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Introduction

The algebraic classification (up to isomorphism) of algebras of small di-
mensions from a certain variety defined by a family of polynomial identities
is a classic problem in the theory of non-associative algebras. Another in-
teresting approach to studying algebras of a fixed dimension is to take a
geometric perspective—that is, to study their degenerations and deforma-
tions. The results in which the complete information about degenerations of
a certain variety is obtained are generally referred to as the geometric clas-
sification of the algebras of these varieties. There are many results related
to the algebraic and geometric classification of Jordan, Lie, Leibniz, Zinbiel,
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and other algebras (see, [1,3-9,11-13,15-20,24-31,40]). Degenerations are
related to deformations and cohomology [10,14,39].

Superalgebras emerged in physics to provide a unified framework for the
study of super symmetry of elementary particles. Jordan algebras, originat-
ing from quantum mechanics, gained importance due to their close connec-
tion to Lie theory. Finite-dimensional simple Jordan superalgebras over an
algebraically closed field of characteristic zero were classified by Kac [32] in
1977. One case remained unresolved, which was considered by Kantor [33]
in 1990. Recently Racine and Zelmanov [38| presented a classification of
finite-dimensional simple Jordan superalgebras over arbitrary fields of char-
acteristic distinct from 2, focusing on cases where the even part is semisimple.
For the opposite case, where the even part is not semisimple, a classification
was obtained by Martinez and Zelmanov [37] in 2002, completing the entire
project.

In [36], the authors focus on the classification of Jordan superalgebras
of dimension up to three over an algebraically closed field of characteristic
distinct from 2. The main goal of that paper was to determine the mini-
mal dimension of exceptional Jordan superalgebras, a problem raised in [34].
In [21], authors obtained all four-dimensional indecomposable Jordan super-
algebras.

In the present paper, we obtain algebraic and geometric classification of
four-dimensional Jordan superalgebras and find all irreducible components
within that variety. Section 1 outlines the foundational concepts and estab-
lishes several key preliminary results. In Section 2, we proceed to classify
all four-dimensional Jordan superalgebras. Based on this classification, we
determine the irreducible components within the variety in Section 3.

Our main results are summarized below.

Theorem A. The variety of complex four-dimensional Jordan superalgebras
of type (1,3) has dimension 7. It is defined by 11 rigid superalgebras and can
be described as the closure of the union of GL1(C) x GL3(C)-orbits of the
superalgebras given in Theorem 12.

Theorem B. The variety of complex four-dimensional Jordan superalgebras
of type (2,2) has dimension 6. It is defined by 24 rigid superalgebras and 1
one-parametric families of superalgebras and can be described as the closure
of the union of GLa(C) x GLa(C)-orbits of the superalgebras given in Theorem
13.

Theorem C. The variety of complex four-dimensional Jordan superalgebras
of type (3,1) has dimension 9. It is defined by 21 rigid superalgebras and can
be described as the closure of the union of GL3(C) x GL1(C)-orbits of the
superalgebras given in Theorem 14.

1 Preliminaries

1.1. Jordan superalgebras.
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Definition 1. A commutative algebra is called o Jordan algebra if it satisfies
the identity

(a%y)a = 2(ya).

Definition 2. A superalgebra A is an algebra with a Zs-grading, i.e. A =
Ao @ Ay is a direct sum of two vector spaces and

AiA; € Aiyj, where 1,5 € Zo.

Let G be the Grassmann algebra over F given by the generators 1,&1,. ..,
&n, ... and the defining relations 51-2 = 0 and && = —§;&. The elements
1,880 - &y, 91 < i < ... < i, form a basis of the algebra G over F.
Denote by Gg and (G; the subspaces spanned by the products of even and odd
lengths, respectively; then G can be represented as the direct sum of these
subspaces, G = Go @ G1. Here the relations G;G; C Gy j(mod 2); 1 = 0,1,
hold. In other words, G is a Zs-graded algebra (or a superalgebra) over F.
Suppose now that A = Ag® A; is an arbitrary superalgebra over F. Consider
the tensor product G ® A of F-algebras. The subalgebra

G(A) =Go® Ag+G1 ® Ay

of G® A is referred to as the Grassmann envelope of the superalgebra A. Let
Q be a variety of algebras over F. A superalgebra A = Ag @ A; is referred
to as an {)-superalgebra if its Grassmann envelope G(A) is an algebra in
Q. In particular, A = Ay @ A; is referred to as a Jordan superalgebra if its
Grassmann envelope G(A) is a Jordan algebra.

Definition 3. A Jordan superalgebra is a superalgebra J = Jo+J1 satisfying
the graded identities:

Ty = (_1)\r\|y\ym7

((xy)2)t + (_1)Iy\|ZI+IyHtI+IZHtI ((wt)z)y + (_1)|:v|\y|+|xIIZ\+\xllt\+|th|((yt)z)x —

(2y)(2t) + (=)D @) (y2) + (1) 22) (ye),
where |x| =1 for x € J;.
For convenience, we use the following notation in the next sections.
J(x,y,2,t) =
(xy)2)t 4+ (=)W (1) 2)y + (= 1)yl 2+ =11 (1) 2) 2 —
(zy)(2t) — (=B (@) (y2) — (D)W @2) (y2).

Definition 4. For arbitrary elements x,y € JoUJ1 of a Jordan superalgebra,
the operator D: J — J satisfying

D(zy) = D(x)y + (—-1)IPI*lzD(y)

is a derivation of J, where |D| =0 if D preserves the gradation and |D| =1
otherwise.
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In 2013, M.E.Martin [35] described all Jordan algebras up to dimension
four over an algebraically closed field, and in [36] they obtained all Jordan
superalgebras of dimension up to three. Based on those papers, we present
the list of indecomposable Jordan algebras and superalgebras of dimension
less than or equal to 3 in the following tables, as they will be used in the
sequel.

Table 1: Indecomposable Jordan algebras

J Multiplication table dim
U e2=e 1
U e2=0 1
B 6% —e1 elex =eg e% 0 2
B2 e% =e1 ejex = %ez e% =0 2
Bs e% =e2 e1ep2=0 e% 0 2
T1 e% =e1 e% =e3 eg =0 e1ex = ez ejesz = e3 ezez =0 3
Ta e%:el e%:O eg—O ei1es = eo ejes = e3 eses =0 3
T3 6‘% =e9 e% =0 eg =0 elex = e3 erez3 =0 ezez =0 3
Ta e%:eg 6%10 6370 erea =0 eres = eg ege3 =0 3
T5 ef =e] e% = eg e% =e1+e2 ere2=0 ejes = %eg egesz = %63 3
Te e% =e1 eg =0 eg = ejeg = %62 ejes = e3 eges =0 3
T7 e2=e €2=0 e = ejex = %ez elez = %63 eses =0 3
Ts ef =e1 e% = e3 e% =0 eileq = %62 ejes =0 eses =0 3
To e% =e] e% =e3 e% =0 eleg = %62 eiles = e3 egez3 =0 3
Tio0 e% =e] e% = eg e% =0 ere2 =0 ejes = %€3 egesz = %63 3

Below we list indecomposable superalgebras denoted by Sj’: where the ex-
ponent ¢ represents its dimension.

Table 2: Indecomposable Jordan superalgebras

J Multiplication table

51 =0

812 e2=e ef = %f

S2 e2=e ef=1f

S} efi=f2 fife=e

S3 fif2=e

S8 efi=f

S 1 e?=e efi=fi efgz%fg

S i el=e efi=1ifi efa=1if

S el=e  efi=h efz = f2

s3 e2=e €f1=%f1 €f2=%f2 fifa=e
Sg’ e2=e efi=r efo = fa fifa=e
SS’ e%:q elex = eg elf:%f

Sf’o e? =e1 er1ex = eo erf = %f

S3, e2=e1 erea=3ex eif=1f

S}, el=e erea=3es ef=f

83, e =e e2 =ey e1f=% ezf:%f
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1.2. Degenerations. Given an (m, n)-dimensional vector superspace V =
Vo & Vi, the set

Hom(V ®@ V,V) = (Hom(V ® V,V))o @ (Hom(V @ V,V))1

is a vector superspace of dimension m? + 3mn?. This space has a structure
of the affine variety C™ +3m” If we fix a basis {e1,...,€m, f1,--, fo} O
V, then any u € Hom(V ® V,V) is determined by m3 + 3mn? structure
constants aﬁj, sz,vzj, (5’;’61 € C such that

62®€j ZOézjek, €z®fp Z/B fQ7

fp®€z Z’Vplfm fp®fq Z5§q€k
k=1

A subset L(T) of Hom(V ® V, V) is Zariski-closed if it can be defined by a
set of polynomial equations 7" in the variables a; j,ﬁz » 'yp i 5k7q (1<i,j,k<
m, 1 <p,q<n).

Let S™" be the set of all superalgebras of dimension (m,n) defined by
the family of polinomial super-identities 7', understood as a subset L(T") of
an affine variety Hom(V ® V, V). Then one can see that S™" is a Zariski-
closed subset of the variety Hom(V ® V, V). The group G = (AutV)p ~

GL(Vp) ® GL(V1) acts on S™™ by conjugations:

(g*xp)(z®y)=gug 'z g 'y)

forx,y € V, p € L(T) and g € G.

Denote by O(u) the orbit of y € L(T) under the action of G and by O(u)
the Zariski closure of O(u). Let J,J" € 8™™ and A\, u € L(T') represent
J and J', respectively. We say that \ degenerates to p and write A — pu if
w1 € O(X). Note that in this case we have O(u) C O(\). Hence, the definition
of a degeneration does not depend on the choice of p and A, and we write
indistinctly J — J' instead of A — p and O(J) instead of O(\). If J 2 .J,
then the assertion J — J' is called a proper degeneration. We write J 4 J’
it J' ¢ O(J).

Let J be represented by A € L(T"). Then J is rigid in L(T) if O(X) is an
open subset of (7). Recall that a subset of a variety is called irreducible
if it cannot be represented as a union of two non-trivial closed subsets. A
maximal irreducible closed subset of a variety is called irreducible component.
In particular, .J is rigid in S™™ iff O()) is an irreducible component of L(T).
It is well known that any affine variety can be represented as a finite union
of its irreducible components in a unique way. We denote by Rig(S™") the
set of rigid superalgebras in S"™".
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1.3. Principal notation. Let JS8™" be the set of all Jordan superalge-
bras of dimension (m,n). Let J be a Jordan superalgebra with a fixed basis

{e1,.- . em, f1,... fn}, defined by

m n m
k k k
€i€; = E Qi€ eifj = E @'jfk7 fifj = E YijCk-
k=1 k=1 k=1

In the sequel, we use the following notation:

(1) a(J) is the Jordan superalgebra with the same underlying vector
n
superspace as J and defined by f;f; = Z yfjek,
k=1

2 Jt=J, J = J T+ J202 4 —ITJJT’_l, and in every case
J' = (J")o® (J)1. A
(L)) - (L))
(3) Cij = - -
tr(L(z)' - L(y)7)
left multiplication. This invariant ¢; ; is defined as a quotient of two
polynomials in the structure constants of J, for all z,y € J such that
both polynomials are not zero and ¢; ; is independent of the choice
of x, .

