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Abstract: Algebras of binary isolating formulas are described for
ℵ0-categorical 1-transitive non-primitive weakly circularly minimal
theories of �nite convexity rank with a trivial de�nable closure
having a monotonic-to-right function to the de�nable completion
of a structure and not having a non-trivial equivalence relation
partitioning the universe of a structure into �nitely many convex
classes.

Keywords: algebra of binary formulas, weak circular minimality,
ℵ0-categorical theory, circularly ordered structure, convexity rank.

1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between
elements of the sets of realizations of an one-type at the binary level with
respect to the superposition of binary de�nable sets. These algebras, as
natural derivative structures with respect to initial ones, re�ecting binary
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links, allow to clarify the structural behavior and to classify both the structu-
res and their elementary theories. Essential structural properties of algebras
of binary formulas include the (right) associativity, the (partial) commutati-
vity, the (almost) determinacy, the (almost) absorbing, etc. These properties
can be observed on a base of Cayley tables explicitly de�ning algebras.

The concepts and notations related to algebras of binary formulas can be
found in [1, 2]. A binary isolating formula is a formula of the form φ(x, y)
such that for some parameter a the formula φ(a, y) isolates a complete type
in S({a}). Given a complete 1-type p(x) over ∅ realized in a structure M ,
one considers the binary isolating formulas φ(x, y). Then one considers an
equivalence relation on such formulas (logical equivalence of φ(a, y) and
ψ(a, y) for an element a realizing p(x)). The classes of this equivalence are
then embedded in an algebra of labels with a composition-like operation.
Composing two (equivalence classes of) binary isolating formulas φ(x, y) and
ψ(y, z) results in the set of all (classes of) isolating formulas χ(x, z) such that
χ(a, z) implies ∃y(φ(a, y) ∧ ψ(y, z)). Thus the operator collecting labels for
χ with respect to labels for φ and ψ generates the algebra on the Boolean
of labels, which is the multi-algebra on the set of labels related to the type
p(x).

In recent years, algebras of binary formulas have been studied intensively
for various classes of theories and have been continued in [3]�[11].

In the present paper, algebras of binary isolating formulas are described for
the natural class of ℵ0-categorical 1-transitive non-primitive weakly circularly
minimal theories of �nite convexity rank with a trivial de�nable closure
having a monotonic-to-right function to the de�nable completion of a structure
and not having a non-trivial equivalence relation partitioning the universe of
a structure into �nitely many convex classes. The main result of the paper
is the explicit characterization of the algebras of binary isolating formulas
under the conditions above. In particular, a sharp bound is obtained for the
degree of determinacy, i.e. the maximal size of a product of two labels.

Let L be a countable �rst-order language. Throughout we consider L-
structures and assume that L contains a ternary relational symbol K, inter-
preted as a circular order in these structures (unless otherwise stated).

Let M = ⟨M,≤⟩ be a linearly ordered set. If we connect two endpoints of
M (possibly, −∞ and +∞), then we obtain a circular order. More formally,
the circular order is described by a ternary relationK satisfying the following
conditions:

(co1) ∀x∀y∀z(K(x, y, z) → K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z) ⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z) → ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).
The following observation relates linear and circular orders.
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Fact 1. [12] (i) If ⟨M,≤⟩ is a linear ordering and K is the ternary relation
derived from ≤ by the rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x)

then K is a circular order relation on M .
(ii) If ⟨N,K⟩ is a circular ordering and a ∈ N , then the relation ≤a

de�ned on M := N \ {a} by the rule y ≤a z :⇔ K(a, y, z) is a linear order.

Thus, any linearly ordered structure is circularly ordered, since the relation
of circular order is ∅-de�nable in an arbitrary linearly ordered structure.
However, the opposite is not true. The following example shows that there
exist circularly ordered structures that are not linearly ordered (in the sense
that a linear ordering relation is not ∅-de�nable in an arbitrary circularly
ordered structure).

Example 1. [13, 14] Let Q∗
2 := ⟨Q2,K

3, S2
0 , S

2
1⟩ be a circularly ordered

structure, where K3 is a ternary relation expressing a circular order on Q2,
and the following conditions hold:

(i) its domain Q2 is a countable dense subset of the unit circle, no two
points making the central angle π;

(ii) for distinct a, b ∈ Q2

S0(a, b) i� 0 < arg(a/b) < π,

S1(a, b) i� π < arg(a/b) < 2π,

where arg(a/b) means the value of the central angle between a and b clock-
wise.

Indeed, one can check that the linear order relation is not ∅-de�nable in
this structure.

The notion of weak circular minimality was introduced in [15]. Let A ⊆M ,
where M is a circularly ordered structure. The set A is called convex if for
any a, b ∈ A the following property is satis�ed: for any c ∈M with K(a, c, b),
c ∈ A holds, or for any c ∈M withK(b, c, a), c ∈ A holds. A weakly circularly
minimal structure is a circularly ordered structure M = ⟨M,K, . . .⟩ such
that any de�nable (with parameters) subset ofM is a union of �nitely many
convex sets in M . The study of weakly circularly minimal structures was
continued in the papers [16]�[21].

Let M be an ℵ0-categorical weakly circularly minimal structure, G :=
Aut(M). Following the standard group theory terminology, the group G
is called k-transitive if for any pairwise distinct a1, a2, . . . , ak ∈ M and
pairwise distinct b1, b2, . . . , bk ∈ M there exists g ∈ G such that g(a1) =
b1, g(a2) = b2, . . . , g(ak) = bk. A congruence onM is an arbitrary G-invariant
equivalence relation onM . The group G is called primitive if G is 1-transitive
and there are no non-trivial proper congruences on M .

