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Abstract: The momentum ray transform Ikm integrates a rank
m symmetric tensor �eld f on Rn over lines with the weight tk,
Ikmf(x, ξ) =

∫∞
−∞ tk⟨f(x + tξ), ξm⟩ dt. Let Nk

m = (Ikm)∗Ikm be the

normal operator of Ikm. To what extent is a symmetric m-tensor
�eld f determined by the data (N0

mf, . . . , N
r
mf) for some 0 ≤ r ≤

m? The Saint Venant operator W r
m is a linear di�erential operator

of order m−r with constant coe�cients on the space of symmetric
m-tensor �elds. We derive an explicit formula expressing W r

mf in
terms of (N0

mf, . . . , N
r
mf). The tensor �eld W r

mf represents the
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full local information on f that can be extracted from the data
(N0

mf, . . . , N
r
mf).

Keywords: ray transform, inverse problems, Saint-Venant opera-
tor, tensor tomography, momentum ray transform.

1 Introduction

This article is a follow-up to our prior work [4]. To ensure a self-contained
presentation, we have chosen to provide only a condensed version in the
introduction and Section 2. We refer the reader to [4] for more details.

Let f be a Schwartz class symmetricm-tensor �eld on Rn. The kth momen-
tum ray transform Ikmf of f is de�ned by

Ikmf(x, ξ) =

∫
R

tkfi1···im(x+ tξ)ξi1 · · · ξim dt

(
x ∈ Rn, ξ ∈ Rn, |ξ| = 1, ⟨x, ξ⟩ = 0

)
.

(1)

As in (1), with repeating indices, the Einstein summation convention is used
throughout the article.

Momentum ray transforms are used as the main tool in the study of higher
order versions of the Calder�on inverse problem, see [1, 5, 2].

Let (Ikm)∗ be the L2-adjoint of Ikm. Instead of working directly with the
momentum ray transforms, we work with the associated normal operators
Nk

m = (Ikm)∗Ikm. Being an averaging operator,N
k
m represents a better measur-

ement model than the momentum ray transforms themselves. An inversion
formula was obtained in [4] which recovers a symmetric m-tensor f from the
data (N0

mf, . . . , N
m
m f); the formula is reproduced in Theorem 1 below.

In this work we investigate the problem of recovering a tensor �eld from
partial data. To what extent is a symmetric m-tensor �eld f determined by
the data (N0

mf, . . . , N
r
mf) for some 0 ≤ r ≤ m?

In the next section, we recall the de�nition of the Saint Venant operator

W r
m : C∞(Rn;Sm) → C∞(Rn;Sm−r ⊗ Sm) (0 ≤ r ≤ m). (2)

It is a linear di�erential operator of order m − r with constant coe�cients.
This operator was brie�y mentioned in [8, Theorem 2.17.2], but the operator
W = W 0

m was widely used throughout Chapter 2 of [8]. It is closely related
to the equation

dv = f, (3)

where d = σ∇ is the inner derivative de�ned in Section 2.3 below. Namely,
the equation (3) is solvable in a simply connected domain U ⊂ Rn if and
only if the right-hand side satis�es W 0

mf = 0, see [8, Theorem 2.2.2]. Quite
similarly, W r

mf = 0 is the consistency condition for the equation dr+1v = f ,
see [8, Theorem 2.17.2]. In the case m = 2, the conditionW 0

2 f = 0 is popular
in linear elasticity and is called the deformation consistency condition; it was
obtained by Saint-Venant.



652 S.R. JATHAR, M. KAR, V.P. KRISHNAN, AND V.A. SHARAFUTDINOV

For f ∈ S(Rn;Sm), the tensor �eld W r
mf represents the full local informa-

tion on f that can be extracted from the data (I0mf, . . . , I
r
mf), see [8, Theorem

2.17.2]. In particular, W r
mf is uniquely determined by (N0

mf, . . . , N
r
mf). The

paper [7] establishes that for f ∈ S (Sm) and 0 ≤ r ≤ m, the tensor �eld
W r

mf can be explicitly recovered from (I0mf, . . . , I
r
mf). In [6, Theorem 3.1],

the kernel of the momentum ray transform is described using the Saint
Venant operator. It is shown that for f ∈ S (Sm), (I0mf, . . . , I

r
mf) = 0 if

and only if W r
mf = 0. We will derive an explicit formula expressing W r

mf
through (N0

mf, . . . , N
r
mf); see Theorem 2 below.

