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Abstract: A subset of vertices in a graph G is a total dominating
set if every vertex of G is adjacent to at least one vertex within
the subset. Two non-total dominating sets form a total coalition
in a graph if their union is a total dominating set. A partition π
of graph vertices into non-total dominating sets is a total coalition
partition if every set of π forms a total coalition set with at least
one other set of π. Vertices of the total coalition graph TCG(G, π)
correspond with the sets of π, and two vertices are adjacent in
TCG(G, π) if and only if the corresponding sets constitute a total
coalition. We show that C4k is a universal total coalition cycle for
k ≥ 2, that is, a cycle whose total coalition partitions generate all
possible total coalition graphs of cycles. We also demonstrate that
Pn is a universal total coalition path for n ≥ 5.

Keywords: total coalition graph, total dominating set.

1 Introduction

We consider �nite, undirected and simple graphs with no isolated vertices.
The vertex set of a graph G is denoted by V (G). We generally follow the
notation and graph theory terminology from the book [22]. A dominating
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set in a graph G is a subset S ⊆ V (G), such that every vertex outside S is
adjacent to at least one vertex in S. The domination in graphs appears as
a model for facility location problems, and it has found many applications,
in particular, in design and analysis of transportation and wireless sensor
networks [18]. Detailed information on graph domination and related subjects
can be found in books [16, 17, 18, 19]. Cockayne, Dawes, and Hedetniemi
proposed a variation of domination known as the total domination [8]. A
subset D ⊆ V (G) is a total dominating set of a graph G if every vertex in
G is adjacent to at least one vertex in D. For a comprehensive monograph
on total dominating sets, we refer the reader to [21]. In 2020, Haynes et al.
presented a novel graph invariant, known as the coalition, based on domi-
nating sets in graphs [11]. Forming coalitions in the industrial sector can be
used to address challenges or attain a shared objective [7].

In a graph G, a coalition consists of two disjoint subsets V1, V2 ⊂ V (G),
such that neither V1 nor V2 is a dominating set, but the union V1 ∪ V2 is a
dominating set. A coalition partition of V (G) is a vertex partition π(G) =
{V1, V2, . . . , Vk} where each set Vi is either a single dominating vertex or
forms a coalition with another set Vj for every i ∈ {1, 2, . . . , k}. Haynes et
al. initiated the study of coalitions graphs in [14]. To describe the formation
of coalitions in π(G), they associate with the partition its coalition graph
CG(G, π). Vertices of this graphs correspond to the sets of the partition,
and two vertices are adjacent if and only if the corresponding sets form a
coalition. A path is called coalition universal if its coalition partitions de�ne
all possible coalition graphs of paths. In [14], the authors demonstrated that
there are only 18 coalition graphs of paths. Henning et al. proved that there
are no universal coalition paths and P10 is the shortest path that de�nes
the maximal number of coalition graphs [5]. Haynes et al. showed that there
are precisely 27 graphs of order at most 6 that can be coalition graphs of
cycles [14]. They asked about the shortest cycle having the maximum number
of coalition graphs. Dobrynin and Golmohammadi showed that C15 is the
shortest cycle satisfying this property [10].

A signi�cant variation of the coalition concept is the total coalition [1].
A total coalition in a graph G consists of two disjoint subsets of vertices
V1 and V2, neither of which is a total dominating set, but whose union is a
total dominating set. A total coalition partition π(G) = {V1, V2, . . . , Vk} is a
partition of vertices of G into non-total dominating sets, such that each set of
π forms a total coalition with another set of π. The maximum cardinality of a
total coalition partition is called the total coalition number of a graph G and
denoted by TC(G). The total coalition graph TCG(G, π), de�ned by a total
coalition partition π, is constructed by the same way as the coalition graph
CG(G, π). This concept has been recently introduced by Bar�at and Bl�azsik
in [6]. To get some insights into results on the coalition and its variations,
we refer to the articles [2, 3, 4, 9, 12, 13, 15, 20].

In this paper, we show that C4k is the universal total coalition cycle for
k ≥ 2 and Pn is the total coalition universal path for n ≥ 5.
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2 Main results

In this section, the total coalition graphs of paths and cycles will be
described. We start with the following de�nitions.

De�nition 1. A path is called a universal path if its total coalition partitions
de�ne all possible total coalition graphs of paths.

De�nition 2. A cycle is called a universal cycle if its total coalition partitions
de�ne all possible total coalition graphs of cycles.

According to the following known result, we realize that the number of
total coalition graphs of cycles is �nite.

Theorem 1. [1] For any cycle Cn,

TC(Cn) =

{
4, n ≡ 0 (mod 4)
3, otherwise.

The next result gives an upper bound for the maximum vertex degree ∆
of a total coalition graph.