Notation 1. (1) K0(x, y, z) := K(x, y, z) ∧ y ̸= x ∧ y ̸= z ∧ x ̸= z.
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(2) K(u1, . . . , un) denotes a formula saying that all subtuples of the tuple
⟨u1, . . . , un⟩ having the length 3 (in ascending order) satisfy K; similar
notations are used for K0.

(3) Let A,B,C be disjoint convex subsets of a circularly ordered structure
M . We write K(A,B,C) if for any a, b, c ∈ M with a ∈ A, b ∈ B, c ∈ C
we have K(a, b, c). We extend naturally that notation using, for instance,
the notation K0(A, d,B,C) if d ̸∈ A ∪B ∪C and K0(A, d,B) ∧K0(d,B,C)
holds.

We say that M = ⟨M,K3⟩ is a dense circularly ordered structure if M is
a circularly ordered structure and for any a, b ∈ M with a ̸= b there exists
c ∈M such that K0(a, c, b).

Further, we need the notion of the de�nable completion of a circularly
ordered structure, introduced in [15]. Its linear analog was introduced in
[22]. A cut C(x) in a circularly ordered structure M is maximal consistent
set of formulas of the form K(a, x, b), where a, b ∈ M . A cut is said to be
algebraic if there exists c ∈ M that realizes it. Otherwise, such a cut is said
to be non-algebraic. Let C(x) be a non-algebraic cut. If there is some a ∈M
such that either for all b ∈M the formula K(a, x, b) ∈ C(x), or for all b ∈M
the formula K(b, x, a) ∈ C(x), then C(x) is said to be rational. Otherwise,
such a cut is said to be irrational. A de�nable cut in M is a cut C(x) with
the following property: there exist a, b ∈ M such that K(a, x, b) ∈ C(x)
and the set {c ∈ M | K(a, c, b) and K(a, x, c) ∈ C(x)} is de�nable. The
de�nable completion M of a structure M consists of M together with all
de�nable cuts in M that are irrational (essentially, M consists of endpoints
of de�nable subsets of the structure M).

Notation 2. [15] Let F (x, y) be an L-formula such that F (M, b) is convex
in�nite co-in�nite for each b ∈M . Let F ℓ(y) be the formula saying y is a left
endpoint of F (M,y):

∃z1∃z2[K0(z1, y, z2) ∧ ∀t1(K(z1, t1, y) ∧ t1 ̸= y → ¬F (t1, y))∧

∀t2(K(y, t2, z2) ∧ t2 ̸= y → F (t2, y))].

We say that F (x, y) is convex-to-right if

M |= ∀y∀x[F (x, y) → F l(y) ∧ ∀z(K(y, z, x) → F (z, y))].

If F1(x, y), F2(x, y) are arbitrary convex-to-right formulas we say F2 is bigger
than F1 if there is a ∈M with F1(M,a) ⊂ F2(M,a). IfM is 1-transitive and
this holds for some a, it holds for all a. This gives a total ordering on the
(�nite) set of all convex-to-right formulas F (x, y) (viewed up to equivalence
modulo Th(M)).

Consider F (M,a) for arbitrary a ∈ M . In general, F (M,a) has no the
right endpoint in M . For example, if dcl({a}) = {a} holds for some a ∈ M
then for any convex-to-right formula F (x, y) and any a ∈ M the formula
F (M,a) has no the right endpoint in M . We write f(y) := rend F (M,y),
assuming that f(y) is the right endpoint of the set F (M,y) that lies in
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general in the de�nable completion M of M . Then f is a function mapping
M in M .

Let F (x, y) be a convex-to-right formula. We say that F (x, y) is equiva-
lence-generating if for any a, b ∈ M such that M |= F (b, a) the following
holds:

M |= ∀x(K(b, x, a) ∧ x ̸= a→ [F (x, a) ↔ F (x, b)]).

Consider the following formula:

F (x, y) := y = x ∨ S0(y, x),

where the predicate S0 from Example 1. It can be easily checked that F (x, y)
is a convex-to-right formula that is not equivalence-generating.

Example 2. Let M = ⟨M,K3, E2⟩ be a dense circularly ordered struc-
ture, where E is an equivalence relation partitioning M into in�nitely many
convex classes without endpoints. Consider the following formula:

F (x, y) := ∃t[∀u(K(y, u, t) → E(y, u)) ∧K(y, x, t)].

Also, it can be easily checked that F (x, y) is a convex-to-right formula
that is equivalence-generating.

Lemma 1. [20] Let M be an ℵ0-categorical 1-transitive weakly circularly
minimal structure, F (x, y) be a convex-to-right formula that is equivalence-
generating. Then E(x, y) := F (x, y) ∨ F (y, x) is an equivalence relation
partitioning M into in�nite convex classes.

Notation 3. Let E(x, y) be an ∅�de�nable equivalence relation partitioning
M into in�nite convex classes. Suppose that y lies in M (not necessarily in
M). Then

E∗(x, y) := ∃y1∃y2[y1 ̸= y2 ∧ ∀t(K(y1, t, y2) → E(t, x)) ∧K0(y1, y, y2)].

Example 3. LetM = ⟨Q×Q,K3, E2, R2⟩ be a circularly ordered structure,
where Q×Q is ordered lexicographically. The symbol E is de�ned as follows:
E(a, b) holds i� a1 = b1 for any a = (a1, a2), b = (b1, b2) ∈ M . The symbol
R is interpreted as follows: R(a, b) holds i� a1 = b1 and a2 ≤ b2 < a2 +

√
2

for any a = (a1, a2), b = (b1, b2) ∈M .
Obviously, the relation E(x, y) is an equivalence relation partitioning M

into in�nitely many in�nite convex classes. Let f(x) := rendR(x,M). Ob-
viously, f(a) ̸∈ M for any a ∈ M , but E∗(a, f(a)). If we consider arbitrary
a, b ∈M such that ¬E(a, b), we have both ¬E∗(a, f(b)) and ¬E∗(b, f(a)).

