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Abstract: We study the multidimensional initial-boundary value
problem for the system of Kelvin�Voigt equations of a two-compo-
nent mixture of viscoelastic �uids with nonlinear convective terms
and a linear impulsive term � a regular minor term describing
impulsive source or damping. The impulsive term depends on a
positive integer parameter n and, as n → +∞, weakly⋆ converges
to an expression including the Dirac delta-function, which models
impulsive source or damping at the initial moment of time. We
prove that an in�nitesimal initial impulsive layer, associated with
the Dirac delta function, is formed as n → +∞, and that the family
of regular weak solutions to the original problem converges to the
strong solution of a two-scale microscopic-macroscopic model. This
model consists of two initial-boundary value problems that should
be solved successively: at �rst, the �ow of the mixture is de�ned
on the in�nitesimal initial impulsive layer set at the microscopic
(`fast') timescale, and, at second, the outer �ow beyond the initial
impulsive layer is de�ned at the macroscopic (`slow') timescale.
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The equations of the initial impulsive layer inherit the full inform-
ation about the pro�le of the original non-instantaneous source or
damping.

Keywords: Kelvin�Voigt equations, two-component mixture, im-
pulsive partial di�erential equation, initial layer.

1 Introduction

We study the Cauchy�Dirichlet problem for the Kelvin�Voigt equations of
a two-component mixture of viscoelastic �uids in the presence of impulsive
phenomena:

∂tv
n
i + divx

(
vni ⊗ vni

)
= −∇xπ

n
i +

2∑
j=1

µij∆xv
n
j + κi∆x∂tv

n
i

+γφn(t)vni in QT ,

divx v
n
i = 0 in QT ,

vni (·, 0) = v0i in Ω,

vni = 0 on ΓT . (i = 1, 2)

(1)

Let us recall that, for each component i ∈ {1, 2} in the mixture, (1)1 is
the balance of momentum equation, (1)2 is the balance of mass equation (in
other terms, the incompressibility condition), (1)3 is the initial condition,
and (1)4 is the no-slip condition on the outer �xed boundary of the whole
viscoelastic continuum.

In (1), Ω ⊂ Rd
x is a �xed bounded domain occupied by the viscoelastic

continuum (�uid), with boundary ∂Ω ∈ C2, d = 2 or d = 3 is the dimension
of the space of physical positions x, t is the time variable, T = const > 0 is an
arbitrarily �xed moment of time, QT = Ω× (0, T ) is the space-time cylinder,
ΓT = ∂Ω× (0, T ) is the lateral surface of QT , v

n
i = vni (x, t) (i = 1, 2) are the

sought velocity �elds of the mixture components, πn
i = πn

i (x, t) (i = 1, 2) are
the sought pressure �elds of the mixture components, γ is a given constant
coe�cient of intensity of impulse, which can be either positive or negative,
µij (i, j = 1, 2) and κi (i = 1, 2) are given constant kinematic viscosity and
retardation coe�cients, respectively. We assume that

M
def
=

(
µij

)2
i,j=1

> 0, µij = µji, κi > 0 (i, j = 1, 2), (2)

where relationM =
(
µij

)2
i,j=1

> 0 means that matrixM is positive de�nite,

i.e., there is a positive constant µ∗ such that the inequalityMζ · ζ ≥ µ∗|ζ|2
holds for all ζ ∈ Rd. Initial distributions v0i = v0i(x) (i = 1, 2) of the
velocity �elds and the pro�le of the impulsive impact φn = φn(t) are also
given and satisfy the following conditions:

v0i ∈ W 2,2
0 (Ω)d, divxv0i = 0 (i = 1, 2) on Ω, (3)
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function φn = φn(t) is de�ned for each natural n, n ≥ n0 =
[ 1
T

]
+2, by the

formula

φn(t) = nΦ(nt), t ∈ [0, T ], (4)

where Φ = Φ(ϑ) is a nonnegative smooth function supported on segment
{0 ≤ ϑ ≤ 1} and having the unit mean value:

1∫
0

Φ(ϑ) dϑ = 1. (5)