1.4. Methods. First of all, if J — J and J % J', then dim Aut(J) <
dim Aut(J’), where Aut(J) is the space of automorphisms of J. Secondly,
if J - J and J — J”, then J — J”. If there is no J’ such that J — J'
and J' — J" are proper degenerations, then the assertion J — J” is called
a primary degeneration. If dim Aut(J) < dim Aut(J”) and there are no J’
and J"” such that J" — J, J" — J" J 4 J" and one of the assertions
J' — Jand J” — J" is a proper degeneration, then the assertion J
J" is called a primary non-degeneration. It suffices to prove only primary
degenerations and non-degenerations to describe degenerations in the variety
under consideration. It is easy to see that any superalgebra degenerates to
the superalgebra with zero multiplication. From now on we use this fact
without mentioning it.

Let us describe the methods for proving primary non-degenerations. The
main tool for this is the following lemma [6].

Lemma 5. If J — J', then the following hold:

(1) dim(J"); > dim(J"");, for i € Zo;

(2) (J)o = (J)o;

(3) a(J) = a(J");

(4) If the Burde invariant exists for J and J', then both superalgebras
have the same Burde invariant,

(5) If J is associative, then J' must be associative. In fact, if J satisfies
a P.I. then J must satisfy the same P.I.

is the Burde invariant, where L(x) is the

In the cases where all of these criteria can’t be applied to prove J 4 J/,
we define R by a set of polynomial equations and give a basis of V, in which
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the structure constants of A give a solution to all these equations. Further
on, we omit the verification of the fact that R is stable under the action of
the subgroup of upper triangular matrices and of the fact that u ¢ R for any
choice of a basis of V. These verifications can be done by direct calculations.

Degenerations of Graded algebras. Let G be a trivial group and let
V(F) be a variety of algebras defined by a family of polynomial identities F.
It is important to notice that degeneration on the G-graded variety GV(F)
is a more restrictive notion than degeneration on the variety V(F), In fact,
consider A, A" € GV(F) such that A, A’ € V(F), a degeneration between the
algebras A and A’ may not give rise to a degeneration between the G-graded
algebras A and A’| since the matrices describing the basis changes in GV(F)
must preserve the G-graduation. Hence, we have the following result.

Lemma 6. Let A, A" € GV(F)NV(F). If A4 A’ as algebras, then A /A A
as G-graded algebras.

Additionally, we need the following results from [18]

Theorem 7. The graph of primary degenerations for two-dimensional Jor-
dan algebras has the following form:

Theorem 8. The graph of primary degenerations for three-dimensional Jor-
dan algebras has the following form:
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2 Algebraic classification of four-dimensional Jordan

superalgebras

All four-dimensional indecomposable Jordan superalgebras are obtained in
[21] while classifying low-dimensional commutative power-associative super-
algebras. Below we present our classification of all four-dimensional Jordan
superalgebras.

Theorem 9. Up to isomorphism there are 19 Jordan superalgebras of the
type (1,3), which are presented below with some additional information:

N | Multiplication rules Decomposition
Ji | fifa=e S3 o St

J2 |efi=f2 S o St

Js |efi=f2, fifa=e S} oSt

Js |efi=fo, fifs=e Indecomposable
Js |efi=fo,fofs=c¢ Indecomposable
Je |efi=fo,efo=f3 Indecomposable
Jr |2 =e U ® Sl @S| oSt
Js 62 =€, €f3 = %fg 512 @811 @811
Jo |2 =e, efs = f3 SioSloSt
Jio |2 =e, efo=13fo, efs =1f3 S3a St

Jin | =e efo=1fo efs=1fs, fafs=e Sia St

Jiz | =e, efo=1f efs=f; St & St
Jis|et=e, efo=fo, efs=f3 S St

Jis | =e efo=fo, efs=fs, fafs=¢ S3 e St

Jis |2 =e, ef) = %fl, efo = %fg, efs = %fg Indecomposable
Jig |2 =e, efi = %fl, efo = %fg, efs=f3 Indecomposable
Jir |2 =e, efi = %fl, efo= fo, efs = f3 Indecomposable
Jig |2 =e, efi = f1, efo = fo, efs = f3 Indecomposable
Jig |2 =e, efi = f1, efo = fo, efs = f3, fifo = e | Indecomposable

Proof. Since Jg is a Jordan algebra, we have subcases Jo = U; and Jg = Us.
Then we have the following multiplications for e € Jy, f1, fo, f3 € J1

efi=aifi +taefotasfs, fife=C&e,
efo = Prf1+ Bafo+ Bafs,  fifs = &ee,
efs=vfi+vfo+fs,  fofs =&se.
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The linear operator L, : J — J,x € J such that L,(y) = zy is called a
left multiplication operator. It is obvious that:
x € Jo, Ly Jo — Jo, Lz : 31 — J1,
r € J1, Ly Jo — J1, Lz : 31 — Jo-
For the action of the operator L. on J; we can write the following matrix

a1 Qg O3

B1 B2 B3
Y1 2 73

However, it is easy to prove that, by using a simple change of basis, the
matrix of L. has one of the following forms:

125} 0 0 M1 1 0 M1 1 0
0 U2 0 ) 0 M1 0 ) 0 M1 1
0 us 0 0 us 0 0

w1 0 0
I) Let L ~ ( 0 w2 0 |,then the rule of multiplication can be written

as follows:
eft = p1fi, efr=p2fe, efs = usfs,
Jife=&ie, fifs=~&e, fafs=Eze.

In this case, from J(e, e, e, f1) = 0, J(e,e,e, fa) = 0, and J(e,e,e, f3) = 0
we get u; =0, 1 =1,3.

If (517 ‘527 53) 7& (Oa Oa 0)7 then by changing e = 5167 fé = ‘Slf?; _§2f2 +§3f1
we obtian the Jordan superalgebra:

6,2 = 07 f1f2 =é.
We denote this superalgebra by Jj.

pr 10
IT) Let Le~ | 0 w1 0 |, then the rule of multiplication can be writ-
0 0 pus

ten as follows:

eft = pifi+ fo, efe=p1fo, efs=pusfs,
fife = e, Jifs = &e,  fafs = Ese.

In this case, from J(e,e, e, f) = 0 and J(e,e,e, f3) = 0 we get 2u3 =
0, 2u3 = 0, respectively. So pu; = 3 = 0. When (&1, &2, &3) = (0,0,0) we get
the superalgebra

6fl = f27
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which we denote by Ja. Hence, if (£1,&2,&3) # (0,0,0), then we can change
the basis as follows:

fil=afi+asfot+asfs, fy=aifs, f3="01fo+bafs,
f1f} = al&e — ajagése = (e, fafs = a1ba&ze.
115 = a1bi&ie + a1badae + azbaéze — azbiéze = e,

We proceed as follows:

a) If &3 = 0 then fi = a%&, fé = a1b1&1 + a1b26s.
a.1) If & # 0 then by choosing by = —%, a; = 6% we get & =0
and & = 1 which gives the superalgebra Js:
62 = 07 e.f{ = fév f{fé =€
a.2) If & = 0 then & = a1ba&s. In this case by choosing aijby = é
we get the superalgebra J4:
62 = 07 Gf{ = fév f{f?/) =€
b) If & # 0 then by choosing ag = 48 by = L a9 = —aé—? and

&3 a183’

taking by = 1 for simplicity we get the superalgebra J5: €2 = 0, ef] =
for fofs=e.

w10
III) Let L, ~ 0 w1 , then the rule of multiplication can be
0 0 m

written as follows:

efi=pfi+ fo, efo=pfotf3, efs=pfs,
fif2 = e, f1fs = e, fafs = &se.
In this case from J(e, e, e, f1) = 0 we get 3 = 0. Moreover, from J(e, e, f1, f2) =

0 and J(e, f1, f1, f2) = 0 we get {3 = 0 and & = & = 0, respectively. As a
result, we have the superalgebra Jg :

efi = fa, efa = f3.

Let 30 = Z/fl.
w0 0
I) Let L ~ 0 we O , then the rule of multiplication can be written
0 0 pus
as follows:

efi =p1f1, efe=pafo, efs=psfs,
fifa =&e, fifs =&e, fafs = Eze.

From J(e,e,e, f1) =0, J(e,e,e, f2) =0, and J(e, e, e, f3) = 0 we obtain
equations below

(i — Dpi(2u — 1) =0, i=13.
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permutation of fi, fo and f3 we have ten possibilities:

(Mlnu%lu?)) € {(07070)7 (0707 %)7 (0707 1)a (07 %7 %)7 (0> %7 )7 (0> 1, 1)a

(3

1

10.

%7 %)a (%7 %7 1)7 (%? L, 1)7 (17 L, 1)}

. (p1, p2, p3) = (0,0,0). In this case, we have the following results
J(e,e,fl,fg) =0 = fl =0, J(e,e,fl,fg) =0 = fg =0,
J(e,e,fg,fg) =0 = &=0.

Hence, the obtained superalgebra is J7.
. (w1, p2, t3) = (0,0, 3). In this case, we have the following results

J(e,e,fl,fg) =0 = 51 =0, J(E,e,fg,fl) =0 = 52 =0,
J(e,e,f3,f2) =0 = fg =0.
Hence, the the obtained superalgebra is Jg.
. (p1, p2, p3) = (0,0,1). In this case, we have the following results

J(ee fi,fa) =0 = & =0, J(ee fi,f3) =0 = & =0,
J(€767f27f3):() = 53:0

Hence, the the obtained superalgebra is Jg.

. (1, p2, p3) = (0, 3, 3). In this case, we have the following results

J(6767flaf2)20 = 51:07 J(6767f15f3)20 = 52:0

Hence, the obtained superalgebras are J1¢ and Jq3.

- (pa, pa, ps) = (0, %, 1) In this case, we have the following results

J(@,e,fQ,fl) =0 = 451 =0, J(e,e,fl,fg) =0 = 452 =0,
J(e e f2,f3) =0 = & =0.
Hence, the obtained superalgebra is Jqa.
- (p1, p2, p3) = (0,1,1). In this case, we have the following results

J(e>evf17f2):0 = 51:07 J(€>evf11f3):0 = 52:0

Hence, the obtained superalgebras are J13 and J14.

. (1, p2, 13) = (0,3, 3). In this case, we have the following results

J(f1, fase, f3) =0 = & =& =8 =0.
Hence, the obtained superalgebra is J15.

- (pa, o, ps) = (%, %, 1). In this case, we have the following results

J(e,fl,fg,fg,):() = §1=§3:0, J(e,e,fl,fg):o = 52:0.

Hence, the obtained superalgebra is J16.

(1, poy p3) = (%, 1,1). In this case, we have the following results

J(evflvaaf3) =0 = 51 = 63 =0, J(6767f17f3) =0 = 52 =0.
Hence, the obtained superalgebra is Jq7.