2 Basic de�nitions and main result

2.1. Tensor algebra. Let TRn = ⊕∞
m=0T

mRn be the complex tensor
algebra over Rn. Assuming n to be �xed, the notation TmRn will be often
abbreviated to Tm. For a �xed orthonormal basis (e1, . . . , en) of Rn, by
ui1...im = ui1...im = u(ei1 , . . . , eim) we denote coordinates (= components) of
a tensor u ∈ Tm with respect to the basis. There is no distinction between
covariant and contravariant tensors since we use orthonormal bases only. The
standard dot product on Rn extends to Tm by

⟨u, v⟩ = ui1...imvi1...im .

Let Sm = SmRn be the subspace of Tm consisting of symmetric tensors.
The partial symmetrization σ(i1 . . . im) : Tm+k → Tm+k in the indices
(i1, . . . , im) is de�ned by

σ(i1 . . . im)ui1...imj1...jk =
1

m!

∑
π∈Πm

uiπ(1),...,iπ(m)j1...jk ,

where the summation is performed over the group Πm of all permutations
of the set {1, . . . ,m}. In particular, σ : Tm → Sm is the symmetrization in
all indices. Given u ∈ Sm and v ∈ Sk, the symmetric product uv ∈ Sm+k

is de�ned by uv = σ(u ⊗ v). Being equipped with the symmetric product,
S∗Rn =

⊕∞
m=0 S

mRn becomes a commutative graded algebra that is called
the algebra of symmetric tensors over Rn.

Given u ∈ Sm, let iu : Sk → Sm+k be the operator of symmetric multiplic-
ation by u and let ju : Sm+k → Sk be the adjoint of iu. These operators are
written in coordinates as

(iuv)i1...im+k
= σ (i1 . . . im+k)ui1...imvim+1...im+k

(juv)i1...ik = vi1...im+k
uik+1...im+k .

For the Kronecker tensor δ, the notations iδ and jδ will be abbreviated to i
and j respectively.

2.2. Tensor �elds. Recall that the Schwartz space S (Rn) is the topolo-
gical vector space consisting of C∞-smooth complex-valued functions on Rn

that decay rapidly at in�nity together with all derivatives, equipped with
the standard topology. Let S (Rn;Sm) = S (Rn) ⊗ Sm be the topological
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vector space of smooth fast decaying symmetric m-tensor �elds, de�ned on
Rn. In Cartesian coordinates, such a tensor �eld is written as f = (fi1...im)
with coordinates (= components) fi1...im = f i1...im ∈ S (Rn) symmetric in
all indices.

We use the Fourier transform F : S(Rn) → S(Rn), f 7→ f̂ in the form
(hereafter i is the imaginary unit)

Ff(y) = 1

(2π)n/2

∫
Rn

e−i⟨y,x⟩f(x) dx.

The Fourier transform F : S (Rn;Sm) → S (Rn;Sm), f 7→ f̂ of symmetric
tensor �elds is de�ned component-wise:

f̂i1...im = f̂i1...im .

The L2-product on C∞
0 (Rn;Tm) is de�ned by

(f, g)L2(Rn;Tm) =

∫
Rn

⟨f(x), g(x)⟩ dx. (4)

2.3. Inner derivative and divergence. The �rst-order di�erential
operator

d : C∞(Rn;Sm) → C∞(Rn;Sm+1)

de�ned by

(df)i1...im+1 = σ(i1 . . . im+1)
∂fi1...im
∂xim+1

=
1

m+ 1

(∂fi2...im+1

∂xi1
+ · · ·+ ∂fi1...im

∂xim+1

)
is called the inner derivative.

The divergence

div : C∞(Rn;Sm+1) → C∞(Rn;Sm)

is de�ned by

(div f)i1...im = δjk
∂fi1...imj

∂xk
.

The operators d and −div are formally adjoint to each other with respect to
the L2-product (4).

2.4. The space S(TSn−1). The Schwartz space S(E) is well-de�ned for a
smooth vector bundle E → M over a compact manifold with the help of a
�nite atlas and partition of unity subordinate to the atlas.