The assumptions on the sequence {φn}n=1,2,... mean that it approximates
the Dirac delta-function in the sense that φn(·) −→

n→+∞
δ(t=0) weakly⋆ in

M(0, T ), where M(0, T ) is the space of the Radon measures de�ned as the
dual space of C[0, T ]. Furthermore,

t∫
0

φn(s)ds ≤ 1 for t ∈ [0, T ],

T∫
0

φn(s)ds = 1. (6)

For Φ one may take the classical Friedrichs molli�er supported on [0, 1].
System (1) is a generalization to the two-component case of the well-

known Kelvin�Voigt system of equations of dynamics of a one-component
viscoelastic �uid. Note that equations (1)1 (i = 1, 2) have two features,
the presence of which mainly determines the novelty and originality of our

research. The �rst of the features is the presence of the terms
2∑

j=1

µij∆xv
n
j :

unlike the one-component case, where the viscosity coe�cient is a scalar, in
the two-component case the viscosity coe�cients µij (i, j = 1, 2) form matrix
M whose elements characterize viscous friction. More certainly, the diagonal
elements of matrix M are responsible for the viscous friction within each
component, and the non-diagonal elements are responsible for the viscous
friction between the two components. In cases whenM is a diagonal matrix,
the subsystem of two equations (1)1 decouples and, therefore, the whole
system (1) falls into the well-known theory of the Kelvin�Voigt equations
of dynamics of one-component viscoelastic �uids, see in [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In the present article, we consider a
much more complicated case of a non-diagonal and non-triangular matrix
M and do not impose any simplifying assumptions on it except the standard
requirement of positive de�niteness and symmetry. The study of solvability
topics for hydrodynamic equations with non-diagonal viscosity matrices has
a fairly notable history. Its foundations and main results can be found in
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The peculiarity
of this particular research is the presence of the impulsive terms γφn(t)vni
(i = 1, 2).
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From the mathematical point of view, this presence attracts signi�cant
interest, which is as follows. If we formally substitute vni by vi and the
impulsive term by expression γδ(t=0)vi in (1)1 and set vi(x, 0) = v0i(x) in
Ω instead of (1)3, then from the subsystem (1)1,3 we deduce the subsystem,
which is in the sense of distributions equivalent to the subsystem consisting
of two equations

∂tvi + divx
(
vi ⊗ vi

)
= −∇xπi +

2∑
j=1

µij∆xvj + κi∆x∂tvi, i = 1, 2, (7)

and the `corrected' initial conditions

vi(x, 0) = (1 + γ)v0i(x), i = 1, 2. (8)

(Obviously, the form of subsystem (1)2,4 remains intact.) However, the numer-
ous observations in the theory of impulsive ordinary and partial di�erential
equations signal that (7) and (8) most likely may not be the correct limit
form of (1)1,3 as n → +∞, see, for example [33, 34, 35, 36, 37, 38, 39].
Therefore, a careful and mathematically rigorous analysis of the limiting
passage as n → +∞ is necessary in order to establish the correct limit mode
when modeling a short impulsive action by an instantaneous one.

From the physical viewpoint, the impulsive term γφn(t)vni in (1)1 is related
to dilatant (shear-thickening) and pseudoplastic (shear-thinning) �uids [40,
41, 42]. Generally, incompressible dilatant and pseudoplastic �uids are �uids
in which viscosity and velocity change signi�cantly under impulsive loads.
In this paper, we constrain ourselves to the case when the velocities change
drastically, but the viscosity values remain constant. In view of this, absorpt-
ion (in other terms, the velocity damping) occurs in dilatant liquids, which
corresponds to a negative value of the coe�cient γ. In turn, a sharp increase
in velocity occurs in pseudoplastic liquids, i.e. the coe�cient γ is positive.
In applications, subsystem (1)1,2 can be used, for example, for modeling
of inhomogeneous loose media, since it is known that under the action of
impulsive loading, a loose medium exhibits hydrodynamic properties. Indeed,
when exposed to seismic shock waves, liquefaction of soils occurs, which leads
to collapse of buildings [43, Part 1, Sec. 5].

Now, let us brie�y describe the further organization of the article. In
Section 2 we provide the rigorous formulation of the main results, which are
the results of solvability for any �xed n ≥ n0 and passing to the limit as
n → +∞. Sections 3 and 4 are devoted to justi�cation of the main results.