(1, p2, p3) = (1,1,1). In this case, the multiplication rules in the
obtained superalgebra are €2 = e, ef; = fi, efo = fa, efs =
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f3. fife = &e, fifzs = &e, fafs = Eze. When (&1,&2,63) = (0,0,0)

we get the superalgebra Jis.
However, when (£1,&2,&3) # (0,0,0) we can assume that & # 0
and by changing the basis as follows

fi=ghi+fo fo=f, fi=6aF—&fH+E&h,

we get the superalgebra Jqg.

pr 10
IT) Let Le~ | 0 wup 0 |, then the rule of multiplication can be writ-
0 0 pus3

ten as follows:

eft = pifi+ f2, efo=p1fo, efs =psfs,
f1f2 = e, Jifs = &e,  fafs = &ze.

However, the following two equations
‘](eaeaevfl) =0 = 1-6m +6N% =0,
J(e,e,e, fo) =0 = (1 — )p1(2u1 — 1) =0,

which can not be satisfied at the same time, give a contradiction, thereby no
superalgebras can be found in this subcase.

w10
III) Let L, ~ 0 w1 , then the rule of multiplication can be
0 0 m

written as follows:
efi=mfi+fo, efe=mfo+fs, efs=pfs,
fif2 = &e, fif3 = &e, faf3 = &e.
However, the following two equations
J(e,e e, f2) =0 = 1—6u +6u3 =0,
J(e e e f3) =0 = (1 —Lm(2m — 1) =0,

which can not be satisfied at the same time, give a contradiction, thereby no
superalgebras can be found in this subcase. O

Theorem 10. Up to isomorphism there are 71 Jordan superalgebras of type
(2,2), which are presented below with some additional information:

Ne Multiplication rules Decomposition

Jr | ed=e1, e =¢e U UL & St @ St
T2 e%:el, e%:ez, eafa = fo M1®S§®S%

Js |et=e1, 2=e2, e2afo=1fo U & 8% St

Ja | el =e1, e =ea, e2fi = f1, e2f2 = fo U & S3

Js | et=e1, e =ec2, eafi = f1, eafo=1f2 U &S

T | e2=e1, e =e2, eafi = f1, eafo=f2, fifo=e2 U @ S3

Jr | el =e1, e§=e2, e2fi =31, e2fa= 3/ U & 83
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Js | el=e1, el =e2, eafi =3f1, e2f2=15f2, fife=e2 U ® S3

Jo | ef=e1, e5=e2 e1fo=3f2, e2f2=3/2 83 @ St

Jio | €3 =e1, €} = ea, 61f2=%f2, e2f1 = f1 St S2

Jui | el =e1, e =e2, e1fo = %fzy eaft = f1, eafo = %fz Indecomposable

Ji2 | €3 =e1, €3 = ey, 61f2:%f2, e2f1:%f1 St S?

Jis | el =e1, e =e2, e1f2 = %fz, eaf1 = %fl, eafa = %fz Indecomposable

Jia | el =e1, 3 =€z, e1fa = f2, e2f1 = f1 83 & 53

J1s 6% =e€1, 6% =e2, e1f1 = %fl, Indecomposable
erfa = S fo,eafi = 5f1, eafo= 52

T | e =e1, e3=e2, e1fi = 31, erfa = 3 fo, Indecomposable
eafi = 31, eafo = 3f2, fifo =e1 +tes

Jir | fife=e Us @ S3

Jis | e2f1 = f2 Uy ® S3

Jie | e2f1 = f2, fifo=e Indecomposable

J20 | e2f1 = f2, fifa=e2 Us & S3

Ja1 | el =e1 U &U S} S

J22 |2 =e1, fifo=e2 Uy & S3

J23 e? =e1, eaf1 = f2 U @Sg’

J2a | €l =e1, eafi = fo, fifo=e2 Uy @ S}

J25 | €2 =e1, elfQZ%fQ U & S2 @ S1

J26 | € =e1, e1fz = fo Us ® S2 ® S}

Jar | el =e1, eifi =5 f1, eifo= 1/ Us © S3

J2s | e =e1, erfr = %flv erfz = %fQ, fifa=e2 Indecomposable

J29 | €2 =e1, elf1=%f1, 61f2:%f2, fifo=e1 z,{Q@g;’

J30 ef =e1, e1f1 = %fl; e1fa = %fz, fifo=e1+e2 Indecomposable

Ts1 | e =e1, e1fr = %fla e1fa = %f2, e2f1 = f2 Indecomposable

J32 e% =e1, e1f1 = %fl; e1fa = %fz, eafi = f2, fife =e2 Indecomposable

J33 | €2 =e1, 61f1:%f1, e1fe = fo Us @ S3

Jaa | el =e1, e1fi = f1, erfo = fo Uy & SE

Jss | ef=c1, etfi=fi, esfa=1fo, ifo=e1 Uy  S3

J36 e%zel, elez = ez B 6951169311

Jsr | e? =e1, erea =e2, e1fa =112 S3@S!

Jas | €2 =e1, etea =ea, e1fo = fo 83, ® 8!

Js9 | €l =e1, erea = ez, e1f1 = 5f1, e1fo =3/ Indecomposable

Jao | el =e1, erez =e2, e1f1 = %fh e1fz = %fQ, fifa=e2 Indecomposable

Ja1 | el =e1, etea =ez, e1fi =51, e1fo =3 f2, eafr = fo Indecomposable

Jaz | el =e1, erea =e2, e1f1 = %fl, Indecomposable
e1fo=1%f2, eafr = f2, fifa =e2

Jaz | el =e1, erea =e2, e1f1 = %fh eifa=fa Indecomposable

Jaa e% =e1, erea =e2, e1f1 = f1, e1fo = f2 Indecomposable

Jas | €2 =e1, etea =€, e1f1 = f1, e1fa = f2, fifo=e2 Indecomposable

Jae | €3 =e1, erea = ez, e1fi = f1, exfa = fa, fife=e1 Indecomposable

Jar | el =e1, erea =€z, e1f1 = f1, e1fo = f2, fifo=e1+e2 Indecomposable

Jas 6% =e1, e1ez = ez, e1f1 = f1, e1fo = f2, eaf1 = fo Indecomposable

Ja9 e% =e1, erez = e2, e1f1 = f1, e1fo = f2, eafi = fo, f1fo =e2 | Indecomposable

Ts0 | €2 =e1, erea = Lea By &St Sl

Ts1 | e2 =e1, erea = Sea, e1fo =112 S3 @ Sl

Ts2 | el =e1, ecrea = 1ea, e1fo=1f2, fifo=e2 Indecomposable
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TJss | €f =e1, erez = %62, e1fa = %f2, e2fa = f1 Indecomposable
Jsa | €] =e1, erez = %62, e1fz = %f2, eafo=f1, fif2=e2 Indecomposable
Tss | €1 =e1, erea = jea, e1fo = 3fo, eafi = fo Indecomposable
Jse | €3 =e1, e1ea = %62, e1fa = %f2, e2fr = fa2, fifa=e2 Indecomposable
Ist 6% =e1, e1e2 = %62, e1fo = fa 3%2 @311

Tss | e2=e1, ecrea=1ea, exfi=1f1, erfo =352 Indecomposable
Ts9 | e =e1, ere2 = %62, erf1 = %fl, e1fe = fa Indecomposable
Jeo e% =e1, €162 = %62, e1f1 = %fl, e1fe = fa, fifa =e2 Indecomposable
Je1 | €] =e1, erea = %527 erfr = %fl, e1fa = fa, eafe = f1 Indecomposable
Je2 | €] =e1, erea = %62, e1fi = %fl, Indecomposable

eifa = f2, eafo = f1, fife=e2
Je3 e% =e1, e1e2 = %62, e1f1 = %fl, e1fo = fa, eaf1 = fo Indecomposable
Jea | €3 =e1, erea = Sea, e1f1 = 1 f1, Indecomposable
erfa = f2, eaf1 = f2, fifo=e2

Jes | €3 =e1, erex = Sea, exfi =f1, exfa=fa Indecomposable
Jee | € =e2 By &Sl e8!
Jer | €3 =e2, fifao=e2 Indecomposable
Jes | el =e2, fifa=e1 Indecomposable
Je9 ef =e2, eaf1 = fa Indecomposable
Jro | el =e2, e1fi = fo Indecomposable
Jri | el =e2, eifi = fa, fifo=e2 Indecomposable

Proof. Let Jo =2 U; & U;. Here we are looking for Jordan superalgebras such
that J = (Fe; + Fea) + (Ff1 + Ff2) with multiplication rules

el =e1, €2 =ey, erfi =a1fi+aafs, e1fs = azfi + asfo,

eaf1 = Bif1 + Bafe, fife = &e1 +&ea, eafo = B3f1 + Bafo.

For the action of the operator L., on J; we can write the following matrix

(CARNE )

a3 Oy

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., have one of the following forms:

pr 0 pro 1
0 p2 0 m
I) Let L, ~ ,u1 then the rule of multiplication can be written as
2
follows:

el =e1, €2 =ey, erfi=mf1, e1fo = pafo,

eaf1 = Bif1 + Bafe, fife = &e1 +&ea, eafo = B3f1 + Bafo.

From J(e1,e1,e1, f1) =0, J(e1,e1,e1, f2) = 0, we obtain equations below
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(15— Va2 —1) =0, i=T,2.

Up to permutation of fi; and fy we have six possibilities:

(Nla/@) € {(0’0)7 (07 %)a (03 1)7 (%7 %)7 (%a 1)’ (17 1)}

1. (p1,p2) = (0,0) In this case, we can consider the action of es. By
using a simple change of basis, the matrix of L., have one of the

following forms:
71 0 71 1
0 = 2 ’ 0 r 1 ’

When Le, ~ (7; 0) we have

T2
51:0, (7'1*1)’7'1(27'1*1):0, (’7’2*1)7’2(27’2*1):0

from J(ey,e1, f1, f2) =0, J(ez,e2,e2, f1) = 0 and J(ez,e2, €2, f2) =
0, respectively.
e If 74 = 0 then from
J(eg,eg,fl,fQ) =0 => 452(27'2 — 1) = 0,
J(ez,e2, f2, /1) =0 = &(r2 —1) =0.
we get & =0 and 7 € 0,1, %, which gives superalgebras J1, J2
and jg.

o If 71 = 1 then we have
J(ez,e2, f2, f1) =0 = &(mp—1)=0.
So, either & = 0 and we have Jordan superalgebras Jy and J5
with 7o € {1, %}, or & # 0 and 79 = 1 which gives us the Jordan
superalgebra Js.
o Ifrq = % then from
J(e2, €2, f1, f2) =0 = &(2m —1) = 0.
So, either & = 0 and we have a Jordan superalgebra J7 with
Ty = % (1 € {0,1} repeat the previous superalgebras), or £ # 0

and 7 = % which gives us the Jordan superalgebra Jg.