In particular, the Schwartz space S(TSn−1) is well de�ned for the tangent
bundle

TSn−1 = {(x, ξ) ∈ Rn × Sn−1 : ⟨x, ξ⟩ = 0} → Sn−1, (x, ξ) 7→ ξ

of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}.
The Fourier transform F : S

(
TSn−1

)
→ S

(
TSn−1

)
, φ 7→ φ̂ is de�ned by

Fφ(y, ξ) = 1

(2π)(n−1)/2

∫
ξ⊥
e−i⟨y,x⟩φ(x, ξ) dx,
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where dx is the (n − 1)-dimensional Lebesgue measure on the hyperplane
ξ⊥ = {x ∈ Rn : ⟨ξ, x⟩ = 0}.

The L2-product on S(TSn−1) is de�ned by

(φ,ψ)L2(TSn−1) =

∫
Sn−1

∫
ξ⊥

φ(x, ξ)ψ(x, ξ) dx dξ, (5)

where dξ is the (n−1)-dimensional Euclidean volume form on the unit sphere
Sn−1.

2.5. Momentum ray transform. It is convenient to parameterize the

family of oriented lines in Rn by points of the manifold TSn−1. Namely, a
point (x, ξ) ∈ TSn−1 determines the line {x + tξ : t ∈ R} through x in the
direction ξ.

For an integer k ≥ 0, the momentum ray transform

Ikm : S(Rn;Sm) → S
(
TSn−1

)
is the linear continuous operator de�ned by (1).

2.6. Normal operators. The formal adjoint of the momentum ray trans-

form Ikm with respect to L2-products (4) and (5)(
Ikm

)∗
: S

(
TSn−1

)
→ C∞ (Rn;Sm)

is expressed by(
(Ikm)∗φ

)
i1...im

(x) =

∫
Sn−1

⟨x, ξ⟩kξi1 . . . ξimφ
(
x− ⟨x, ξ⟩ξ, ξ

)
dξ.

We emphasize that, for φ ∈ S(TSn−1), the tensor �eld (Ikm)∗φ does not need
to fast decay at in�nity.

Let

Nk
m = (Ikm)∗Ikm : S (Rn;Sm) → C∞ (Rn;Sm)

be the normal operator for the momentum ray transform Ikm. For f ∈
S (Rn;Sm), the Fourier transform N̂k

mf ∈ S ′ (Rn;Sm) is well de�ned at least

in the distribution sense and the restriction of N̂k
mf to Rn \ {0} belongs to

C∞ (Rn \ {0};Sm).

2.7. The inversion formula. Let Γ be Euler's Gamma function and let

the operator (−∆)1/2 be de�ned with the help of the Fourier transform by

|y|F = F(−∆)1/2. We use the de�nition

(2l + 1)!! = 1 · 3 · · · (2l + 1), (−1)!! = 1.

Let us reproduce [4, Theorem 3.1].
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Theorem 1. Given integers m ≥ 0 and n ≥ 2, a tensor �eld f ∈ S (Rn;Sm)
is recovered from the data (N0

mf,N
1
mf, . . . , N

m
m f) by the inversion formula

f(x) = (−∆)1/2
m∑
k=0

Dk
m,n(N

k
mf)(x), (6)

where the linear di�erential operator of order m+ k

Dk
m,n : C∞(Rn;Sm) → C∞(Rn;Sm)

is de�ned by

Dk
m,n = ckm,n

m∑
p=k

(n+2m−2p−3)!!

×
min(p,m−p,p−k)∑

q=0

(−1)q

2qq!(m−p−q)!(p−k−q)!
dp−q iq jq jp−k−q

x divk

(7)

with the coe�cient

ckm,n =
(−1)k

(k!)2
2m−2 Γ

(
2m+n−1

2

)
π(n+1)/2 (n+ 2m− 3)!!

(8)

and the operators i, j, and jx are de�ned in Section 2.1.

2.8. The Saint Venant operator. For integers m and r satisfying 0 ≤
r ≤ m, let Sm−r ⊗ Sm be the space of (2m − r)-tensors on Rn which are
symmetric in �rst m− r and last m indices. The Saint Venant operator (2)
is de�ned by

(W r
mf)i1...im−rj1...jm

=σ(i1 . . . im−r)σ(j1 · · · jm)
m−r∑
l=0

(−1)l
(
m− r

l

)

×
∂m−rfi1...im−r−lj1...jr+l

∂xim−r−l+1
. . . ∂xim−r∂xjr+l+1

. . . ∂xjm
.