2 The main results

2.1. Solvability of problem (1) for �xed n ∈ N. Solution of problem
(1) is understood in the weak sense. In order to formulate a de�nition of weak
solution and for further considerations, we introduce the following functional
spaces, which are widely used in mathematical theory of �uids:

V :=
{
v ∈ C∞

0 (Ω)d : divx v = 0
}
,
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H := the closure of V in the norm of L2(Ω)d,

V l := the closure of V in the norm of W l,2(Ω)d, l = 1, 2.

In the case l = 1, we denote V 1 simply by V . Note that condition (3) can
be rewritten in the equivalent form v0i ∈ V 2 (i = 1, 2).

Now, for each n ≥ n0 (n ∈ N), we introduce the notion of regular weak
solutions to problem (1) as follows.

De�niton 1. We say that a pair of vector-functions

(vn1 ,v
n
2 ) = (vn1 (x, t),v

n
2 (x, t))

is a regular weak solution to problem (1), if it satis�es

1) the regularity requirements

vni ∈ L∞(0, T ;V 2), ∂tv
n
i ∈ L2(0, T ;V ) (i = 1, 2),

2) the integral equalities

s∫
0

∫
Ω

(
∂tv

n
i · ϕi + divx(v

n
i ⊗ vni ) · ϕi

+ κi∇x∂tv
n
i : ∇xϕi +

2∑
j=1

µij∇xv
n
j : ∇xϕi

)
dxdt

= γ

s∫
0

φn(t)

∫
Ω

vni · ϕidxdt (i = 1, 2) (9)

for any s ∈ (0, T ] and all pairs of test vector-functions (ϕ1,ϕ2) such
that ϕi ∈ L∞(0, T ;V 2), ∂tϕi ∈ L2(0, T ;V ),

3) the initial conditions (1)3 in the sense of the strong trace in H, i.e.,

∥vni (·, t)− v0i(·)∥H −→
t→0+

0 (i = 1, 2). (10)

The �rst part of the main results of this article deals with the questions of
global in time existence and uniqueness of solutions to problem (1) for each
�xed n ≥ n0:

Theorem 1. Assume that the input data for problem (1) meet the require-
ments set out in Section 1. Then problem (1) has a unique solution in the
sense of De�nition 1. Moreover, the solution satis�es the estimates

2∑
i=1

∥vni ∥L∞(0,T ;V 2) ≤ C0, (11)

2∑
i=1

(
∥∂tvni ∥L1(0,T ;H) + ∥∇x∂tv

n
i ∥L1(0,T ;L2(Ω)d×d)

)
≤ C0, (12)
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2∑
i=1

(
∥∂tvni ∥L2(0,T ;H) + ∥∇x∂tv

n
i ∥L2(QT )d×d

)
≤ C0

(
T +

T∫
0

(φn(t))2 dt
)
,

(13)

with a constant C0 independent of n.

Note that estimates (11) and (12) are uniform in n, but estimate (13) is

not uniform in n, since

T∫
0

(φn(t))2 dt −→
n→+∞

+∞ due to (4) and (5).

The proof of Theorem 1 is given further in Section 3.

2.2. Passage to the limit in problem (1), as n → +∞. The second
part of the main results of the article deals with the passage to the limit in
problem (1), as n → +∞:

Theorem 2. Assume that the input data for problem (1) meet the require-
ments set out in Section 1. Let

{
(vn1 ,v

n
2 )
}
n≥n0

be the family of regular weak

solutions to problem (1) in the sense of De�nition 1.
Then the following assertions hold true.

1. The family
{
(vn1 ,v

n
2 )
}
n≥n0

is relatively compact in L2(0, T ;V )2 and

relatively weakly⋆ compact in L∞(0, T ;V 2)2, as n → ∞: there exist a
subsequence from

{
(vn1 ,v

n
2 )
}
n≥n0

, still labeled by n, and a limit pair

of vector-functions (v1,v2) ∈ L∞(0, T ;V 2)2 such that

vni −→
n→+∞

vi strongly in L2(0, T ;V ),

and weakly⋆ in L∞(0, T ;V 2) (i = 1, 2). (14)

2. The family of rescaled solutions
{
(vn1 ,v

n
2 )
}
n≥n0

, vni : Ω× [0, 1] 7→ Rd

(i = 1, 2), de�ned by the formula

vni (x, ϑ)
def
= vni

(
x,

ϑ

n

)
, ϑ ∈ [0, 1] (i = 1, 2), (15)

is relatively compact in L2(0, 1;V ) and relatively weakly⋆ compact
in L∞(0, 1;V 2): there exist a subsequence from