1
When Le, ~ (7(-)1 > we have:
71

J(ea,ea,€2, f1) =0 = (1 — 671 +677) =0,
J(e2,€2,€2, fo) =0 = (1 —1)m1 (21 — 1) =0.
This contradiction implies that no superalgebras can be found in this
case.
2. (1, p2) = (0, 3). In this case we have the following results

J(e1,e1,e2,f1) =0 = B2 =0, J(ei,e1, fo,e2) =0 = P53 =0,
J(er,e1, fa, f1) =0 = & =& =0,
J(e1,e2,e2, f2) =0 = B4(284 — 1) =0,
J(ea,e2,e2, f1) =0 = (81 —1)B1(261 —1) = 0.
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Hence, in this case, we obtain 6 Jordan superalgebras with 84 €
{0, %} and f; € {0, 1, %} Among them we have Jy, J10, J11, J12, J13,
while 81 = B4 = 0 gives a superalgebra isomorphic to previously
obtained one.

3. (1, p2) = (0,1) In this case we have the following results

J(er,e1,e2, f1) =0 = B2 =0,
J(e1,e1,e2,f2) =0 = B3 =04 =0,
J(el,el,fl,fg):o = 61:0, J(el,el,fg,fl):o = 52:0,
J(ea,ea,e2,f1) =0 = (/1 —1)B1(261 —1) = 0.

Hence, in this case, we obtain 3 Jordan superalgebras with g1 €
{0,1, %} Only 81 =1 gives a new superalgebra J14.
4. (p1,p2) = (%,%) In this case, we can consider the action of es.

By using a simple change of basis, the matrix of L., has one of the

following forms:
1 0 1
0 /)’ 0 n/’

When L, ~ (78 0) we have:
T2

J(e1,e2,e2, f1) =0 = 71(211 — 1) =0,
J(e1,e2,€2,f1) =0 = m(212 —1) =0.

o If (11,72) = (3,3) then we get the well-known one paramet-
ric family of four-dimensional Jordan superalgebras, which we
denoted as jltﬁ.

o If (11,72) = (O,%) then from J(ey,es, f1, fo) = 0 we get & =
&> = 0 which gives a Jordan superalgebra isomorphic to Ji3.

o If (11,72) = (0,0) then from J(e1, ez, f1, f2) = 0 we get & =0

and hence the following Jordan superalgebra: €2 = e, €3 =

es, e1fi = 3 f1, eifo = 32, fifa = &er. Though only & =0
gives us a new superalgebra Ji5.

T1

When L, ~ we have:

1

J(617627627f1) =0 = 27’1 — % = O’

J(e1,e2,e2,f1) =0 = m(2r1 — 1) =0.

This is a contradiction.
5. (p1,p2) = (%, 1). In this case we have the following results

J(er,e1,e2,f2) =0 = B3 =0£4=0,
J(e1,e1, f1,e2) =0 = B2 =0,
J(er,e1, f1,f2) =0 = & =& =0,
J(e1,e2,e2, f3) =0 = B1(261 — 1) =0.
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Hence, we have two Jordan superalgebras with 8 € {0, %}, which
are isomorphic to J5 and J11.

6. (p1,p2) = (1,1). In this case, we can consider the action of es. By
using a simple change of basis, the matrix of L., has one of the

following forms:
T1 0 T1 1
0 2 ’ 0 r 1 ’

When Le, ~ (7(-)1 0> we have:
T2

J(el,el,eg,fl) =0 = 1=0, J(el,el,eg,fg) =0 = 1 =0,
J(el,el, fl,fz) =0 = {2 =0.
Hence, we have the following Jordan superalgebra: e? = e, €3 =
€9, 61f1 = fl, 61f2 = f2, f1f2 = €161 which repeats jg and j@.

1

When L, ~ we have:

1

J(61,617627f1) =0 = f2 = 0.
Thus, there are no superalgebras in this case.

1
IT) Let L., ~ (’lf)l ) then the rule of multiplication can be written as
H1

follows:

el =e1, e3=ea, e1fi =pfi+ fo, e1fo=pfo,

eaft = Pifi + Bafo, fife =&er +E&ea, eafo = B3f1 + Bafo.

From J(e1,e1,e1, f1) =0, J(e1,e1,e1, f2) = 0, we obtain equations below

1—6pu1 +6pF =0, (u—1pu1(2u — 1) =0.
Evidently, this is a contradiction.
Let Jo =2 Uz @ Us. Here we are looking for Jordan superalgebras such that
J = (Feq + Fea) + (Ff1 + Ff2) with multiplication rules
e1fi = a1 fi +aofe, e1fo = asfi +aufe, eafi = Bifi + Bafe, fife=
§1e1 + &aea, eafo = B3f1 + Bafo.

For the action of the operator L., on J; we can write the following matrix

ap ap
a3 Oy .

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., has one of the following forms:

pr 0 pro 1
0 pe) \O m
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0
I) Let L¢, ~ (%1 ) , then the rule of multiplication can be written as
H2

follows:

erfr = p1f1, erfo = pafo, eafi = Bifi+ Bafe, fife = &er + &aeo,
eafo = Baf1 + Bafo.

Using Jordan super identity we get the following results:
J(er,er e, f1) =0 = =0, J(ei,er,er, fo) =0 = p2=0.

Thus, we can consider the action of e;. By using a simple change of basis,
the matrix of Le, has one of the following forms:

71 0 1
0 T2 ’ 0 1 '
0
When Le, ~ (7(-)1 ) we have:
T2

J(ea,e2,e2,f1) =0 = 171 =0, J(ez, ez, ez, f2) =0 = 1 =0.

Hence, we have the Jordan superalgebra: fifo = &1e1 + &ae0.

o If (&1,&2) = (0,0) the superalgebra is trivial.
o If (&1,&2) # (0,0) then by changing the basis as follows

if & # 0
6/ — e + e , 6/ — 627 1 9
1= &1e1 + &€z, € e if& =0,
we get the superalgebra J17.

1
When Le, =~ (78 > we have:
1

J(e2,e2,e2, f1) =0 = 71 =0.

Hence, we have the Jordan superalgebra: esfi = fa, fifo = &1e1 + &aea.
o If (£1,&) = (0,0), we have the superalgebra Jis.
o If & = 0,& # 0, then by changing f{ = %fl, 1= %fg we get
the superalgebra Ji9.
o If & # 0, then changing f] = \/—lgfl, 1= \/—lgfg, % =t we have

exfi = fo, fifs =ter +ea.
Further, by changing e, = te; + e2 we obtain the superalgebra Jap.

Let Jo =2 U1 & Us. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey) + (Ff1 + Ff2) with multiplication rules

e?=e1, e1fi =a1fi+aafs, erfo=asfi+asfe, eafi = Bifi+ Bafo,

fife = &er + &aea, eafo = B3f1 + Bafo.
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For the action of the operator L., on J; we can write the following matrix

ap ap
a3 04 '

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., has one of the following forms:

pr 0 pr 1
0 w) \0 m

0
I) Let L¢, ~ (/:)1 ) then the rule of multiplication can be written as
12

follows:

e =e1, erft = pfi, eifo = pafo, eafi = Pifi + Bafo,
fife = &ie1 + &2ea, eafo = B3f1 + Bafa.

From J(ey,e1,e1, f1) =0, J(e1,e1,e1, f2) = 0, we obtain equations below

(i = Dpi(2p = 1) =0, i=1,2.

Up to permutation of f; and fo we have six possibilities:

(11, 12) € {(0,0),(0,3),(0,1), (3. 5), (3, 1), (1, 1)}

1. (p1,p2) = (0,0). In this case, we can consider the action of ey. By
using a simple change of basis, the matrix of L., has one of the

following forms:
1 0 71 1
0 7o) 0 n/)

When L, =~ (78 0) we have:
T2

J(er,er, fi,f2) =0 = & =0, J(ez,ez,e2,f1) =0 = 71 =0,
J(62,€2,€2,f2):0 = TQZO.

1

1
So we have the superalgebras J21 and Ja2. When L., =~ (7(-)1 )

we have
J(€1)€17f17f2) =0 = 51 - 07 J(€2,€2,62,f2) =0 = T = 0.

Which gives us the superalgebras Jo3 and Jo4.

2. (1, p2) = (0, 3). In this case, we have the following results
J(e1,e1,e2, f1) =0 = B2 =0, J(ei,e1, fo,e2) =0 = Pz =0,
J(et,e1,fo, f1)) =0 = & =& =0,

J(e1,ea,e2,f2) =0 = B4=0, J(ez,e2,e2,f1) =0 = P =0.

Hence, we obtain the superalgebra Jas.
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3. (1, p2) = (0,1). In this case, we have the following results

J(e1,e2,e1,f2) =0 = P =4 =0,
J(e1, fi,e1,f2) =0 = & =6 =0,
J(e1,e1,e2,f1) =0 = P2 =0, J(ez, e2,e2,f1)=0 = [ =0.

Hence, we get the superalgebra Jog.
11

. (p1,p2) = (5,35). In this case, we can consider the action of es.

By using a simple change of basis, the matrix of L., has one of the

following forms:
T1 0 T1 1
0 2 ’ 0 7 1 ’

0
When Le, ~ (78 > we have:
T2

J(el,eg,eg,fl) =0 = 7= 0, J(el,eg,eg,fg) =0 = m=0.
So we have the following superalgebra:
e?=e1, etfi=3f1, etfa=3%fr, fifo =&+ e

o If & = &5 = 0 then we have the superalgebra Ja7.

o If & = 0,8 # 0 then by the change f| = éfl we get the
superalgebra Jos.

o If & # 0, & = 0, then by changing f| = gilfl we get the
superalgebra Jag.

o If & #0, & # 0, then by changing f] = éfl and e}, = %62 we
obtain the superalgebra J30.

1
When Le, ~ (7(-)1 we have
71

J(e1,e2,e2, f1) =0 = 11 =0, J(e1,e2, f1,/1) =0 = & =0.
So we have the superalgebras J3; and J32.

. (u1,p2) = (3,1). In this case, we have the following results

J(er,e1,e2, f2) =0 = B3 =34 =0,
J(e1,e1, fi,e2) =0 = B2 =0,
J(er,e1, fi,f2) =0 = & =6 =0, J(er,ez,e2, f1) =0 = (1 =0.

Hence, the obtained superalgebra is Js3.

. (1, p2) = (1,1). In this case, we can consider the action of ey. By

using a simple change of basis, the matrix of L., has one of the

following forms:
0 1
0 T ’ 0 1 ’

When Le, ~ (78 0) we have:
T2
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J(€1,€1,€2,f1) =0 = 1 = 07 J(617€17627f2) =0 = T2 — 07
‘](elﬂelafbe) =0 = 52 =0.
So we have superalgebras J34 and J35.

T1
we have

When Le, ~

71

J(el,el,eg,fl) =0 = 1=0.
Which is, obviously, a contradiction.
Let Jo = By. Here we are looking for Jordan superalgebras such that J =
(Fey + Feg) + (Ff1 + F fy) with multiplication rules
e?=e1, e1fi =a1fi+aafs, erea =e2, e1fo=azfi+ asfs,

eaft = Bifi + Bafa, fife = &ier + Eaea, eafo = Bafi + Bafo.