Let E(x, y) be an equivalence relation partitioningM into in�nitely many
in�nite convex classes. We say that the induced order on E-classes is dense
if M/E is densely ordered, i.e. for any a, b ∈ M with ¬E(a, b) there exists
c ∈M such that K0(a, c, b), ¬E(a, c) and ¬E(c, b).

In Example 3 the induced order on E-classes is dense.
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Let f be a unary function from M to M . We say that f is monotonic-to-
right (left) on M if it preserves (reverses) the relation K0, i.e. for any a, b, c ∈
M such that K0(a, b, c), we have K0(f(a), f(b), f(c)) (K0(f(c), f(b), f(a))).

The following de�nition can be used in a circular ordered structure as well.

De�nition 1. [23], [24] Let T be a weakly o-minimal theory, M be a
su�ciently saturated model of T , A ⊆ M . The rank of convexity of the
set A (RC(A)) is de�ned as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is �nite and non-empty.
3) RC(A) ≥ 1 if A is in�nite.
4) RC(A) ≥ α + 1 if there exist a parametrically de�nable equivalence

relation E(x, y) and an in�nite sequence of elements bi ∈ A, i ∈ ω, such that:

• For every i, j ∈ ω whenever i ̸= j we have M |= ¬E(bi, bj);
• For every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset
of A.

5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ, where δ is a limit ordinal.
If RC(A) = α for some α, we say that RC(A) is de�ned. Otherwise (i.e.

if RC(A)) ≥ α for all α), we put RC(A) = ∞.
The rank of convexity of a formula ϕ(x, ā), where ā ∈M , is de�ned as the

rank of convexity of the set ϕ(M, ā), i.e. RC(ϕ(x, ā)) := RC(ϕ(M, ā)).
The rank of convexity of an 1-type p is de�ned as the rank of convexity of

the set p(M), i.e. RC(p) := RC(p(M)).

In particular, a theory has convexity rank 1 if there is no de�nable (with
parameters) equivalence relations with in�nitely many in�nite convex classes.

LetM ,N be circularly ordered structures. The 2-reduct ofM is a circularly
ordered structure with the same universe of M and consisting of predicates
for each ∅-de�nable relation on M of arity ≤ 2 as well as of the ternary
predicate K for the circular order, but does not have other predicates of
arities more than two. We say that the structure M is isomorphic to N up
to binarity or binarily isomorphic to N if the 2-reduct of M is isomorphic to
the 2-reduct of N .

We say that a structureM has a trivial de�nable closure if dcl(A) = A for
any A ⊆ M . If Th(M) is binary, the condition of triviality of the de�nable
closure is just the condition dcl({a}) = {a} for any a ∈ M . If additionally
Th(M) is 1-transitive, this condition is just dcl({a}) = {a} for some a ∈M .

The following theorem characterizes up to binarity ℵ0�categorical 1-transi-
tive non-primitive weakly circularly minimal structuresM of convexity rank
greater than 1 having both a trivial de�nable closure and a convex-to-right
formula R(x, y) such that r(y) := rendR(M,y) is monotonic-to-right on M :

Theorem 1. [17] Let M be an ℵ0�categorical 1-transitive non-primitive
weakly circularly minimal structure of convexity rank greater than 1, dcl({a})
= {a} for some a ∈ M . Suppose that there exists a convex-to-right formula
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R(x, y) such that r(y) := rendR(M,y) is monotonic-to-right on M . Then
M is isomorphic up to binarity to

M ′
s,m,k := ⟨M,K3, E2

1 , E
2
2 , . . . , E

2
s , E

2
s+1, R

2⟩,

whereM is a dense circularly ordered structure, s ≥ 1; Es+1 is an equivalence
relation partitioning M into m in�nite convex classes without endpoints; Ei

for every 1 ≤ i ≤ s is an equivalence relation partitioning every Ei+1-class
into in�nitely many in�nite convex Ei-subclasses without endpoints so that
the induced order on Ei-subclasses is dense without endpoints; R(M,a) has
no right endpoint in M and rk(a) = a for all a ∈M and some k ≥ 2, where
rk(y) := r(rk−1(y)); for every 1 ≤ i ≤ s+ 1 and any a ∈M

M ′
s,m,k |= ¬E∗

i (a, r(a)) ∧ ∀y(Ei(y, a) → ∃u[E∗
i (u, r(a)) ∧ E∗

i (u, r(y))]),

m = 1 or k divides m.

In [7] algebras of binary isolating formulas are described for ℵ0-categori-
cal weakly circularly minimal theories with a primitive automorphism group.
In [8] algebras of binary isolating formulas are described for ℵ0-categorical
weakly circularly minimal theories of convexity rank 1 with a 1-transitive
non-primitive automorphism group and a non-trivial de�nable closure. In
[9]�[10] algebras of binary isolating formulas are described for ℵ0-categorical
weakly circularly minimal theories of convexity rank greater than 1 with a
1-transitive non-primitive automorphism group and a non-trivial de�nable
closure. In [11] algebras of binary isolating formulas are described for ℵ0-
categorical weakly circularly minimal theories of convexity rank 1 with a 1-
transitive non-primitive automorphism group and a trivial de�nable closure.