{
(vn1 ,v

n
2 )
}
n≥n0

, still

labeled by n, and a limit pair (v1,v2) ∈ L∞(0, 1;V 2)2 such that

vni −→
n→+∞

v strongly in L2(0, 1;V )

and weakly⋆ in L∞(0, 1;V 2) (i = 1, 2). (16)

3. There exist two pairs of scalar functions (π1, π2) and (π1, π2) such
that the two pairs of the limit vector-functions (v1,v2) and (v1,v2)
along with (π1, π2) and (π1, π2) are a strong solution of the two
Cauchy�Dirichlet problems that should be solved successively:
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3a. Firstly, �nd the quadruple (v1,v2, π1, π2) satisfying
∂ϑvi = κi∆x∂ϑvi + γΦ(ϑ)vi −∇xπi in Ω× (0, 1),

divx vi = 0 in Ω× (0, 1),

vi(·, 0) = v0i in Ω,

vi = 0 on ∂Ω× (0, 1) (i = 1, 2).

(17)

3b. Secondly, �nd the quadruple (v1,v2, π1, π2) satisfying

∂tvi + divx
(
vi ⊗ vi

)
= divx

( 2∑
j=1

µij∇xvj + κi∇x∂tvi

)
−∇xπi in QT ,

divx vi = 0 in QT ,

vi(·, 0) = vi(·, 1) in Ω,

vi = 0 on ΓT (i = 1, 2),

(18)

where the pair of initial vector-functions
(
v1(·, 0),v2(·, 0)

)
is

de�ned by the solution of problem (17) at the moment ϑ = 1.

We call equations (17)1,2 the initial in�nitesimal layer equations. Equations
(17)1 contain function Φ(ϑ) and therefore preserve the whole information
about the instantaneous impulsive pro�le. Due to rescaling t = ϑ/n (see
in (15)), the independent variable ϑ can be regarded to as the fast time
variable and quadruple (v1,v2, π1, π2) can be called a microscopic initial
layer solution, while t is the slow time and quadruple (v1,v2, π1, π2) is a
macroscopic outer solution. Thus, (17)�(18) is the two-scale microscopic-
macroscopic problem. Conditions (18)3 may be fairly interpreted as the
interfacial conditions between the initial microscopic impulsive layer and
the macroscopic outer �ow.

The notions of strong solutions to problem (17)�(18) is as follows.

De�niton 2. The set consisting of eight functions (vi, πi, vi, πi) (i = 1, 2)
is called a strong solution to problem (17)�(18), if

(I) (ia) the quadruple of functions (vi, πi) (i = 1, 2) satis�es the regular-
ity conditions

vi ∈ C([0, 1];H) ∩ L∞(0, 1;V 2), ∂ϑvi, ∆x∂ϑvi ∈ L∞(0, 1;H),

∇xπi ∈ L2(Ω× (0, 1))d,
(19a)

(ib) equations (17)1 and (17)2 hold a.e. in Ω× (0, 1),
(ic) the initial conditions (17)3 hold in the strong trace sense in H,

i.e.

∥vi(·, ϑ)− v0i(·)∥H −→
ϑ→0+

0; (19b)
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(II)(iia) the quadruple of functions (vi, πi) (i = 1, 2) satis�es the regular-
ity conditions

vi ∈ C([0, T ];H) ∩ L∞(0, T ;V 2), ∂tvi, ∆x∂tvi ∈ L∞(0, T ;H),

∇xπi ∈ L2(QT )
d,

(20a)

(iib) equations (18)1 and (18)2 hold a.e. in QT ,
(iic) the initial conditions (18)3 hold in the strong trace sense in H,

i.e.

∥vi(·, t)− vi(·, 1)∥H −→
t→0+

0. (20b)

The proof of Theorem 2 is given further in Section 4.

3 Proof of Theorem 1

The proof of Theorem 1 is split into several steps. In Section 3.1 we
introduce the �nite-dimensional Galerkin's approximations

(
vm,n
1 ,vm,n

2

)
(m ∈

N) for the sought regular weak solution
(
vn1 ,v

n
2

)
. The super-indexm indicates

the dimension of the subspace the approximation vm,n
i (i = 1, 2) belongs to.