(9)

In particular Wm
m is the identity operator.

2.9. The main result.

Theorem 2. Let 0 ≤ r ≤ m and n ≥ 2 be integers. For f ∈ S(Rn;Sm), the
tensor �eldW r

mf is recovered from the data (N0
mf, . . . , N

r
mf) by the inversion

formula

W r
mf = (−∆)1/2W r

m

r∑
k=0

Dk
m,n(N

k
mf),

where the linear di�erential operator Dk
m,n is de�ned by (7).

Theorem 2 is a generalization of Theorem 1 since Wm
m is the identity

operator. In the case of r = 0 Theorem 2 actually coincides with [8, Theorem
2.12.3].
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The �rst step in the proof of Theorem 2 is as follows. Since W r
m is a

di�erential operator with constant coe�cients, it commutes with (−∆)1/2.
Applying the operator W r

m to the equality (6), we write the result in the
form

W r
mf = (−∆)1/2W r

m

r∑
k=0

Dk
m,n(N

k
mf) + (−∆)1/2W r

m

m∑
k=r+1

Dk
m,n(N

k
mf).

Thus, to prove Theorem 2, it su�ces to demonstrate that

W r
mD

k
m,n = 0 for 0 ≤ r < k ≤ m. (10)

The proof of (10) is presented in the next section.

3 Proof of Theorem 2

Applying the Fourier transform to (9), we obtain

Ŵ r
mf = i

m−r Ŵ r
mf̂ ,

where i is the imaginary unit and the purely algebraic operator

Ŵ r
m = Ŵ r

m(y) : Sm → Sm−r ⊗ Sm (y ∈ Rn)

is de�ned by

(Ŵ r
mh)i1...im−rj1...jm = σ(i1 . . . im−r)σ(j1 · · · jm)

m−r∑
l=0

(−1)l
(
m−r
l

)
×

× hi1...im−r−lj1...jr+l
yim−r−l+1

. . . yim−ryjr+l+1
. . . yjm .

This can be written in the coordinate-free form

⟨Ŵ r
mh, u⊗ v⟩ =

m−r∑
l=0

(−1)l
(
m−r
l

)
⟨h, (jlyu)(jm−r−l

y v)⟩

for u ∈ Sm−r and v ∈ Sm.

(11)

On the other hand, applying the Fourier transform to (10), we see that (10)
is equivalent to the statement

Ŵ r
mD̂

k
m,n = 0 for 0 ≤ r < k ≤ m, (12)

where the operator D̂k
m,n is de�ned by

D̂k
m,n = ckm,n

m∑
p=k

(−1)p(n+2m−2p−3)!!

×
min(p,m−p,p−k)∑

q=0

1

2q q!(m−p−q)!(p−k−q)!
ip−q
y iqjq divp−k−q jky ,

(13)

see [4, formula (8.7)].
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We will use only one property of the operator D̂k
m,n: as is seen from (13),

D̂k
m,n = ir+1

y Bk
m,n, for 0 ≤ r < k, (14)

with some linear operator Bk
m,n. Therefore, to prove (12), it su�ces to

demonstrate that

Ŵ r
mi

r+1
y = 0 for 0 ≤ r ≤ m− 1. (15)

By (11),

⟨Ŵ r
mi

r+1
y h, u⊗ v⟩ =

m−r∑
l=0

(−1)l
(
m−r
l

)
⟨ir+1

y h, (jlyu)(j
m−r−l
y v)⟩

=
〈
h,

m−r∑
l=0

(−1)l
(
m−r
l

)
jr+1
y

(
(jlyu)(j

m−r−l
y v)

)〉
.

This means that (15) holds for any h ∈ Sm−1 if and only if

m−r∑
l=0

(−1)l
(
m− r

l

)
jr+1
y

(
(jlyu)(j

m−r−l
y v)

)
= 0

for any u ∈ Sm−r, v ∈ Sm, 0 ≤ r < m.

(16)

The left-hand side of (16) is homogeneous of degree m + 1 in y. It su�ces
to prove (16) for a unit vector y. In what follows, y ∈ Rn is a �xed vector
satisfying |y| = 1.