Recently, in [25] we described algebras of binary isolating formulas for ℵ0-
categorical 1-transitive non-primitive weakly circularly minimal structures
M with the following restrictions:

• RC(x = x) = 2;
• dcl({a}) = {a} for some a ∈M ;
• there exists a monotonic-to-right function to M ;
• there is no non-trivial equivalence relation partitioningM into �nitely
many convex classes.

Here we describe algebras of binary isolating formulas for these structures
replacing the �rst condition RC(x = x) = 2 by RC(x = x) = k for some
2 ≤ k < ω.

2 Main Theorem

De�nition 2. [2] Let p ∈ S1(∅) be non-algebraic. The algebra Pν(p) is said
to be deterministic if u1 · u2 is a singleton for any labels u1, u2 ∈ ρν(p).

Generalizing the last de�nition, we say that the algebra Pν(p) is m-de-
terministic if the product u1 · u2 consists of at most m elements for any
labels u1, u2 ∈ ρν(p). We also say that an m-deterministic algebra Pν(p) is



642 B.SH. KULPESHOV AND S.V. SUDOPLATOV

strictly m-deterministic if it is not (m − 1)-deterministic. Obviously, strict
1-determinacy of an algebra is equivalent to its determinacy.

Example 4. Consider the structure M ′
2,1,2 := ⟨M,K3, E2

1 , E
2
2 , R

2⟩ from

Theorem 1. Then we have the following: E2(x, y) is an equivalence relation
partitioningM into in�nitely many in�nite convex classes so that the induced
order on E2-classes is dense; E1(x, y) is an equivalence relation partitioning
every E2-class into in�nitely many in�nite convex E1-subclasses without
endpoints so that the induce order on E1-subclasses is dense; R(M,a) has
no right endpoint in M , r2(a) = a and ¬E∗(a, r(a)) for all a ∈ M , and r
preserves Ei-classes for every 1 ≤ i ≤ 2, i.e. if Ei(a, b) holds for a, b ∈ M
then both r(a) and r(b) lie in the same E∗

i -class. Whence we obtain that
Th(M ′

2,1,2) has eleven binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := K0(x, y, r(x)) ∧ E1(x, y),

θ2(x, y) := K0(x, y, r(x)) ∧ ¬E1(x, y) ∧ E2(x, y),

θ3(x, y) := K0(x, y, r(x)) ∧ ¬E2(x, y) ∧ ¬E∗
2(y, r(x)),

θ4(x, y) := K0(x, y, r(x)) ∧ E∗
2(y, r(x)) ∧ ¬E∗

1(y, r(x)),

θ5(x, y) := K0(x, y, r(x)) ∧ E∗
1(y, r(x)),

θ6(x, y) := K0(r(x), y, x) ∧ E∗
1(y, r(x)),

θ7(x, y) := K0(r(x), y, x) ∧ E∗
2(y, r(x)) ∧ ¬E∗

1(y, r(x)),

θ8(x, y) := K0(r(x), y, x) ∧ ¬E2(x, y) ∧ ¬E∗
2(y, r(x)),

θ9(x, y) := K0(r(x), y, x) ∧ ¬E2(x, y) ∧ ¬E1(x, y),

θ10(x, y) := K0(r(x), y, x) ∧ E1(x, y).

Obviously, the following holds for any a ∈M :

K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), . . . , θ9(a,M), θ10(a,M)).

De�ne labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 10.

It easy to check that for the algebra PM ′
2,1,2

the following equalities hold:

0 · k = k · 0 = {k} for every 0 ≤ k ≤ 10,
1 · 1 = {1}, 1 · 2 = {2}, 1 · 3 = {3}, 1 · 4 = {4}, 1 · 5 = {5, 6}, 1 · 6 = {6},
1 · 7 = {7}, 1 · 8 = {8}, 1 · 9 = {9}, and 1 · 10 = {10, 0, 1}.
For example, let's consider the product 1 · 5 in more detail: let

ϕ(x, y) := ∃t[θ1(x, t) ∧ θ5(t, y)].
Take arbitrary a, b ∈ M such that b ∈ θ1(a,M) and consider θ5(b,M).

Obviously, θ5(b,M) ∩ θ5(a,M) ̸= ∅ and θ5(b,M) ∩ θ6(a,M) ̸= ∅, whence
we obtain that each of θ5(a, y) and θ6(a, y) is consistent with ϕ(a, y). Also,
we can easily see that each of the remaining θi(a, y) are not consistent with
ϕ(a, y). Thus, we have 1 · 5 = {5, 6}.