In Sections 3.2�3.4 we derive uniform estimates for Galerkin's approximations.
In Section 3.5 these estimates are used for justi�cation of the limiting passage
as m → +∞, which provides existence of a weak regular solution to problem
(1) and the uniform estimates in n on the family

{(
vn1 ,v

n
2

)}
n≥n0

. Section

3.6 is devoted to justi�cation of the uniqueness of the regular weak solution.

3.1. Galerkin's approximations. Following [44, Ch. II, � 4], [45, � 3], we

introduce the orthogonal basis {ψk}∞k=1 in V
2, which is also an orthonormal

basis in H , consisting of the eigenfunctions of the spectral problem∫
Ω

∇xψk : ∇xΦ dx = λk

∫
Ω

ψk ·Φ dx, ∀Φ ∈ V 2, k = 1, 2, . . . . (21)

Here {λk}k=1,2,... is the sequence of the positive eigenvalues.
We construct a regular weak solution

(
vn1 ,v

n
2

)
to problem (1) as a limit

of the sequence of the �nite-dimensional Galerkin's approximations

vni = lim
m→+∞

vm,n
i (i = 1, 2), (22a)

where

vm,n
i (·, t) =

m∑
s=1

vm,n
s,i (t)ψs(·), t ∈ [0, T ] (i = 1, 2). (22b)

Unknown coe�cients vm,n
k,i (t) (k = 1, 2, . . . ,m, i = 1, 2) are de�ned as the

solutions of Galerkin's system of 2m ordinary di�erential equations:

(1 + κiλk)
dvm,n

k,i (t)

dt
+

∫
Ω

divx
(
vm,n
i (x, t)⊗ vm,n

i (x, t)
)
·ψk(x)dx
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+

∫
Ω

( 2∑
j=1

µij∇xv
m,n
j (x, t) : ∇xψk(x)− γφn(t)vm,n

i (x, t) ·ψk(x)
)
dx = 0,

k = 1, 2, . . . ,m (i = 1, 2), (23)

endowed with the initial conditions

vm,n
k,i (0) = v0,k,i, k = 1, 2, . . . ,m (i = 1, 2), (24)

where constants v0,k,i are the Fourier coe�cients of v0i in the basis {ψk}k∈N.
We have

v0,k,i =

∫
Ω

v0i ·ψk dx, vm0i =

m∑
k=1

v0,k,iψk −→
m→+∞

v0i strongly in V 2

(i = 1, 2).

Note that the coe�cients v0,k,i and the approximate initial vector-function
vm0i do not depend on n.

Since 1 + κiλk > 1 (k = 1, . . . ,m, i = 1, 2), by Peano theorem, system
(23), (24) has a solution vm,n

k,i (t) (i = 1, 2) for each m ∈ N on some interval

(0, Tmn). Accordingly, the approximate solution
(
vm,n
1 ,vm,n

2

)
exists in the

space-time cylinder Ω× (0, Tmn).

3.2. The �rst energy estimate and continuation of
(
vm,n
1 , vm,n

2

)
.

Lemma 1. Assume that the input data for problem (1) meet the requirements
set out in Section 1. Let n ∈ N be arbitrarily �xed. Then each vector-function
of the sequence

{(
vm,n
1 ,vm,n

2

)}
m=1,2,...

can be continued from (0, Tmn) onto

the whole interval (0, T ] and satis�es the �rst energy estimate

2∑
i=1

(
ess sup
t∈(0,T )

∥vm,n
i (·, t)∥H + ess sup

t∈(0,T )
∥∇xv

m,n
i (·, t)∥L2(Ω)d×d

)
+

2∑
i=1

∥∇xv
m,n
i ∥L2(QT )d×d

≤ M0

(
1 +

2∑
i=1

∥v0i∥H +
2∑

i=1

∥∇xv0i∥L2(Ω)d×d

)
, (25)

where the constant M0 depends on T , Ω, d, µij, κi, and γ and is independent
of m and n.

Proof is based on multiplying the (k, i)-th equation in system (23) by vm,n
k,i ,

followed by summation over k from 1 to m and over i from 1 to 2 and
additional account of relations (6) and (21). In principle, it is carried out
in the same way as the derivation of the �rst energy estimate and the
justi�cation of continuation of solution in [45, proof of Th. 3.2]. □
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3.3. The second energy estimate.