Lemma 1. [6] The maximum vertex degree of TCG(G, π) cannot be greater
than the maximum vertex degree of G, i.e., ∆(TCG(G, π)) ≤ ∆(G).

By Lemma 1, for a vertex v of a total coalition graph of cycles, deg(v) ≤ 2.
Theorem 1 shows that the order of a total coalition graph of Cn is at most
4 for n ≥ 4. Then the possible total coalition graphs of Cn are K2, P3, K3,
2K2, P3, P4, and C4. It is easy to see that C3 has the unique total coalition
partition π = {{v1}, {v2}, {v3}} and TCG(C3, π) ∼= C3. Further assume that
Cn is a cycle of order n ≥ 4. We have calculated the number of total coalition
graphs for cycles of small order. These results are collected in Table 1.

Table 1. Number of total coalition graphs of Cn.

TCG(Cn) C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

P3 2 10 42 112 338 882 2350 6072 15638 39130 97762 243040 601218 1476450 3617502
K2 1 5 16 35 81 180 391 825 1726 3575 7351 15020 30561 61965 125296
K3 . 5 6 21 24 85 150 341 600 1365 2646 5461 10584 21845 43350
2K2 . . . . 64 . . . 1530 . . . 28864 . .
P4 . . . . 32 . . . 390 . . . 3392 . .
C4 1 . . . 1 . . . 1 . . . 1 . .

Proposition 1. The cycle Cn de�nes the total coalition graphs K2, P3, and
K3 for n ≥ 5.

Proof. Let V (Cn) = (v1, v2, . . . , vn). In order to prove the proposition, we
present three total coalition partitions π1, π2, π3 of V (Cn) that generate
the total coalition graphs K2, P3, K3, respectively. Let π1 = {V1, V2} and
V1 = {v1, v3}, V2 = {v2, v4, v5, . . . , vn}. It can be seen that none of two sets of
π1 is total dominating, and together these sets form a total coalition. Hence,
TCG(Cn, π1) ∼= K2.



TOTAL COALITION GRAPHS OF CYCLES AND PATHS 665

1
v

2
v

nv

n-1v n-2v

1
v

2
v nv

n-1vn-2v

1
v

2
v nv

n-1v

n-2v

n 1 (mod 4)≡

...
...

...

1
v

2
v

nv n-1v

n-3v

...

n-2v

v

n 2 (mod 4)≡

n 3 (mod 4)≡ n 0 (mod 4)≡

K
3

Fig. 1. Total coalition partitions of Cn for K3.

Next assume that π2 = {V1, V2, V3} with V1 = {v1}, V2 = {v3}, and
V3 = {v2, v4, v5, . . . , vn}. The sets V1 and V3 form a total coalition, as do the
sets V2 and V3, while the union V1 ∪V2 is not a total domination set. Hence,
TCG(Cn, π2) ∼= P3.

For π3 = {V1, V2, V3}, we consider four cases. Total coalition partitions for
these cases are depicted in Fig. 1.

Case 1. Let n ≡ 1 (mod 4). A suitable total coalition partition of Cn

consists of the following sets: V1 = ∪(n−1)/4
i=1 {v4i−3, v4i−2} (white vertices),

V2 = ∪(n−1)/4
i=1 {v4i−1, v4i} (black vertices), and V3 = {vn}.

Case 2. Let n ≡ 2 (mod 4). In this case, V1 = ∪(n−2)/4
i=1 {v4i−3, v4i−2},

V2 = ∪(n−2)/4
i=1 {v4i−1, v4i}, and V3 = {vn−1, vn}.

Case 3. Let n ≡ 3 (mod 4). Then V1 = ∪(n−3)/4
i=1 {v4i−3, v4i−2} ∪ {vn−2},

V2 = ∪(n−3)/4
i=1 {v4i−1, v4i} ∪ {vn}, and V3 = {vn−1}.

Case 4. Let n ≡ 0 (mod 4). We can take the following partition of vertices:

V1 = ∪(n−4)/4
i=1 {v4i−3, v4i−2} ∪ {vn−3}, V2 = ∪(n−4)/4

i=1 {v4i−1, v4i} ∪ {vn}, and
V3 = {vn−2, vn−1}.

It not hard to verify that none of the sets of π3 is a total dominating, but
each pair of the sets forms a total coalition. Then TCG(Cn, π3) ∼= K3. □

Proposition 2. The cycle C4k de�nes the total coalition graphs C4, 2K2,
and P4 for k ≥ 2.