Further, 2 · 1 = {2}, 2 · 2 = {2}, 2 · 3 = {3}, 2 · 4 = {4, 5, 6, 7}, 2 · 5 = {7},
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2 · 6 = {7}, 2 · 7 = {7}, 2 · 8 = {8}, 2 · 9 = {9, 10, 0, 1, 2}, and 2 · 10 = {2},
3 · 1 = {3}, 3 · 2 = {3}, 3 · 3 = {3, 4, 5, 6, 7, 8}, 3 · 4 = {8}, 3 · 5 = {8},
3·6 = {8}, 3·7 = {8}, 3·8 = {8, 9, 10, 0, 1, 2, 3}, 3·9 = {3}, and 3·10 = {3},
4 · 1 = {4}, 4 · 2 = {4, 5, 6, 7}, 4 · 3 = {8}, 4 · 4 = {9}, 4 · 5 = {9},
4 · 6 = {9}, 4 · 7 = {9, 10, 0, 1, 2}, 4 · 8 = {3}, 4 · 9 = {4}, and 4 · 10 = {4},
5 · 1 = {5, 6}, 5 · 2 = {7}, 5 · 3 = {8}, 5 · 4 = {9}, 5 · 5 = {10},
5 · 6 = {10, 1, 2}, 5 · 7 = {2}, 5 · 8 = {3}, 5 · 9 = {5}, and 5 · 10 = {5},
6 · 1 = {6}, 6 · 2 = {7}, 6 · 3 = {8}, 6 · 4 = {9}, 6 · 5 = {10, 0, 1},
6 · 6 = {1}, 6 · 7 = {2}, 6 · 8 = {3}, 6 · 9 = {4}, and 6 · 10 = {5, 6},
7 · 1 = {7}, 7 · 2 = {7}, 7 · 3 = {8}, 7 · 4 = {9, 10, 0, 1, 2}, 7 · 5 = {2},
7 · 6 = {2}, 7 · 7 = {2}, 7 · 8 = {3}, 7 · 9 = {4, 5, 6, 7}, and 7 · 10 = {7},
8 · 1 = {8}, 8 · 2 = {8}, 8 · 3 = {8, 9, 10, 0, 1, 2, 3}, 8 · 4 = {3}, 8 · 5 = {3},
8 · 6 = {3}, 8 · 7 = {3}, 8 · 8 = {3, 4, 5, 6, 7, 8}, 8 · 9 = {8}, and 8 · 10 = {8},
9 · 1 = {9}, 9 · 2 = {9, 10, 0, 1, 2}, 9 · 3 = {3}, 9 · 4 = {4}, 9 · 5 = {4},
9 · 6 = {4}, 9 · 7 = {4, 5, 6, 7}, 9 · 8 = {8}, 9 · 9 = {9} and 9 · 10 = {9},
10 · 1 = {10, 0, 1}, 10 · 2 = {2}, 10 · 3 = {3}, 10 · 4 = {4}, 10 · 5 = {5},
10 · 6 = {5, 6}, 10 · 7 = {7}, 10 · 8 = {8}, 10 · 9 = {9} and 10 · 10 = {9}.
By these equalities the algebra PM ′

2,1,2
is commutative and strictly 7-

deterministic.

Theorem 2. The algebra PM ′
s,1,k

of binary isolating formulas with mono-

tonic-to-right function r has 2sk + k + 1 labels, is commutative and strictly
(2s+ 3)-deterministic for every s ≥ 1 and k ≥ 2.

Proof of Theorem 2. From Theorem 1 M ′
s,1,k = ⟨M,K3, E2

1 , . . . , E
2
s , R

2⟩,
where Es(x, y) is an equivalence relation partitioningM into in�nitely many
in�nite convex classes so that the induced order on Es-classes is dense;
Ei(x, y) for every 1 ≤ i ≤ s − 1 is an equivalence relation partitioning
every Ei+1-class into in�nitely many convex Ei-subclasses without endpoints
so that the induced order on Ei-subclasses is dense; R(M,a) has no right
endpoint in M , rk(a) = a and ¬E∗(a, r(a)) for all a ∈ M ; r preserves Ei-
classes for every 1 ≤ i ≤ s, i.e. if Ei(a, b) holds for a, b ∈ M then both r(a)
and r(b) lie in the same E∗

i -class. Whence we obtain that the algebra PM ′
s,1,k

has 2sk + k + 1 binary isolating formulas:

θ0(x, y) := x = y,

θ(2s+1)i+1(x, y) := K0(r
i(x), y, ri+1(x)) ∧ E∗

1(y, r
i(x)), where 0 ≤ i ≤ k − 1,

θ(2s+1)i+j(x, y) := K0(r
i(x), y, ri+1(x)) ∧ E∗

j (y, r
i(x)) ∧ ¬E∗

j−1(y, r
i(x)),

where 0 ≤ i ≤ k − 1, 2 ≤ j ≤ s,

θ(2s+1)i+s+1(x, y) := K0(r
i(x), y, ri+1(x)) ∧ ¬E∗

s (y, r
i(x)) ∧ ¬E∗

s (y, r
i+1(x)),

where 0 ≤ i ≤ k − 1,

θ(2s+1)(i+1)+1−j(x, y) := K0(r
i(x), y, ri+1(x)) ∧ E∗

j (y, r
i+1(x))

∧¬E∗
j−1(y, r

i+1(x)), where 0 ≤ i ≤ k − 1, 2 ≤ j ≤ s,

θ(2s+1)(i+1)(x, y) := K0(r
i(x), y, ri+1(x)) ∧ E∗

1(y, r
i+1(x)),
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where 0 ≤ i ≤ k − 1.

Thus, we have 1 + k + (s − 1)k + k + (s − 1)k + k = 2sk + k + 1 binary
isolating formulas. Moreover, we have de�ned the formulas so that for any
a ∈M the following holds:

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θ2sk+k−1(a,M), θ2sk+k(a,M)).

We will now prove that the algebra PM ′
s,1,k

is commutative and strictly

(2s+ 3)-deterministic for every s ≥ 1 and k ≥ 2.
First, obviously that 0 · l = l · 0 = {l} for any 0 ≤ l ≤ 3k. Suppose further

that l1 ̸= 0 and l2 ̸= 0.
Consider the following formula

∃t[θl1(x, t) ∧ θl2(t, y)].

Case 1: l1 = (2s+ 1)i1 + 1 for some 0 ≤ i1 ≤ k − 1.
We have: K0(r

i1(x), t, ri1+1(x)) and E∗
1(t, r

i1(x)).
Let also l2 = (2s+1)i2+1 for some 0 ≤ i2 ≤ k−1, i.e.K0(r

i2(t), y, ri2+1(t))
and E∗

1(y, r
i2(t)). Whence we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)) and E∗

1(y, r
i1+i2(x)).