For the action of the operator L., on J; we can write the following matrix

(CANE )
a3 Oy .

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., has one of the following forms:

pr 0 o1
0#270111

0
I) Let L, ~ <’lz)1 ) then the rule of multiplication can be written as
2

follows:
el =e1, e1fi =pif1, erea=ea, eifo=pafa, eafi = Bif1+ Bafo,
fife = &1e1r + &ae, eafo = B3f1+ Bufo.

From J(e1, ey, e1, f1) =0, J(e1,e1,e1, fo) = 0, we obtain equations below

(i — Dpi(2p —1) =0, i=1,2.

Up to permutation of f; and fs we have six possibilities:

(Mlvﬂ?) € {(070)a (07 %)7 (07 1)7 (%7 %)7 (%7 1)7 (17 1)}
1. (g1, p2) = (0,0). In this case, we have the following results
J(ei,e1,e9, f1) =0 = 1= P2 =0,
J(e1,e1,e9, f2) =0 = B3 =54 =0,
J(er,e1, fi, f2) =0 = & =& =0.
Hence, the obtained superalgebra is Jsg.
2. (1, p2) = (0, ). In this case, we have the following results
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J(e1,e1,e2,f1) =0 = 1 =32 =0,
J(elaelaf27€2):0 = ﬁ3:07 J(€17627627f2):0 = 64:07
J(er,e1, f2, f1) =0 = & =8 =0.

Hence, the obtained superalgebra is Js7.

. (p1,p2) = (0,1). In this case, we have the following results

J(e1,ez,e1,f1) =0 = B1=p2=0,
J(er,e1,e2, f2) =0 = B3 =0,
J(er,e1, f1,f2) =0 = & =6 =0,
J(f27€2,€2,€2):0 = ,84:0.

Hence, the obtained superalgebra is J33.
1

. (p1,p2) = (3, 3). In this case, we can consider the action of es. By

using a simple change of basis, the matrix of L., have one of the

following forms:
T1 0 1 1
0 T ’ 0 i ’

When Le, ~ (701 0> we have:
T2

J(el,eg,eg,fl) =0 = T = 0, J(€1,€2,€2,f2) =0 = T9 = 0,
J(e1, ez, f1,f2) =0 = & =0.
So we have the superalgebras J39 and Jyo.
1
When L, >~ K we have
0 n
J(e1,ea,e2, f1) =0 = 71 =0, J(ei, ez, f1,/f2) =0 = & =0.

which gives us the superalgebras Jy1 and Jys.

. (11, #2) = (3,1). In this case, we have the following results

J(er,e1,€2,f2) =0 = B3=0, J(er, €1, fi,e2) =0 = B2 =0,
J(er,er, fi,f2) =0 = & =& =0, J(er,ez,e2,f1) =0 = S1 =0,
J(ez, €2, €2, f2) =0 = B4 =0.

Hence, the obtained superalgebra is Jy3.

. (1, p2) = (1,1). In this case, we can consider the action of ey. By

using a simple change of basis, the matrix of L., have one of the

following forms:
T1 0 T1 1
0 T2 ’ 0 T1 ’

0
When L, =~ (78 ) we have:
T2

J(ea,e,e2,f1) =0 = 171 =0, J(ez,e2,€2,f2) =0 = 1 =0.

So we have the following superalgebra:

el =e1, eifi = fi, erea =e2, e1fo= fo, fife = Erer + Eaea,
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e If (&1,&) = (0,0) we have the superalgebra Ju4.

o If (&1,&2) # (0,0)
(a) When & = 0, by changing f] = éfl we get the superal-
gebra Jys5.
(b) When & # 0, by changing f{ = & f1 and denoting §& =t
we can write

e} =e1, erea = ea, e1fi = f1, e1fo = fa, fifo = e1 + tes.

In this case, we get Ju6 when t = 0 and J47 when t # 0.
1
When Le, ~ (Tl > we have
0 n

J(ea,e2,e2, f2) =0 = 11 =0, J(ez,e2, f1,/1) =0 = & =0.
So we have the superalgebras Js and Jy9.

1
IT) Let L., ~ ('uol ) then the rule of multiplication can be written as
H1

follows:
el =e1, erea = ea, e1fi = p1fi + fo, e1fo = p1fo,
eafi = Bifi + Bafa, fifo = E&e1 + &aea, eafo = Bafi + Bafo.

However, from

J(er,er,er, fi) =0 = 1 —6u; +6u2 =0,
J(er,er,e1, f2) =0 = (w1 —1)p1(2u — 1) = 0.

we get a contradiction.
Let Jo = By. Here we are looking for Jordan superalgebras such that J =

(Fey 4+ Feg) + (F f1 + F f2) with multiplication rules

1
2
el =e1, e1fi = a1 fi +asfa, erex = 562 e1f2 = azfi + oafa,

eafi = Bifi + Bafa, fifo = Ee1 + &aea, eafo = Bafi + Bafo.

For the action of the operator L., on J; we can write the following matrix

a1 (9
a3 Oy .

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., has one of the following forms:

pr 0 pro 1
0 pe) \O m
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0
I) Let L, ~ (,181 ) then the rule of multiplication can be written as
2

follows:

1
el =e1, e1fi = pif1, erea = 562 e1fo = pafo,

eaf1 = Bif1 + Bafe, fife = &e1 + &aea, eafo = B3f1 + Bafo.

From J(e1, ey, e1, f1) =0, J(e1,e1,e1, fo) = 0, we obtain equations below

(15— Va2 — 1) =0, i=T,2.

Up to permutation of f; and fo we have six possibilities:

(Mlaﬂ?) € {(070)7 (07 %)7 (07 1)7 (%7 %)7 (%7 1)7 (17 1)}
1. (p1,p2) = (0,0). In this case, we have the following results

J(er,er,e2,f1) =0 = p1=p2=0,

J(er,e1,e2,f2) =0 = B3 =p1=0,

J(ere1, fi, fa) =0 = & =& =0.
Hence, the obtained superalgebra is J50.

2. (p1, p2) = (0, 3). In this case, we have the following results
J(er,er,e2, f1) =0 = B1 =0, J(ei, e, f2, 1) =0 = & =0,
J(el,eg,el, fg) =0 => B4 =0, J(€1,62,62, fl) =0 = 52@3 =0.

We consider the following subcases:

(a) B2 = 0. If B3 = 0 then we take the superalgebra J5; when
& = 0, and when & # 0 we can change f| = éfl and thereby
obtain superalgebra Jss.

If B3 # 0, we get the superalgebra Js53 when & = 0, and when

& # 0 then we change the basis by taking f{ = 4/ %fh fs =

ﬁ f2, which gives us the superalgebra Js4.

(b) B3 = 0, B2 # 0. In this subcase we obtain superalgebras Js5
(when & = 0) and Js56 (when & # 0).
3. (p1,p2) = (0,1). In this case, we have the following results

J(e1,e1,e2,f1) =0 = B =2 =0,

J(er,e1,e2, f2) =0 = B3 =34 =0,

J(er,e1, f1,f2) =0 = & =& =0.
This gives us the Jordan superalgebra Js7.

4. (p1,p2) = (3, 3). In this case, we have the following results

J(e1,e2,e1, /1) =0 = B =2 =0,
J(e1,e2,e1, f2) =0 = B3 =4 =0,
J(e1, fr.er, fa) =0 = & =0, J(e, fi,e1, o) =0 = & =0.
This gives us the Jordan superalgebra [Jss.
5. (w1, p2) = (3,1). In this case, we have the following results

J(61,61,62,f2)20 = B4:05 J(elaelafth):O = 51207
J(e1,ez,e1, f1) =0 = p1 =0, J(er,e2,e2,f2) =0 = B283=0.
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This case, being similar to the second one, gives us the Jordan su-

peralgebras J59 — Je4.
6. (p1,p2) = (1,1). In this case, we have the following results

J(e1,e1,e2,f1) =0 = B1 = B2 =0,
J(e1,e1,e2, f2) =0 = 3= p04=0,
J(el,el,fl,fg) =0 = fg = 0, J(62,f1,61,f2) =0 = 51 =0.
Here we obtain the Jordan superalgebra Jgs.

1
IT) Let L., ~ ('uol ) then the rule of multiplication can be written as
H1
follows:
1
el = e1, etfi = mfi+ fo, erez = 562 e1f2 = fa, e =0,

eaf1 = Bif1 + Bafe, fifo = &e1 + &eea, eafo = B3f1 + Bafo.

However, from the following

Jer e e1, f1) =0 = 1—6u1 +6p3 =0,
J(er,er,e1, f2) =0 = (p1 — p1(2p1 — 1) =0,

we get a contradiction.

Let Jo = Bs. Here we are looking for Jordan superalgebras such that J =
(Fey + Fea) + (F f1 + F f2) with multiplication rules

e} =ea, e1fi = a1 fi + asfa, e1fo = asfi + asfo,

eaf1 = Bif1 + Bafe, fifo = &ie1 + &eea, eafo = B3f1 + Bafo.

For the action of the operator L., on J; we can write the following matrix

ap Qo
a3 Oy .

However, it is easy to prove that, by using a simple change of basis, the
matrix of L., has one of the following forms:

1 0 o1
0 w2 \O

0

I) Let L., ~ ('Lgl ) then the rule of multiplication can be written as
2

follows:

el =es, e1fi = pif1, e1fo=pafo, eafi = Pif1+ Bafo,
Jifo = &1e1r + &ae2, eafo = B3f1 + Bafo.

Let’s assume that p; # 0. Then, from

J(er,er,er, fi) =0 = B2 =0, J(ez,ez,e2,f1) =0 = (1 =0,
J(er,er,er, fi) =0 = p1 =0,
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results, we get a contradiction. So pu; = 0.
Further, let’s assume that puo # 0. Then, from
J(ei,e1,e1,f2) =0 = B3=0, J(ei,er,e2,f1) =0 = B1 =0,
J(62,62762,f2) =0 = 54 = 0, J(61,61,61,f2) =0 = Mo = 0.

results we get a contradiction again. So pe = 0.

With obtained results we can consider the action of the operator L., on J1
which can be written in one of the following forms:

7'10 7'11
07’27 07’1'

o L, >~ n 0 gives the following results:
? 0 m

J(el,el,eg,fl) =0 = mn= 0, J(el,el,eg,fg) =0 = = 0,
by which we obtain the following superalgebra:
el =ey, [fifo=&el+ Eren.

a) If & = 0,& = 0 we have the superalgebra Js6.

b) If & = 0,& # 0, then by changing f] = éfl we get the super-
algebra Js7.

c) If & # 0, then by changing f] = éfl and €] = e; + %ez we
obtain the superalgebra Jgs.

1
o L, ~ (Tl gives the following results:
0 n

J(er,er,e2, f1) =0 = 7 =0, J(er,e1, f1,f1) =0 = & =& =0,
by which we obtain Jge.

1
IT) Let L, ~ (,161 ) then the rule of multiplication can be written as
H1

follows:

el =ea, erfi = fi+ fo, erfo=pifo, eafi = Pif1+ Bafo,
Jifo = &1e1r + &ae, eafo = B3f1 + Bufo.