Lemma 2. Assume that the input data for problem (1) meet the require-
ments set out in Section 1. Let n ∈ N be arbitrarily �xed. Then the family of
Galerkin's approximations

(
vm,n
1 ,vm,n

2

)
satis�es the second energy estimate

2∑
i=1

(
ess sup
t∈(0,T )

∥∇xv
m,n
i (·, t)∥L2(Ω)d×d + ess sup

t∈(0,T )
∥∆xv

m,n
i (·, t)∥H

)
+

2∑
i=1

∥∆xv
m,n
i ∥L2(0,T ;H)

≤ M1

(
1 +

2∑
i=1

∥v0i∥H +

2∑
i=1

∥∇xv0i∥L2(Ω)d×d +

2∑
i=1

∥∆xv0i∥H
)
, (26)

where the constant M1 depends on T , Ω, d, µij, κi, and γ and is independent
of m and n.

Proof. We multiply the (k, i)-th equation in (23) by λkv
m,n
k,i (t) and sum up

the resulting equations over k from 1 till m and over i from 1 till 2. Thus,
we arrive at the integral equality

1

2

d

dt

2∑
i=1

(
∥∇xv

m,n
i (·, t)∥2L2(Ω)d×d + κi∥∆xv

m,n
i (·, t)∥2H

)
+

2∑
i,j=1

µij

∫
Ω

∆xv
m,n
i (x, t) ·∆xv

m,n
j (x, t)dx

=

2∑
i=1

∫
Ω

divx
(
vm,n
i (x, t)⊗ vm,n

i (x, t)
)
·∆xv

m,n
i (x, t)dx

− γφn(t)

2∑
i=1

∫
Ω

vm,n
i (x, t) ·∆xv

m,n
i (x, t)dx. (27)

We integrate the second term in the right hand side by parts to get

−γφn(t)

2∑
i=1

∫
Ω

vm,n
i (x, t)·∆xv

m,n
i (x, t)dx = γφn(t)

2∑
i=1

∫
Ω

|∇xv
m,n
i (x, t)|2dx.

Using the Sobolev embedding inequality [46, Ch. I, � 8]

∥vm,n
i (·, t)∥L4(Ω)d ≤ M2(d,Ω)∥∇xv

m,n
i (·, t)∥L2(Ω)d×d (i = 1, 2), (28)

the combination of (28) with the well-known embedding inequality that
allows to estimate the norm in V 2 by the norm of Laplacian in H (see
[44, Ch. I, � 1, Lem. 4]):

∥∇xv
m,n
i (·, t)∥L4(Ω)d×d ≤ M3(d,Ω)∥∆xv

m,n
i (·, t)∥H (i = 1, 2), (29)
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H�older's, Cauchy's and Young's inequalities, and the �rst energy inequality,
we estimate∣∣∣∣∣

2∑
i=1

∫
Ω

divx
(
vm,n
i (x, t)⊗ vm,n

i (x, t)
)
·∆xv

m,n
i (x, t) dx

∣∣∣∣∣
≤ 1

2

2∑
i=1

∥∥divx(vm,n
i ⊗ vm,n

i

)
(·, t)

∥∥2
H

+
1

2

2∑
i=1

∥∆xv
m,n
i (·, t)∥2H (30)

and, further,∥∥divx(vm,n
i ⊗ vm,n

i

)
(·, t)

∥∥2
H

≤ M4(d)∥vm,n
i (·, t)∥2L4(Ω)d∥∇xv

m,n
i (·, t)∥2L4(Ω)d×d

≤ M5∥∆xv
m,n
i (·, t)∥2H (i = 1, 2), (31)

where the constant M5 depends on M2, M3, M4, and the right hand side of
the �rst energy inequality, and is independent of m and n.