Clearly, 0 ≤ i1 + i2 ≤ (k − 1) + (k − 1) = 2k − 2. If i1 + i2 ≤ k − 1
then l1 · l2 = {(2s + 1)(i1 + i2) + 1}. If i1 + i2 > k − 1 then we have
K0(r

m(x), y, rm+1(x)) and E∗
1(y, r

m(x)), where m = (i1 + i2)[mod k]. Then
l1 · l2 = {(2s+ 1)m+ 1}.

Let now l2 = (2s+ 1)i2 + j for some 0 ≤ i2 ≤ k − 1 and 2 ≤ j ≤ s. Then
we have: K0(r

i2(t), y, ri2+1(t)), E∗
j (y, r

i2(t)) and ¬E∗
j−1(y, r

i2(t)). Whence
we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j (y, r
i1+i2(x)) and ¬E∗

j−1(y, r
i1+i2(x)).

If i1+ i2 ≤ k−1 then l1 · l2 = {(2s+1)(i1+ i2)+ j}. If i1+ i2 > k−1 then
we have K0(r

m(x), y, rm+1(x)), E∗
j (y, r

m(x)) and ¬E∗
j−1(y, r

m(x)), where

m = (i1 + i2)[mod k]. Then l1 · l2 = {(2s+ 1)m+ j}.
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

j (t, r
i2(x)), ¬E∗

j−1(t, r
i2(x)), K0(r

i1(t), y, ri1+1(t)) and E∗
1(y, r

i1(t)).
Whence we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j (y, r
i1+i2(x)) and ¬E∗

j−1(y, r
i1+i2(x)).

Then l2 · l1 = {(2s+ 1)m+ j}, where m = (i1 + i2)[mod k].
Let now l2 = (2s+ 1)i2 + s+ 1 for some 0 ≤ i2 ≤ k − 1, i.e. K0(r

i2(t), y,
ri2+1(t)), ¬E∗

s (y, r
i2(t)) and ¬E∗

s (y, r
i2+1(t)). Whence we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)),¬E∗

s (y, r
i1+i2(x)) and ¬E∗

s (y, r
i1+i2+1(x)).

Let m = (i1 + i2)[mod k]. then l1 · l2 = {(2s+ 1)m+ s+ 1}.
Consider the product l2 · l1. We have: K0(r

i2(x), t, ri2+1(x)),
¬E∗

s (t, r
i2(x)), ¬E∗

s (t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)) and E∗
1(y, r

i1(t)).
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Whence we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

s (y, r
i1+i2(x)) and ¬E∗

s (y, r
i1+i2(x)).

Then l2 · l1 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2)[mod k].
Let now l2 = (2s+1)(i2+1)+1−j for some 0 ≤ i2 ≤ k−1 and 2 ≤ j ≤ s,

i.e. K0(r
i2(t), y, ri2+1(t)), E∗

j (y, r
i2+1(t)) and ¬E∗

j−1(y, r
i2+1(t)). Whence we

obtain:

K0(r
i1+i2(t), y, ri1+i2+1(t)), E∗

j (y, r
i1+i2+1(t)) and ¬E∗

j−1(y, r
i1+i2+1(t)).

Let m = (i1 + i2)[mod k]. Then l1 · l2 = {(2s+ 1)(m+ 1) + 1− j}.
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

j (t, r
i2(x)), ¬E∗

j−1(t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)) and E∗
1(y, r

i1(t)).
Whence we obtain:

K0(r
i1+i2(t), y, ri1+i2+1(t)), E∗

j (y, r
i1+i2+1(t)) and ¬E∗

j−1(y, r
i1+i2+1(t)).

Then l2 · l1 = {(2s+ 1)(m+ 1) + 1− j}, where m = (i1 + i2)[mod k].
Let now l2 = (2s + 1)(i2 + 1) for some 0 ≤ i2 ≤ k − 1, i.e. K0(r

i2(t),
y, ri2+1(t)) and E∗

1(y, r
i2+1(t)). Whence we obtain: E∗

1(y, r
i1+i2+1(x)) and

either K0(r
i1+i2(x), y, ri1+i2+1(x)) or K0(r

i1+i2+1(x), y, ri1+i2+2(x)).
Letm = (i1+i2+1)[mod k]. Clearly, 0 ≤ m ≤ k−1, since 1 ≤ i1+i2+1 ≤

(k− 1)+ (k− 1)+1 = 2k− 1. If m = 0 then l1 · l2 = {0, 1, 2sk+k}. If m ̸= 0
then l1 · l2 = {(2s+ 1)(m+ 1), (2s+ 1)(m+ 1) + 1}.

Consider the product l2 · l1. We have the following: K0(r
i2(x), t, ri2+1(x)),

E∗
1(t, r

i2+1(x)), K0(r
i1(t), y, ri1+1(t)) and E∗

1(y, r
i1(t)). Whence we obtain:

E∗
1(y, r

i1+i2+1(x)) and either K0(r
i1+i2(x), y, ri1+i2+1(x)) or K0(r

i1+i2+1(x),
y, ri1+i2+2(x)).

Let m = (i1 + i2 + 1)[mod k]. Similarly, we have: if m = 0, l2 · l1 =
{0, 1, 2sk + k}. If m ̸= 0, l2 · l1 = {(2s+ 1)(m+ 1), (2s+ 1)(m+ 1) + 1}.

Case 2. l1 = (2s+ 1)i1 + j1 for some 0 ≤ i1 ≤ k − 1 and 2 ≤ j1 ≤ s.
We have the following: K0(r

i1(x), t, ri1+1(x)), E∗
j1
(t, ri1(x)) and ¬E∗

j1−1(t,

ri1(x)).
Let also l2 = (2s+1)i2+ j2 for some 0 ≤ i2 ≤ k− 1 and 2 ≤ j2 ≤ s. Then

we have K0(r
i2(t), y, ri2+1(t)), E∗

j2
(y, ri2(t)) and ¬E∗

j2−1(y, r
i2(t)).