Then we have the following results:
J(ei,e1, fi,en) =0 = B3 =0, J(ez,e2,e2,f2) =0 = B4 =0,

J(e1,e1,e1,f2) =0 = p1 =0, J(ei, e, fi,er) =0 = B1 =0,
J(e1,e1, f1, f1) =0 = (26 =0, B2 = 2.

If B2 = 0 then we have & = 0 and get the superalgebras J79 and J71.
If By # 0 then we have & = & = 0. Then by changing the basis as e} =
e1 — 5%62, 15 = Baf2 we obtain the superalgebra

2
e = ea, eafi = fo.
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However, this superalgebra is isomorphic to Jgg-

O

Theorem 11. Up to isomorphism there are 59 Jordan superalgebras of type
(3,1), which are presented below with some additional information:

MNe Multiplication rules Decomposition
J1 | e2=e1, =€, 2 =e3 U DU DUL & St
J2 | e2=e1, =€, 3 =e3, e1f=Ff SZalh ol
Js |et=e1, 2 =e, 2 =e3, e1f=3f S2plh ®Uh
Ja | €2 =e1, €2 =e2, €3 =3, €1f=%f7 €2f=%f S} dlh

Js | el =e1, e =e U dUL B U D S}
Jo | el=e1, =€, e1f=Ff S2olU &S]
Jr | e2=e1, €2 =eo, ele%f S2alh ®S;
Js |el=e1, 3 =€, erf=3f eaf=1Ff S} @S

Jo |el=el U dU U2 D S}
Jwo | e2=e, eif=f S2 U, ® St
Jun | el=e, eif=1f Sl ® St
J12 | e =e1, erea = e, €3 =e3 BieU &S}
Jis | €2 =e1, etea =€z, €2 =e3, e3f=f B @S2

Jia | €2 =e1, etea =e3, €2 =e3, e3f = %f B & S}

Jis | e2=e1, erea =€, 2 =e3, e1f = f S @ U

Ji6 | el =e1, crea=ea, 3 =e3, exf =3 f S el

Jir | €2 =e1, erea=e2, €2 =e3, e1f = %f, esf = %f Indecomposable
Jis | € =e1, e1e2 = e Bi ®Us ® St
J19 6% =e1, eteg =ez, e1f = f 3?0 691/{21

J20 | €2 =e1, erea =€, e1f = %f Sdaoul

J21 | € =i, 6162:%62, e3 =e3 Bs ® Uy & St
J22 6% =e1, e1e2 = %62, e§ =e3, e3f=f B2 69322

Jas | €2 =e1, erea = Sea, €2 =e3, esf =1f By ® St

J2a | €l =e1, erea = jea, €2 =e3, exf=f Sty ®Uh

J25 | €2 =e1, ecrea=1ea, 2 =e3, esf = 1f S} elh

J26 | €2 =e1, crea=1ea, 2 =e3, exf =1f esf=1f Indecomposable
Jar | €2 =e1, e1e2 = ge2 By ®Us ® S}
J28 | €2 =e1, erea = Jea, e1f = f S}y ® Uz

J20 | €2 =e1, erea=lea, exf=1f S oul

Jao | €2 =ea, €2 =e3 Bs @l &St
Js1 | €2 =e2, 2 =e3, e3f=Ff S2ath olUs
Jsz | €2 =ez, 2 =e3, esf =1f SZath ol
Jaz | €2 = e Bs @ U ® St
Jsa | €2 =e1, e1ea = ez, e1e3 =e3, €3 =e3 T & Si

335 e% =e1, €1e2 = e2, €1€e3 = €3, e% = €3, elf = f Indecomposable
Jse e% =e1, e1e2 = ea, e1e3 = es, eg =e3, e1f = %f Indecomposable
Jar | €2 =e1, e1ez =ea, erez =e3 T2 @ St

J3s e% =e1, ejeg = ez, ejeg =e3, e1f = f Indecomposable
Jag e% =e1, ejex = ez, ejez =e3, e1f = %f Indecomposable
Jao | €2 =€z, e1ea =e3 T3 @ St

Ja1 | €2 =e2, e1e3 =e2 Ti®Si

Jaz | €2 =e1, €3 =€z, €3 =1 +ea, er1e3 = Les, ezez = se3 Ts ® S}



K. ABDURASULOV, R. LUBKOV, AND A. SAYDALIYEV

Jas | €2 =e1, e =e2, €2 =e1+ ez, e1e3 = Se3, ezez = Les, Indecomposable
erf=3%f eaf =3%f
Jaa | €2 =e1, er1e2 = %627 eje3 = e3 Te ® St
Jas e% =e1, e1e9 = %62, elez3 =e3, e1f = f Indecomposable
Jae | €2 =e1, e1e0 = %62, elez3 =e3, e1f = %f Indecomposable
Jar | €} =e1, erea = Lea, ere3 = Se3 Tr ® 51
Jas | €2 =e1, ere2 = %eg, ere3 = %63, etf=f Indecomposable
349 6% =e1, €e1e2 = %62, ejes = %63, €1f = %f Indecomposable
Js0 | €2 =e1, 61822562, €3 =e3 Ts © St
Js1 ef =e1, €13 = %62, e% =e3, e1f=f Indecomposable
Js2 e? =e1, e1e9 = %ez, e% =e3, e1f = %f Indecomposable
Js3 | €2 =e1, erea = Jea, €3 =e3, ere3 = ey To ® St
Jsa e% =e1, ejex = %62, e% —e3, ejes =e3, e1f=f Indecomposable
Js5 | €2 =e1, ere2 = %eg, e3 =e3, elez3 =e3, e1f = %f Indecomposable
Jse | €2 =e1, €2 =e2, e1e3 = Les3, eaes = Se3 Tio © S}
Js7 e% =eq, e% =e2, e1e3 = %ed, eges = %637 eif=1r1 Indecomposable
Js8 ef =e1, e% = e2, eje3 = %63, eges3 = %63, erf = %f Indecomposable
Js9 e? =e1, e% =eq, e1€3 = %63, eges = %63, erf = %f, eaf = %f Indecomposable

Proof. Let Jo = Uy ®U; @ U;. Here we are looking for Jordan superalgebras
such that J = (Fe; + Feg + Fes) + F f; with multiplication rules

9 _ 9 _ 9 _ _ T
el =e1, e5=e3, € =e2, e f1 = PFif1, i=1,3.

Using the Jacobi super identity we obtain the following results:

J(er,er,e1, f1) =0 = (B1—1)p1(261 — 1) =0,
J(e2,e2,€2, f1) =0 = (B2 —1)p2(282 — 1) =0,

J(€3a€33635 fl) =0 = (63 - 1)ﬁ3(2,83 — 1) = O7
J(e1,ez,e3, f1) =0 = B1P283 = 0.

e If 31 = 1 then from J(ey,e1,e2, f1) = 0 and J(ey,e1,es, f1) = 0 we

get Bo = 0 and B3 = 0, respectively, which gives us the superalgebra
J2-

e If 51 =0 then

a) When fs = 0, from J(es, es, e3, f1) = 0 we get three superalge-
bras with g3 € {0, 1, %} While 83 = 1 gives a superalgebra that
is isomorphic to Jo, from B3 € {0,3} we obtain superalgebras
J1 and J3.

b) When B2 = 1, from J(eg, ez, €3, f1) = 0 we get B3 = 0, which
gives Jo.

¢) When 5y = %, from J(eg,e3,€e3, f1) = 0 we get B3 € {0,%},
which gives superalgebras isomorphic to J3 and Jy4.

o If 31 = % from J(eq, ez, €2, f1) = 0 we get either o = 0 or B2 = %

When the former occurs, we have two superalgebras with 83 € {0, %},
and when the latter does we have 83 = 0. However, all superalgebras
obtained here are isomorphic to those of previous steps.
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Let Jo =2 U1 © U1 © Us. Here we are looking for Jordan superalgebras such
that J = (Fey + Feg + Fes) + F f1 with multiplication rules

ef=e1 es=e efr=pif1,i=13.
Using the Jacobi super identity we obtain the following results:
J(er,er,e1, f1) =0 = (B —1)B1(261 — 1) =0,

J(ez,e2,e2,f1) =0 = (B2 —1)B2(2B2—1) =0,
J(es, es es, f1) =0 = B3=0.

e If 31 = 1 then from J(ej,e1,e2, f1) = 0 we get By = 0, which gives
Je-

e If 51 = 0 then from J(eg,e9,e2, f1) = 0 we get three superalgebras
with S € {0,1, %} New superalgebras here are J5 and J7.

o If 51 = % from J(e1, ez, €2, f1) = 0 we get either fo = 0 or f2 = %
The only new superlgebra here is Js.

Let Jo 2 U1 & Us B Us. Here we are looking for Jordan superalgebras such
that J = (Fe; + Feg + Fes) + F f; with multiplication rules

e?=e1, efi=pif1,i=1,3.
Using the Jacobi super identity we obtain the following results:
J(er,e1,e1, 1) =0 = (81 —1)B1(261 — 1) =0,
J(e2,€2,e2, f1) =0 = B2 =0, J(es,e3,e3,f1) =0 = B3 =0.

In this case we have three superalgebras with 8, € {0, 1, %}, which give
us Jo,J10 and J11-

Let Jo =2 Us @ Us B Us. Here we are looking for Jordan superalgebras such
that J = (Fey + Feg + Fes) + F f1 with multiplication rules

eifr=PBif1, i=1,3.
Using the Jacobi super identity we obtain the following results:

J(er,er,e1, f1) =0 = B1 =0, J(ez,ez,€2,f1) =0 = B2 =0,
J(es,es,e3,f1) =0 = PB3=0.

So in this case we obtain a trivial superalgebra.

Let Jo =2 By ® U;. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey + Fes) + Ffi with multiplication rules

2 2 .
el =e1, €5 =es3, ejea =ez, efi=PFif1, i=1,3.

Using the Jacobi super identity we obtain the following results:
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J(ez,e2,€9, f1) =0 = B2 =0,
J(er,er,e1, f1) =0 = (B1—1)p1(261 — 1) =0,
J(es,es, e, f1) =0 = (B3 —1)B3(2083 — 1) =0,
J(e1,e1,e3,f1) =0 = B1p3(261 — 1) =0,
J(61,€3,€3, fl) =0 = ,81B3(253 — 1) =0.
e If 51 =0, then 33 € {0,1, %}, which gives J12, J13 and Ji4.
e If 31 =1, then B3 = 0, which gives us the superalgebra Jis5.
o If B1 = %, then 3 € {0, %}, which gives us Ji6 and Ji7.

Let Jo =2 By ® Us. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey + Fes) + Ffi with multiplication rules

ef=e1, erea=ey, efr=pif1, =13
Using the Jacobi super identity we obtain the following results:

J(62562)62)f1) =0 = 52 - Oa J(flafl)flye?)) =0 = 53 - 07
J(er,er,e1, f1) =0 = (81 —1)81(261 — 1) = 0.
So, we have three superalgebras with ; € {0, 1, %}, which give us Ji1s, J19
and 320.