Now, using (30) and (31), we can estimate the right hand side of (27) from
above as follows:

2∑
i=1

∫
Ω

divx
(
vm,n
i (x, t)⊗ vm,n

i (x, t)
)
·∆xv

m,n
i (x, t)dx

− γφn(t)

2∑
i=1

∫
Ω

vm,n
i (x, t) ·∆xv

m,n
i (x, t)dx

≤

∣∣∣∣∣
2∑

i=1

∫
Ω

divx
(
vm,n
i (x, t)⊗ vm,n

i (x, t)
)
·∆xv

m,n
i (x, t)dx

∣∣∣∣∣
+ |γ|φn(t)

2∑
i=1

∫
Ω

|∇xv
m,n
i (x, t)|2dx

≤ M5

2∑
i=1

∥∆xv
m,n
i (·, t)∥2H + |γ|φn(t)

2∑
i=1

∥∇xv
m,n
i (·, t)∥2L2(Ω)d×d . (32)

Introducing (for brevity)

Zm,n(t) :=

2∑
i=1

(
∥∇xv

m,n
i (·, t)∥2L2(Ω)d×d + κi∥∆xv

m,n
i (·, t)∥2L2(Ω)d

)
,

joining (27) and (32), and performing some simplest estimation, we arrive
at the di�erential inequality

dZm,n(t)

dt
+ µ∗

2∑
i=1

∥∆xv
m,n
i (·, t)∥2H ≤

(
M5 + |γ|φn(t)

)
Zm,n(t). (33)

Here recall that µ∗ is a positive constant from the property of positive
de�niteness of matrix M , see back in Section 1.
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The second energy estimate (26) now readily follows from (33) by the
Gronwall�Bellmann lemma and relations (6). Lemma 2 is proved. □

Corollary 1. The family of Galerkin's approximations
(
vm,n
1 ,vm,n

2

)
admits

the uniform in m and n estimate

2∑
i=1

∥vm,n
i ∥L∞(0,T ;V 2)

≤ M6

( 2∑
i=1

∥v0i∥H +

2∑
i=1

∥∇xv0i∥L2(Ω)d×d +

2∑
i=1

∥∆xv0i∥H + 1
)
, (34)

where the positive constant M6 depends only on M1, M3(d,Ω), and d.

3.4. Uniform estimates for ∂tv
m,n
i and ∇x∂tv

m,n
i .

Lemma 3. Assume that the input data for problem (1) meet the require-
ments set out in Section 1. Let n ∈ N be arbitrarily �xed. Then the family of
Galerkin's approximations

(
vm,n
1 ,vm,n

2

)
admits the following estimates:

2∑
i=1

(
∥∂tvm,n

i (·, t)∥2H + ∥∇x∂tv
m,n
i (·, t)∥2L2(Ω)d×d

)
≤ M7 +M8 γ

2(φn(t))2, ∀ t ∈ [0, T ], (35)

and
2∑

i=1

(
∥∂tvm,n

i (·, t)∥H + ∥∇x∂tv
m,n
i (·, t)∥L2(Ω)d×d

)
≤ 2

√
2M7 + 2

√
2M8 |γ|φn(t), ∀ t ∈ [0, T ], (36)

where the positive constants M7 and M8 do not depend on m and n.

Proof. Derivation of estimate (35) is based on multiplying the (k, i)-th equat-

ion in system (23) by
dvm,n

k,i

dt
, followed by summation over k from 1 to

m and over i from 1 to 2 and additional account of relations (2)1,2 and
(21). In principle, it is carried out in the same way as the derivation of the
estimate (3.3) (in case d = 3) and estimate (3.3') (in case d = 2) from
Theorem 3.2 in [45]. Estimate (36) readily follows from estimate (35) by

means of the elementary inequality A+B+C+D ≤ 2
√
A2 +B2 + C2 +D2,

∀A,B,C,D ∈ R. □

3.5. Passage to the limit as m → ∞. Uniform bounds in n for the

sequence
{(
vn1 , v

n
2

)}
n≥n0

. By Corollary 1 and the Alaoglu theorem we

conclude that

the family
{(
vm,n
1 ,vm,n

2

)}
m=1,2,...

is uniformly bounded in L∞(0, T ;V 2)2

for each �xed n ≥ n0. (37)
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By Lemma 3 we conclude that

the family
{(

∂tv
m,n
1 , ∂tv

m,n
2

)}
m=1,2,...

is uniformly bounded in L∞(0, T ;V )2

for each �xed n ≥ n0. (38)

Thus, choosing a suitable subsequence, if necessary, we establish that there
exist limit functions vn1 and vn2 such that the limiting relations

vm,n
i −→

m→+∞
vni weakly⋆ in L∞(0, T ;V 2), (39)