Let m = (i1 + i2)[mod k]. If j1 ≤ j2, we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j2(y, r
i1+i2(x)) and ¬E∗

j2−1(y, r
i1+i2(x)),

whence l1 · l2 = {(2s+ 1)m+ j2}. If j1 > j2, we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j1(y, r
i1+i2(x)) and ¬E∗

j1−1(y, r
i1+i2(x)),

whence l1 · l2 = {(2s+ 1)m+ j1}.
Let now l2 = (2s + 1)i2 + s + 1 for some 0 ≤ i2 ≤ k − 1. Then we

have K0(r
i2(t), y, ri2+1(t)), ¬E∗

s (y, r
i2(t)) and ¬E∗

s (y, r
i2+1(t)). Whence we

obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)),¬E∗

s (y, r
i1+i2(x)) and ¬E∗

s (y, r
i1+i2+1(x)).
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Then l1 · l2 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2)[mod k].
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
¬E∗

s (t, r
i2(x)), ¬E∗

s (t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)), E∗
j1
(y, ri1(t)) and

¬E∗
j1−1(y, r

i1(t)). Whence we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)),¬E∗

s (y, r
i1+i2(x)) and ¬E∗

s (y, r
i1+i2+1(x)).

Similarly, l2 · l1 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2)[mod k].
Let now l2 = (2s + 1)(i2 = 1) + 1 − j2 for some 0 ≤ i2 ≤ k − 1 and

2 ≤ j2 ≤ s. We have the following: K0(r
i2(t), y, ri2+1(t)), E∗

j2
(y, ri2+1(t))

and ¬E∗
j2−1(y, r

i2+1(t)).
If j1 ≤ j2, we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j2(y, r
i1+i2+1(x)) and ¬E∗

j2−1(y, r
i1+i2+1(x)).

Then l1 · l2 = {(2s + 1)m + 1 − j2}, where m = (i1 + i2 + 1)[mod k]. If
j1 > j2, we obtain: K0(r

i1+i2+1(x), y, ri1+i2+2(x)), E∗
j1
(y, ri1+i2+1(x)) and

¬E∗
j1−1(y, r

i1+i2+1(x)), whence l1 · l2 = {(2s+ 1)m+ j1}.
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

j2
(t, ri2+1(x)), ¬E∗

j2−1(t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)), E∗
j1
(y, ri1(t)) and

¬E∗
j1−1(y, r

i1(t)).

Let m = (i1 + i2 + 1)[mod k]. If j1 ≤ j2, we obtain:

K0(r
i1+i2(x), y, ri1+i2+1(x)), E∗

j2(y, r
i1+i2+1(x)) and ¬E∗

j2−1(y, r
i1+i2+1(x)),

whence l2 · l1 = {(2s+1)m+1−j2}. If j1 > j2, we obtain: K0(r
i1+i2+1(x), y,

ri1+i2+2(x)), E∗
j1
(y, ri1+i2+1(x)) and ¬E∗

j1−1(y, r
i1+i2+1(x)), whence l2 · l1 =

{(2s+ 1)m+ j1}.
Let now l2 = (2s + 1)(i2 + 1) for some 0 ≤ i2 ≤ k − 1. Then we have:

K0(r
i2(t), y, ri2+1(t)) andE∗

1(y, r
i2+1(t)). Whence we obtain:K0(r

i1+i2+1(x),
y, ri1+i2+2(x)), E∗

j1
(y, ri1+i2+1(x)) and ¬E∗

j1−1(y, r
i1+i2+1(x)). Then l1 · l2 =

{(2s+ 1)m+ j1}, where m = (i1 + i2 + 1)[mod k].
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

1(t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)), E∗
j1
(y, ri1(t)) and ¬E∗

j1−1(y, r
i1(t)).

Whence we obtain: K0(r
i1+i2+1(x), y, ri1+i2+2(x)), E∗

j1
(y, ri1+i2+1(x)) and

¬E∗
j1−1(y, r

i1+i2+1(x)), whence l2 · l1 = {(2s+ 1)m+ j1}.

Case 3. l1 = (2s+ 1)i1 + s+ 1 for some 0 ≤ i1 ≤ k − 1.
We have the following: K0(r

i1(x), t, ri1+1(x)), ¬E∗
s (t, r

i1(x)) and ¬E∗
s (t,

ri1+1(x)).
Let also l2 = (2s+ 1)i2 + s+ 1 for some 0 ≤ i2 ≤ k − 1, i.e. K0(r

i2(t), y,
ri2+1(t)), ¬E∗

s (y, r
i2(t)) and ¬E∗

s (y, r
i2+1(t)).

Whence we obtain: K0(r
i1+i2(x), t, ri1+i2+2(x)).

Let m = (i1 + i2 + 1)[mod k]. If m = 0 then

l1 · l2 = {(2s+ 1)k − s, (2s+ 1)k − s+ 1, . . . , (2s+ 1)k, 0, 1, . . . , s, s+ 1},
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i.e. the product l1 · l2 consists of 2s+ 3 labels. If m ̸= 0 then

l1 · l2 = {(2s+ 1)m+ s+ 1, (2s+ 1)m+ s+ 2, . . . , (2s+ 1)m+ 3s+ 2},
i.e. the product l1 · l2 consists of 2s+ 1 labels.