Let Jo = By @ U;. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey + Fes) + Ff; with multiplication rules

e?=e1, €3 =e3, erea=13es, e;fi=Pif1, i=1,3.
Using the Jacobi super identity we obtain the following results:

J(€27€27€27f1) =0 = BQ = Oa

J(er,er,en, f1) =0 = (B1—1)B1(281 — 1) =0,

J(es es,es, f1) =0 = (B3 —1)B3(283 — 1) =0,
J(er,er,es, f1) =0 = B183(261 — 1) =0,
J(e1,es,e3,f1) =0 = B183(285 — 1) =0.

e If 31 =0, then b3 € {0, 1, %} which gives us Jo1, Joo and Jo3.
o If 31 =1, then 83 = 0, which gives us the superalgebra J24.
o If B = %, then 33 € {0, %}, which gives Jo5 and Jog.

Let Jo = By ® Us. Here we are looking for Jordan superalgebras such that
J = (Fey + Feg + Fes) + F f; with multiplication rules

el =e1, erea=73es €f1=pif1, i=13.
Using the Jacobi super identity we obtain the following results:

J(e2,e2,e2, f1) =0 = B2 =0, J(es,e3,e3,f1) =0 = PB3=0,
J(er,er,e1, f1) =0 = (1 —1)51(261 — 1) =0.

So we have superalgebras Jo7, Jog and Jog from g; € {0, 1, %}

Let Jo = B3 @& U;. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey + Fes) + Ff; with multiplication rules
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ei=e, e3=es efr=Pif1, i=1.3.
Using the Jacobi super identity we obtain the following results:

J(e2,e2,e2, f1) =0 = B2=0, J(ey,e1,e1,f1) =0 = B1 =0,
J(es,e3,e3, f1) =0 = (B3 —1)B3(283 —1) =0.

So we have Jordan superalgebras Js0, J31 and Jsz from S5 € {0, 1,% )

Let Jo =2 B3 ® Us. Here we are looking for Jordan superalgebras such that
J = (Fey + Fey + Fes) + Ff; with multiplication rules

el =e, eifi=Pif1, i=1.3.
Using the Jacobi super identity we obtain the following results:

J(ez,e2,€2, /1) =0 = B2 =0, J(er,er,e1,f1) =0 = p1 =0,
J(es,e3,e3, f1) =0 = B3 =0.

So the superalgebra in this case is Js33.

Let Jo = 7. Here we are looking for Jordan superalgebras such that J =
(Feq 4 Feg + Feg) + Ff1 with multiplication rules

ei=e1, e =e3, eex=ey ere3=e3, efi=pif1, i=13.
Using the Jacobi super identity we obtain the following results:

J(e3,e3,e3,f1) =0 = B3 =0, J(ez,e2,e2,f1)=0 = B2 =0,
J(er,er,e1, f1) =0 = (B1—1)B1(261 —1) =0.

Thus, from ,81 (S {0, 1, %}, we get J34, J35 and Jse.

Let Jo = T2. Here we are looking for Jordan superalgebras such that J =
(Feq 4 Feg + Feg) + Ff1 with multiplication rules

6% = €1, €1e3 = e3, €12 = €9, 6Z'f1 = Bifl, 1= 1,73
Using the Jacobi super identity we obtain the following results:

J(62)62)627f1)20 = 5220) ‘](63563763)f1):0 = B3:05
J(er,e1,e1, f1) =0 = (B1 —1)B1(261 — 1) = 0.

This we obtain J37, J3s and Jsg from S € {0, 1, %}

Let Jo = T3. Here we are looking for Jordan superalgebras such that J =
(Fey + Feg + Fes) + F f1 with multiplication rules

et =ey, efi=pif1, i=13.
Using the Jacobi super identity we obtain the following results:

J(€2)62’62)f1):0 = 52207 J(63563763)f1)20 = 53205
J(61761)61)f1):0 = 61:0
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Thus we have J49.

Let Jo = 7T4. Here we are looking for Jordan superalgebras such that J =
(Feq 4 Feg + Feg) + Ff1 with multiplication rules

e? =ey, ere3=-e2, efi=Pif1, i=13.

Using the Jacobi super identity we obtain only the following result:

J(e2,€2,€2, /1) =0 = P2 =0, J(es,e3,e3,f1) =0 = f3=0,
J(61761)61)f1) =0 = ﬁl =0.

Thus we obtain J4;.

Let Jo = 75. Here we are looking for Jordan superalgebras such that J =
(Fey 4 Feg + Feg) + Ff1 with multiplication rules

2 __ 2 __ _ 1 2 __ _ 1
€1 =¢€1 e3=¢1 + €9, €1€3 = 563 €5 = €2, €2€3 = 563
eif]. = ﬁifla 1= ]-53

Using the Jacobi super identity we obtain only the following result:
J(er,er,e1,f1) =0 = (B —1)B1(26: — 1) =0.
If 51 = 0 then from
J(er,e1,e3,f1) =0 = B3 =0, J(e1, f1,e3,e3) =0 = B2 =0,

we get Jao.
If 51 = 1 then from

J(e1,e1,e2,f1) =0 = B2 =0, J(ei,er,e3,f1)=0 = [3=0,
J(617f17€3a€3)20 = _%(1_‘_/62_26?%):0

we get a contradiction. So there is no superalgebra in this case.
If 5, = % then from

J(er,eze1, f1) =0 = B3 =0, J(es,ez,e1,f1) =0 = fo=3.
we have J43.

Let Jo = Tg. Here we are looking for Jordan superalgebras such that J =
(e1F + eolF + e3F) + f1F with multiplication rules

2 _ 1 _ _ . _ T
e1 = ey, ejea = €2, ejez = ez, e f1 = Pif1, i =1,3.

Using the Jacobi super identity we obtain the following results:

J(er,er,e1, f1) =0 = (81 —1)B1(261 —1) =0,
J(e2,e2,e2, f1) =0 = B2 =0, J(f1,e3,e3,e3) =0 = P3=0.

Thus we get Jaqa, Jas and Jug from 51 = 0,61 =1 and [ = %, respectively.

Let Jo = T7. Here we are looking for Jordan superalgebras such that J =
(Feq 4 Feg + Feg) + Ff1 with multiplication rules

2 _ 1 1 _ I
e] =e1, e1e2 = zea, erez = je3, e f1 =pFif1i=1,3.
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Using the Jacobi super identity we obtain the following results:

J(e2ve27627f1) =0 = ﬁ2:0,
J(€37637635f1) =0 = ﬁ3:0,
J<€17€17617f1)20 = (/81_1)51(2,81—1):0

So, we get Ja7, Jag and Jyg superalgebras from 51 = 0,8, =1 and g1 = %,
respectively.

Let Jo = Tg. Here we are looking for Jordan superalgebras such that J =
(Fey + Feg + Fes) + IF f1 with multiplication rules

6% = €1, €162 = %62, 6% = €3, eifl = ﬁifl, 1= 1,73
Using the Jacobi super identity we obtain the following results:

J(e3,e3,e3,f1) =0 = B3 =0, J(ez,e2,e2,f1)=0 = B2 =0,
J(e1,e1,e1, f1) =0 = (B1—1)B1(261 — 1) =0.

Thus we get J50, J51 and Jso.
Let Jo = Ty. Here we are looking for Jordan superalgebras such that J =
(Fey 4 Feg + Feg) + Ff1 with multiplication rules
6% = €1, €12 = %62, €1€e3 = €3, 6% = €3, eifl = 52']01, 1= m

Using the Jacobi super identity we obtain the following results:

J(e3,e3,e3,f1) =0 = B3 =0, J(ez,e2,e2,f1)=0 = B2 =0,
J(e1,e1,e1, f1) =0 = (B1—1)B1(261 — 1) =0.

Thus we obtain Js3, J54 and Jss

Let Jo = T10- Here we are looking for Jordan superalgebras such that J =
(Fey 4 Feg + Feg) + Ff1 with multiplication rules

2 _ 1 2 _ 1 _ . _ T
e] = e1, eje3 = 5e€3, €5 = €2, €ze3 = ze3, ¢ f1 = PBif1, i=1,3.

Using the Jacobi super identity we obtain the following results:

J(es,es,e3,f1) =0 = B3 =0,
J<617€17€17f1) :O = (/81 - 1)ﬁ1(2,81 - 1) :0

o If 51 =0 then

J(e2,ea,e2, f1) =0 = (B2 —1)B2(282 — 1) = 0.
So we have three superalgebras isomorphic to Jsg, J57 and Jss.
o If ,81 =1 then J(el,el,eg,fl) =0 = ﬁg =0 gives us Js7.
o If 31 = % then J(el,eg,eg,fl) =0 = %52(2B2 — 1) = 0. So we have
Jss and Jsg.
O
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3 Irreducible components

Theorem 12. The variety of four-dimensional Jordan superalgebras of type
(1,3) has dimension 7 and it has 11 irreducible components defined by

Ci=0(Js), C2=0(J7), C3=0(Jg), Ca=0(Jy), Cs=0In),
Ce = O(J12), Cr=0J14), Cs=0J15), Co=0IJ15), Cio=0J17),
Ci1 = O0(J19),

In particular, all of them are rigid superalgebras.

Proof. Calculating the dimensions of orbit closures of the more important
for us superalgebras, we have

dim O(Jg,) dim O(Jlg)
dim O(J11) = dim O(J14)
dim O(Jg) = dim O(Jg) = dim O(Jlﬁ) dim O(J17) ==
(J19)
(J15)

dim O(Jq9
dim O<J7) dim O J15

S - P

If B, B, B EL is a parametric basis for A — B, then we denote a

t gt gt gt
(Ef1 Ef2 Efg Ee)

degeneration by A

Js (tf1,f2,f3,te) J, |3 (tf1,tf2,fs.€) J,
7 (fi—fs.f2,tf3.€) Js | 3 (tfitfa,tf2.f3.€) 1,
Tu (fr+2f2+2f3,tf2+2tf3,t° f3 te) Jo | I (f1,f2,tf3.€) Jio
Ju (f1,f2,tf3€) Jus | Ju (tf1,f2,f3.€) Tis

Below we list all important reasons for necessary non-degenerations.