Proof. Let V (Cn) = (v1, v2, . . . , vn). We �rst present a total coalition parti-
tion π for C4k whose the total coalition graph is C4. Let π = {V1, V2, V3, V4},
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Fig. 2. A total coalition partition of C4k for C4.

such that V1 = ∪n/4
i=1 {v4i−3}, V2 = ∪n/4

i=1 {v4i−2}, V3 = ∪n/4
i=1 {v4i−1}, and

V4 = ∪n/4
i=1 {v4i}. For an illustration, the vertex numbering of C4k and indices

of the corresponding partition sets of π are shown in Fig. 2. It is easy to see
that only pairs {V1, V4} and {Vi, Vi+1} for i = 1, 2, 3 form total coalitions.
Hence, TCG(C4k, π) ∼= C4.

We now proceed to prove that C4k generates the total coalition graph
2K2. The partition π1 = {V1 = {v1, v2, v5}, V2 = {v3, v4, v7}, V3 = {v6}, V4 =
{v8}} is a total coalition partition of C8 in which only two pairs {V1, V3} and
{V2, V4} form total coalitions (see Fig. 3). Indeed, V2 ∪ V3 and V3 ∪ V4 are
not dominating sets, while V1∪V2 and V1∪V4 are not total dominating sets.
Then TCG(C8, π1) ∼= 2K2.

Now we construct a total coalition partition of the cycle C12 by adding four
new vertices between two vertices of C8 labeled 1 and 2 as shown in Fig. 3.
A total coalition partition π2 for C12 is constructed from π1 by adding one
vertex to every set of π1. Then the pairs of sets that form total coalitions in
π2 are the same as for π1. Consequently, V1 ∪ V3 and V2 ∪ V4 are the total
dominating sets of C12. This implies TCG(C12, π2) ∼= 2K2. Analogously, we
get the total coalition partition π3 of the cycle C16 with TCG(C16, π3) ∼= 2K2

by inserting four new vertices into C12. If we continue in this manner, we
conclude that TCG(C4k, πk−1) ∼= 2K2.

Finally we show that C4k de�nes the total coalition graph P4 by applying
the approach from the previous case. Let π1 = {V1 = {v1, v2, v5}, V2 =
{v3}, V3 = {v4, v7, v8}, V4 = {v6}} be a partition of C8 (see Fig. 4). It is clear
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Fig. 3. Total coalition partitions of C8 and C12 for 2K2.
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Fig. 4. Total coalition partitions of C8 and C12 for P4.

that pairs {V1, V3}, {V1, V4}, and {V2, V3} form total coalitions, while V1∪V2,
V2 ∪ V4, and V3 ∪ V4 are not dominating sets. Then TCG(C8, π1) ∼= P4.

Now we construct a total coalition partition of the cycle C12 by adding
four new vertices between two vertices of C8 labeled 1 and 3 as illustrated in
Fig. 4. A total coalition partition π2 of C12 is obtained from π1 by adding one
vertex to every set of π1. Then the same pairs of sets form total coalitions
in π1 and π2. Therefore, TCG(C12, π2) ∼= P4. By continuing this pattern, we
infer that TCG(C4k, πk−1) ∼= P4. □

Propositions 1 and 2 lead to the following corollary.

Corollary 1. The cycle C4k is the universal total coalition cycle for k ≥ 2.

Now we turn our attention to total coalition graphs of paths. Their total
coalition numbers were determined in [1].

Proposition 3. [1] For any path Pn of order n ≥ 3,

TC(Pn) =

{
2, if n = 4
3, otherwise.

By Lemma 1 and Proposition 3, the possible total coalition graphs of Pn

are K2 and P3 for all n ≥ 3. The number of total coalition graphs for the
paths of small order is presented in Table 2.
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Table 2. Number of total coalition graphs of Pn.

TCG(Pn) P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

K2 1 4 11 23 48 103 217 448 919 1879 3824 7751 15669 31612 63667 128047
P3 1 . 3 12 30 84 239 620 1564 3976 10033 24948 61622 151844 372851 912084

Proposition 4. The path Pn de�nes the total coalition graphs K2 and P3

for n ≥ 5.

Proof. Let V (Pn) = (v1, v2, . . . , vn). To prove the proposition, we provide two
total coalition partitions π1 and π2 of Pn that generate the total coalition
graphs K2 and P3, respectively. Let π1 = {V1, V2} and V1 = {v1, v2}, V2 =
{v3, v4, . . . , vn}. We observe that the sets V1 and V2 form a total coalition.
Hence, TCG(Pn, π1) ∼= K2.

Next consider partition π2 = {V1, V2, V3}, such that V1 = {v1}, V2 = {v3},
and V3 = {v2, v4, . . . , vn}. The set V3 forms a total coalition with each set of
the partition π2, while the union V1 ∪ V3 is not a domination set. Therefore,
TCG(Pn, π2) ∼= P3. □

As a consequence of Proposition 4, we get the following result.

Corollary 2. The path Pn is the universal total coalition path for n ≥ 5.

In conclusion, we state the following open problem.

Problem 1. Characterize the total coalition graphs of trees.
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