The complex vector space Sm = SmRn is generated by powers xm (x ∈
Rn). Therefore (16) is equivalent to the statement

m−r∑
l=0

(−1)l
(
m− r

l

)
jr+1
y

(
(jlyx

m−r)(jm−r−l
y zm)

)
= 0

for any x, z ∈ Rn, 0 ≤ r < m. (17)

Since jlyx
m−r = ⟨x, y⟩lxm−r−l and jm−r−l

y zm = ⟨z, y⟩m−r−lzr+l, the latter
statement can be written as

m−r∑
l=0

(−1)l
(
m−r
l

)
⟨x, y⟩l⟨z, y⟩m−r−ljr+1

y (xm−r−lzr+l) = 0 (18)

for any x, z ∈ Rn and 0 ≤ r < m. The equality (18) holds in the case
⟨x, y⟩ = ⟨z, y⟩ = 0 since all summands on the left-hand side are equal to
zero.

Next, we prove (18) in the case ⟨x, y⟩ = 0 but ⟨z, y⟩ ̸= 0. In this case (18)
looks as follows:

jr+1
y (xm−rzr) = 0. (19)

Let us write (19) in coordinates

yi1 . . . yir+1
∑

π∈Πm

xiπ(1)
. . . xiπ(m−r)

ziπ(m−r+1)
. . . ziπ(m)

= 0.
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After pulling the factor yi1 . . . yir+1 inside the sum, every summand contain
at least one factor of the form ykxk = 0. This proves (19).

Quite similarly (18) is proved in the case ⟨x, y⟩ ̸= 0 but ⟨z, y⟩ = 0.
Now, we prove (18) in the general case when α = ⟨x, y⟩ ̸= 0 and β =

⟨z, y⟩ ̸= 0. We represent vectors x, z ∈ Rn in the form

x = αy + x′, ⟨x′, y⟩ = 0; z = βy + z′, ⟨z′, y⟩ = 0.

From this

xm−r−lzr+l = (αy + x′)m−r−l(βy + z′)r+l

=
m−r−l∑
p=0

r+l∑
q=0

(
m−r − l

p

)(
r + l

q

)
αm−r−l−pβr+l−q ym−p−qx′pz′q.

Substituting this expression into (18), we obtain (up to a factor αm−rβm)

m−r∑
l=0

m−r−l∑
p=0

r+l∑
q=0

(−1)l
(
m− r

l

)(
m− r − l

p

)(
r + l

q

)
α−pβ−q

· jr+1
y

(
ym−p−qx′pz′q

)
= 0,

Denoting x̃ = α−1x′ and z̃ = β−1z′, this can be written in the form

m−r∑
l=0

m−r−l∑
p=0

r+l∑
q=0

(−1)l
(
m−r
l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qx̃pz̃q) = 0.

To simplify notations, we denote x̃ and z̃ again by x and z respectively. Thus,
we have to prove the statement

m−r∑
l=0

m−r−l∑
p=0

r+l∑
q=0

(−1)l
(
m−r
l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qxpzq) = 0 (20)

for x, z ∈ y⊥ and 0 ≤ r < m.
Since the last factor jr+1

y (ym−p−qxpzq) on the left-hand side of (20) is
independent of l, it makes sense to change the order of summations. We �rst
change the order of summations over l and p

m−r∑
p=0

m−r−p∑
l=0

r+l∑
q=0

(−1)l
(
m−r
l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qxpzq) = 0

and then change the order of summations over l and q

m−r∑
p=0

m−p∑
q=0

m−r−p∑
l=max(0,q−r)

(−1)l
(
m− r

l

)(
m− r − l

p

)(
r + l

q

)
× jr+1

y

(
ym−p−qxpzq

)
= 0.
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This can be written in the form
m−r∑
p=0

m−p∑
q=0

C(m, r, p, q) jr+1
y (ym−p−qxpzq) = 0 (x, z ∈ y⊥, 0 ≤ r < m), (21)

where

C(m, r, p, q) =

m−r−p∑
l=max(0,q−r)

(−1)l
(
m− r

l

)(
m− r − l

p

)(
r + l

q

)
,

0 ≤ p ≤ m− r, 0 ≤ q ≤ m− p.