Non-degenerations reasons

J7,Js, 39, J11,d14, .
Js A T80,y S R :{ According to Lemma 5 (2) }
J15,J16,J17,J19
J7,J8,J9,J11,J14,
Ji2 A R = JJ C A{e, f2, f3 704 2262704 =c3
Ji5,J16,J17,J19 { t b cs 2 A }
J »J ’J ’J k) 3 -
Jin A 718,279,015 R = { JJ C{e, f2, f3}, 034 = 20%4, 034 = 2034, 034 =0 }
Ji6,J17,J19
J7,Jg,J9,J
Jiuw A PR T R = { JJ C{e, fa, f3}, ciy=cly, cly =iy }
J16,J17,J19
s A Jr,disdu R={ cl =0 28, =c |
Jo A J7,J15,J10 R:{ ci; =0, 3y =ciy }
Jie A J7,J15,J10 R={ Az Ay C Az, 2ciy = cly, 23, = cly, ¢, = ciy }
Jiz A J7,J15,Jd19 RZ{ AgAs C Ag, 20142034, 0542014, 6342034 }
Jio A J7,Jis R:{ ApAp C Az, ciy = cly, 34 = cly, €34 =cly }
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Here cfj coeflicients are structural constants in the z1 = f1, 9 = fo, T3 =

f3, x4 = e basis.
O

Theorem 13. The variety of four-dimensional Jordan superalgebras of type
(2,2) has dimension 6 and it has 25 irreducible components defined by

C1=0(N), Co=0(T), C3=0(T3), C1=0(T5), C5= 0O(Ts),
Js), Cr=0(Jy), Cs=0(T), Co=0(TJ1), Cio=O0(T12),

Co = O
Ci1 = O(J13), Cia=0O(Jw), Ciz=O(Tl), Cia = O(Jas),
Ci5 = O(TJ32), Ci6 = O(Ja2), Ci7 = O(Ja9), Cigs = O(Ts0),
Cr9 = O(T54), Co0 = O(Ts6), Co1 = O(Ts7), Coz = O(Tss),

Cos = O(Ts2), Cos = O(Js1), Cos = O(Tgs)-
In particular, 24 of them are rigid superalgebras.

Proof. After carefully checking the dimensions of orbit closures of the more
important for us superalgebras, we have

dim O(Js) = dim O(J3) = dim O(J5) = dim O(Jy) = dim O(J10))
=dim O(J11 = dim O(J12) = dim O(Ji3) = dim O(J14) = dim O(Ts)
= dim O(Ja4) = dim O(J32) = dim O(Jy2) = dim O(Jy9) = dim O(Ts4)
= dim O(J56) = dim O(Jg2) = dim O(Jg4) = 6,
dim O(J) = dim O(Jk) = 5,
dim O(71) = dim O(J57) = 4,

dim O(J50) = dim O(Js8) = dim O(Tg5)

If B, EL,, EY ,E %, is a parametric basis for A — B, then we denote a
t gt ot ot

degeneration by A ey By Bl i) B.
Jo  aeathld, g gy acathl), g ] ge laealitlh), g,
Jes 4>(61’%62’f1’f2) Jir | J23 (terea.f1,02), Jis | J2a Levez fiof2), J20
J22 Leveatinda), g | Jay ERMUR) g | e btV gy
J13 Levteafifa), o g |y L) g 7 Levethoa), o 7,
Jso vt Lt gl g (rpeahif2) J29 | Tig fevtea i), g,
J32 ~——%<617%52’tf17f2> J31 | I35 Leveafitha), J34 | J1 (eateatenfiyfa), J36
Jao Leveafith), J39 | Ja2 Levtesthifa), Jao | Ja2 Levea titfa), Ja1
Js Levtestenfafu), Jas | Jas Leveathifo), Jaa | Jar Levtes,Juta), Jas
Jar 4>(51 CRAL Jae | Ja9 Leveathitha), Jas | Js2 Leveautfa), Js1
JTsa Levtea futha), JIs2 | Jsa Leveatvtha), JIs3 | Js6 Levea tutia), Js5
Jeo Leveafith), JIs9 | Jea Levteatinfa), Jeo | Je2 Leveativtha), Je1
Joa  ~be2thtle) g | gep ALVt gl gy, lonetiUE) g
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(—t5ey,t3er+en,tf1,tf2)

Jaz J19
(fe1+(1+3)ea,Vie1+viea,Vif1+(2t—3) fa,f1+4Vtf2)

Is J33
Te (—te1+(14t)ea,Vier+ViEea, f1,(142t) f2) Tas
5 (1—t)er +(1+t)ea, CTY 0\ Vieo f1.,f2) p
3 37
p)
((42t—2)er +(142) ez, LRI o) 4 fres 1, 1)
J2 J38
g+t (e1t+ez,tez, f1,f2) Tar
Leireasten,i.i2),
16
Tes (tertez,t?en,—t3 f1,f2) Ter
p)
71 (telftezy%exfl,tfz) Tes
16
(*ﬁeﬁrﬁezyﬂez,f1+2f2,t2f2)
J9 Je9
(—t2e1+e,t?en,tf1,tf2)
J24 Jr

Below we list all important reasons for necessary non-degenerations. All
other nondegenerations which are not in this table, can be inferred from The-
orem 7 and Lemma 5(2). Since the even parts of Js6, J54, T57, To4, J50, J65, JT58
superalgebras coincide with By, we conclude that these superalgebras do not
degenerate to others whose even part is not isomorphic to B2 and vice versa.

Non-degenerations reasons

B A DT Tk R= ilAf - Af’ CEQ - 01314, =
c11633 = ci3(c14 — c11)
A1A3 C A4, 3y =2ct,, 25, = 3,
e ” T Jon T " { cf1 653 = ci5(2cly —ciy)
Js A J1,T6,Ts R:{ 3o =0, c33 =3y, ¢34 =0, c3, =0 }
Jo # J1,Te, T8 R = { A1A3 C A4, ¢ty =0, 2¢3, =2y, 2, =ci) + 3, }
Jw A J1,T6,Ts R = { 3y =0, c33 =chy, ¢34 =0, c5, =0 }
Ju A J1,7e,Ts R={ 3y =0, c§3 =3y, €34 =0, ¢3, =0 }
Jiz A J1,T6,Ts R = { chy =0, c5y =2c33, 3, =0, 3, =0
Jis A T, T8, T8 R= { 3o =0, 3y =0, 3, =0, 233 =3, }
i A T1.0s s R={ chh=0c=0 =0 cly=c |
jlta #  J1,J6, T8 R = { 0%2 =0, 052 =0, 032 = 20347 C%l +c%2 = 204114 }
Jsa  # JTs0,Ts7, 58, J65 R = { =0, ¢t — 2 — 3y —ct, =0 }
Jse 7  Js0,Ts7,Ts8,Jes | R = { iy =0, cf3 =0, cf; = 2c]y, }
Je2 7 Js0,Ts7, 58,65 R = { ey =0, 2¢; —cfy —cf3 —cf, =0 }
Joa # Jso,Jor, s Jos | R={ cly=0, 2¢}, —cd —cly—cly=0 |
Js # R:{ 39 =0, c3y =3y }
Js A N R = { 3o =0, 23, = c3, }
Jst  /#  Js0,Ts8, Jes R:{ clp =0, ¢l3=0, ¢j; —cf; =0 }
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Here cfj coefficients are structural constants in the 1 = e1, z9 = €9, 3 =

f1, x4 = fo basis.
O

Theorem 14. The variety of four-dimensional Jordan superalgebras of type
(3,1) has dimension 9 and it has 21 irreducible components defined by

C =0@J1), C2=0(J2), C3=0Q3), C4=0), C=0F2),
- O(J22); 7 = 0(J23), Cs=0(J24), Co=0(2), Cro=0(J2s),
C11 = (3 2) = 0(343), Ci3 = O(Ja7), Cia = O(J48) Ci15 = O(Jag),
Ci6 = O(J51), Cir = O(Js3), Cis = O(Js1), Ci9=0(Js5), Ca0 = O(Js7),

Ca1 = O(Jss)-
In particular, oll of them are rigid superalgebras.

Proof. After carefully checking the dimensions of orbit closures of the more
important for us superalgebras, we have

dim O(J1) = dim O(J2) = dim O(J3) = dim O(J4) 9,
dim O(J42) = dim O(Ja3) 8,
dim O(J21) = dim O(Ja2) = dim O(Jaz) = dim O(Jas)
= dim O(J25) = dim O(Jag) = dim O(Js1) = dim O(Js3)
= dim O(Js4) = dim O(Js5) = dim O(Js7) = dim O(Jss) 7,
dim O(Js7) = dim O(Jsg) = dim O(Jag) 3.

If B!, ez,Eéa,Et is a parametric basis for A — B, then we denote a
(EL B E. Et)
degeneration by A ESREL AN

(e1,e2,tes, f) ~ (e1,e2,tes, f)
J1 —_— Js J2 —_— Je
~ (e1,e2,tes, f) ~ (e1,e2,tes, f)
J3 —_— J7 Ja —_— Js
~ (e1,tea,tes, f) ~ (e1,tea,tes, f)
J1 —_— J9 J2 —_— J10
~ (e1,tea,tes, f) ~ ~ (e1+ez,tea,es,f) ~
J3 —_— J11 | J1 —_—— J12
~ (e2+es,te,e1,f) ~ ~ (ex+es,tea,e1,f) ~
J2 —_— J13 | J3 —_—— J14
~ (e1+ea,tes,es,f) ~ ~ (e1+ez,tea,e3,f) ~
J2 —_— J15 | J3 —_——— J1e
~ (e2+eg,tea,e1,f) ~ (e1+ea,tea,tes, f) ~
Ja —_— J17 31 —_— J18
~ (e1+ea,tes,tes, f) (e1tea,tea,tes, f) ~
J2 —_— J19 | Js R m— Jz20

(e1,e2,tes, f) ~ (e1,tea,e3,f) ~
J21 — J27 | JIs1 —_— Ja28

(e1,e2,tes, f) ((t—t)er+tea,t3ea,e3,f) ~
J26 — J20 | J1 Js0
~ (tea+t2e3 t2ea+tles,e1,f) (tea+tZes,t?eat+ttes,er,f) ~
J2 J31 | Js J32
R ((t—t2)e1+teo,t3en,tes, f) (e1+eztes,(t—t?)eattes,tPes, f) .
J1 J33 | J1 J34
R (e1teates,(t—t?)eattes,toes, f) N (e1teates,(t—t>)eattez ties, f)
J2 J35 | J3 J36
~ (e1+ea+eg,tea,tes, f) (e1+ea+es,tea,tes, f) ~
J1 Ja7 | J2 Jas

(e1+ea+es,tea,tes, f) ~ (te1+ea,tegtes,tes,f) ~

J3 J39 | J3a Jao
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(ter+1f e tes,eates, f) N +ez.ea tes, f
Jao 2 Ja1 | J21 w Jaa
Ja2 (e1+e3,e2,tes3,f) Jas | Ja2s (e1+e3,ea,tes,f) Ja6
Jaz (e1,tes,t?eq, f) Is0 | Jas (e1,tes,t%ea, f) Isz
Jaz (e1,e2,tes, f) Is6 | Jas (e1,e2,tes, f) Ise

Below we list all important reasons for necessary non-degenerations. All
other nondegenerations which are not in this table, can be inferred from
Theorem 8 and Lemma 5(2).

Non-degenerations reasons
Jaz # Js1,357, 058 | R = { A1A4=0 }
Clz + 35 + c35 = 3¢y,
Jaz A Js1, 357,088 | R =19 c1; + ¢y + ¢y = 3ciy,
4y =0, s+ 33+ cl3=0.

k

Here ¢, coefficients are structural constants in the z1 = ey, 9 = €9, 13 =

)

e3, T4 = f basis.

O
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