Let now l2 = (2s + 1)(i2 = 1) + 1 − j for some 0 ≤ i2 ≤ k − 1 and
2 ≤ j ≤ s. We have the following: K0(r

i2(t), y, ri2+1(t)), E∗
j (y, r

i2+1(t)) and

¬E∗
j−1(y, r

i2+1(t)). Whence we obtain:

K0(r
i1+i2+1(x), y, ri1+i2+2(x)),¬E∗

s (y, r
i1+i2+1(t)) and ¬E∗

s (y, r
i1+i2+2(t)).

Then l1 · l2 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2 + 1)[mod k].
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

j (t, r
i2+1(x)), ¬E∗

j−1(t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)), ¬E∗
s (y, r

i1(t)) and

¬E∗
s (y, r

i1+1(t)). Whence we obtain:

K0(r
i1+i2+1(x), y, ri1+i2+2(x)),¬E∗

s (y, r
i1+i2+1(t)) and ¬E∗

s (y, r
i1+i2+2(t)).

Then also l2 · l1 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2 + 1)[mod k].
Let now l2 = (2s + 1)(i2 + 1) for some 0 ≤ i2 ≤ k − 1. Then we have:

K0(r
i2(t), y, ri2+1(t)) and E∗

1(y, r
i2+1(t)). Whence we obtain:

K0(r
i1+i2+1(x), y, ri1+i2+2(x)),¬E∗

s (y, r
i1+i2+1(t)) and ¬E∗

s (y, r
i1+i2+2(t)).

Then l1 · l2 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2 + 1)[mod k].
Consider the product l2 · l1. We have the following: K0(r

i2(x), t, ri2+1(x)),
E∗

1(t, r
i2+1(x)), K0(r

i1(t), y, ri1+1(t)), ¬E∗
s (y, r

i1(t)) and ¬E∗
s (y, r

i1+1(t)).
Whence we obtain:

K0(r
i1+i2+1(x), y, ri1+i2+2(x)),¬E∗

s (y, r
i1+i2+1(t)) and ¬E∗

s (y, r
i1+i2+2(t)).

Then also l2 · l1 = {(2s+ 1)m+ s+ 1}, where m = (i1 + i2 + 1)[mod k].

Case 4. l1 = (2s+1)(i1+1)+1−j1 for some 0 ≤ i1 ≤ k−1 and 2 ≤ j1 ≤ s.
We have the following:

K0(r
i1(x), t, ri1+1(x)), E∗

j1(t, r
i1+1(x)) and ¬E∗

j1−1(t, r
i1+1(x)).

Let also l2 = (2s+1)(i2+1)+1−j2 for some 0 ≤ i2 ≤ k−1 and 2 ≤ j2 ≤ s,
i.e. K0(r

i2(t), y, ri2+1(t)), E∗
j2
(y, ri2+1(t)) and ¬E∗

j2−1(y, r
i2+1(t)).

Let m = (i1 + i2 + 1)[mod k].
If j1 ≤ j2, we obtain: K0(r

i1+i2+1(x), y, ri1+i2+2(x)), E∗
j2
(y, ri1+i2+2(x))

and ¬E∗
j2−1(y, r

i1+i2+2(x)), whence l1 · l2 = (2s+ 1)(m+ 1) + 1− j2.

If j1 > j2, we obtain: K0(r
i1+i2+1(x), y, ri1+i2+2(x)), E∗

j1
(y, ri1+i2+2(x))

and ¬E∗
j1−1(y, r

i1+i2+2(x)), whence l1 · l2 = (2s+ 1)(m+ 1) + 1− j1.

Let now l2 = (2s + 1)(i2 + 1) for some 0 ≤ i2 ≤ k − 1. Then we have:
K0(r

i2(t), y, ri1+1(t)) and E∗
1(y, r

i2+1(t)).
Whence we obtain: K0(r

i1+i2+1(x), y, ri1+i2+2(x)), E∗
j1
(y, ri1+i2+2(x) and

¬E∗
j1−1(y, r

i1+i2+2(x)). Then l1 · l2 = {(2s + 1)(m + 1) + 1 − j1}, where
m = (i1 + i2 + 1)[mod k].

Consider the product l2 · l1.
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We have the following: K0(r
i2(x), t, ri2+1(x)), E∗

1(t, r
i2+1(x)), K0(r

i1(t),
y, ri1+1(t)), E∗

j1
(y, ri1+1(t)) and ¬E∗

j1−1(y, r
i1+1(t)).

Whence we obtain: K0(r
i1+i2+1(x), y, ri1+i2+2(x)), E∗

j1
(y, ri1+i2+1(x)) and

¬E∗
j1−1(y, r

i1+i2+2(x)).

Then also l2 ·l1 = {(2s+1)(m+1)+1−j1}, wherem = (i1+i2+1)[mod k].

Case 5. l1 = (2s+ 1)(i1 + 1) for some 0 ≤ i1 ≤ k − 1.
We have the following: K0(r

i1(x), t, ri1+1(x)) and E∗
1(t, r

i1+1(x)).
Let also l2 = (2s + 1)(i2 + 1) for some 0 ≤ i2 ≤ k − 1. Then we have:

K0(r
i2(t), y, ri2+1(t)) and E∗

1(y, r
i2+1(t)). Whence we obtain:

K0(r
i1+i2+1(x), y, ri1+i2+2(x)) and E∗

1(y, r
i1+i2+2(x)).

Then l1 · l2 = {(2s+ 1)(m+ 1)}, where m = (i1 + i2 + 1)[mod k].
Thus, we established that the algebra PM ′

s,1,k
is commutative and strictly

(2s+ 3)-deterministic for every s ≥ 1 and k ≥ 2. □

In conclusion, the authors thank the anonymous reviewer for useful comments
and constructive criticism that contributed to improving the presentation.
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