(22)

From (21) and (22), for x, z ∈ y⊥, we have

jr+1
y (ym−p−qxpzq) = 0 if p ≥ 0, q ≥ 0, p+ q ≤ m, r+1 > m−p− q. (23)

Indeed, writing in coordinates

(ym−p−qxpzq)i1...im

=
1

m!

∑
π∈Πm

yiπ(1)
. . . yiπ(m−p−q)

xiπ(m−p−q+1)
. . . xiπ(m−q)

ziπ(m−q+1)
. . . ziπ(m)

,

we have(
jr+1
y (ym−p−qxpzq)

)
im−r...im

=
1

m!

∑
π∈Πm

yi1 · · · yir+1 yiπ(1)
· · · yiπ(m−p−q)

× xiπ(m−p−q+1)
· · ·xiπ(m−q)

ziπ(m−q+1)
· · · ziπ(m)

.

In the case of r+ 1 > m− p− q, every summand of the sum contains either
a factor of the form yjxj = 0 or a factor of the form yjzj = 0.

In virtue of (23), the summation in (21) can be restricted to (p, q) satisfying

p ≥ 0, q ≥ 0, p+ q ≤ m− r − 1. (24)

In particular, r < m and p ≤ m − r − 1. In other words, (21) is equivalent
to the statement
m−r−1∑
p=0

m−r−p−1∑
q=0

C(m, r, p, q) jr+1
y (ym−p−qxpzq) = 0 (x, z ∈ y⊥, 0 ≤ r < m).

(25)

Lemma 1. For integers m, r, p, q satisfying (24) and 0 ≤ r < m, the
following equality holds:

m−r−p∑
l=max(0,q−r)

(−1)l
(
m−r
l

)(
m−r−l

p

)(
r+l

q

)
= 0. (26)

With the help of Lemma 1, we immediately complete the proof of Theorem
2. Indeed, by comparing (22) and (26), we observe that all coe�cients

C(m, r, p, q)

participating in (25) are equal to zero. This proves (21). As shown earlier,
(21) implies the statement of Theorem 2.
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Proof of Lemma 1. We assume binomial coe�cients
(
k
p

)
to be de�ned for all

integers k and p under the agreement(
k

p

)
= 0 if either k < 0 or p < 0 or k < p.

Then

C(m, r, p, q) =

m−r−p∑
l=max(0,q−r)

(−1)l
(
m−r
l

)(
m−r−l

p

)(
r+l

q

)

=

∞∑
l=−∞

(−1)l
(
m−r
l

)(
r+l

q

)(
m−r−l

p

)
.

(27)

From [3, p. 10], we have for 0 < ε≪ 1,(
n

k

)
=

1

2πi

∫
|z|=ε

(1 + z)n

zk+1
dz.

In particular, (
r + l

q

)
=

1

2πi

∫
|z|=ϵ

(1 + z)r+l

zq+1
dz,

(
m− r − l

p

)
=

1

2πi

∫
|w|=ϵ

(1 + w)m−r−l

wp+1
dw.

With the help of these formulas, we transform (27) as follows:

C(m, r, p, q)

= − 1

(2π)2

∫
|z|=ϵ

∫
|w|=ϵ

(1 + z)r(1 + w)m−r

zq+1wp+1

∞∑
l=−∞

(−1)l
(
m−r
l

)( 1 + z

1 + w

)l
dw dz

= − 1

(2π)2

∫
|z|=ϵ

∫
|w|=ϵ

(1 + z)r(1 + w)m−r

zq+1wp+1

(
1− 1 + z

1 + w

)m−r
dw dz

= − 1

(2π)2

∫
|z|=ϵ

∫
|w|=ϵ

(1 + z)r(w − z)m−r

zq+1wp+1
dw dz

= − 1

(2π)2

∫
|z|=ϵ

∫
|w|=ϵ

(1 + z)r

zq+1wp+1

∞∑
l=−∞

(−1)l
(
m−r
l

)
zlwm−r−l dw dz.

We perform the integration with respect to w. By the Cauchy integral
formula, the only summand that survives corresponds to l = m − r − p.
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Thus,

C(m, r, p, q) =
(−1)m−r−p

2πi

(
m−r
p

) ∫
|z|=ϵ

(1 + z)rzm−r−p−q−1 dz.

The integrand is a holomorphic function if p + q ≤ m − r − 1. Therefore
C(m, r, p, q) = 0 if p+ q ≤ m− r − 1. □
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