1b1 ∈ CG(hb) where h1 ∈ H, a1 ∈ A, b1 ∈ B. We have hb =

(hb)h1a1b1 = (hh−1
1 hb

−1

1 b)a1b1 = (hh−1
1 hb

−1

1 )a1b1(a−1
1 ab

−1

1 )b1b. Hence a1 = 1
and CG(hb) = CHB(hb). It follows that IndG(hb) = IndHB(hb) × p. By
Lemma 2, IndHB(hb) = |H : CH(b)| = pp−3. Therefore, IndG(hb) = pp−2.

Throughout (1)�(6), all nontrivial elements of G have been considered, so
N(G) = {1, p, pp−2} × {1, q} and Z(G) = 1. The theorem is proved.
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