∂tv
m,n
i −→

m→+∞
∂tv

n
i weakly⋆ in L∞(0, T ;V ) (40)

hold true for each i = 1, 2 and n ≥ n0.
Further note that, by the Rellich theorem, V 2 is compactly embedded

in V . Due to this, by (37), (38) and the Aubin�Lions�Simon compactness
theorem [47, Corol. 4], choosing one more subsequence, if necessary, we estab-
lish the limiting relation

vm,n
i −→

m→+∞
vni strongly in C([0, T ];V ) (41)

for each i = 1, 2 and n ≥ n0.
Now, based on the limiting relations (39)�(41), the limiting transition in

the Galerkin's system (22)�(24) as m → +∞ along the chosen subsequence
is quite standard, and, similarly to [5] or [48, Ch. 6], as a result of the limiting
transition we derive the integral equalities (9)i=1,2 and the initial relations
(10). Also, we note that the regularity requirements (1) for vni in De�nition
1 follow directly from (39)�(40) and by this we complete the justi�cation of
existence of a weak regular solution to problem (1).

Finally, passing to the limit as m → +∞ in the estimates (34)�(36)
on the base of the compactness properties (37) and (38) and the well-
known property of weak⋆ lower semicontinuity for norms [49, Ch. 1, � 1.1.3;
Ch. 2, � 2.3, Propos. 2.3.2], followed by additional integration of the resulting
estimates for ∂tvn and ∇x∂tvn in t on (0, T ), we deduce the estimates (11)�
(13), with C0 depending on M6, M7, M8, γ, d, ∥v0i∥V 2 (i = 1, 2), and
independent of n.

3.6. Uniqueness of the regular weak solution. Let
(
vn1,1,v

n
1,2

)
and(

vn2,1,v
n
2,2

)
be two regular weak solutions to problem (1) corresponding to

the same input data. Set W n
i = vn1,i − vn2,i (i = 1, 2).

Subtracting (9)i with
(
vn2,1,v

n
2,2

)
from (9)i with

(
vn1,1,v

n
1,2

)
for each i =

1, 2, takingW n
i for the test functions ϕi (i = 1, 2) and, �nally, summing up

the results over i = 1, 2, we arrive at the following energy relation:

1

2

2∑
i=1

d

dt

(
∥W n

i (·, t)∥2H + κi∥∇xW
n
i (·, t)∥2L2(Ω)d×d

)
+

2∑
i,j=1

µij

∫
Ω

∇xW
n
i (x, t) : ∇xW

n
j (x, t)dx
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= γφn(t)
2∑

i=1

∥W n
i (·, t)∥2H + In(t), (42)

where the term In(t) represents the convective integrals. With the help of
the second energy estimate (26), we estimate In(t) as follows:

|In(t)| ≤
2∑

i=1

∫
Ω

|W n
i (x, t)|2|∇xv

n
1,i(x, t)| dx

+

2∑
i=1

∫
Ω

|∇xW
n
i (x, t)| |W n

i (x, t)| |vn2,i(x, t)| dx

≤
2∑

i=1

∥W n
i (·, t)∥2L2d/(d−2)(Ω)d

∥∇xv
n
1,i(·, t)∥Ld/2(Ω)d×d

+

2∑
i=1

∥∇xW
n
i (·, t)∥L2(Ω)d×d∥W n

i (·, t)∥L2d/(d−2)(Ω)d∥v
n
2,i(·, t)∥Ld(Ω)d

≤M9

2∑
i=1

∥∇xW
n
i (·, t)∥2L2(Ω)d×d

(
∥∆xv

n
1,i(·, t)∥H + ∥∆xv

n
2,i(·, t)∥H

)
≤M10

2∑
i=1

∥∇xW
n
i (·, t)∥2L2(Ω)d×d , (43)

where M9 and M10 are positive constants.
Introducing the notation

Y (t) :=
2∑

i=1

(
∥W n

i (·, t)∥2H + κi∥∇xW
n
i (·, t)∥2L2(Ω)d×d

)
and joining (42) and (43), after simple manipulations we arrive at the di�er-
ential inequality

dY (t)

dt
≤

(
M10 + |γ|φn(t)

)
Y (t),

where Y (0) = 0. Using the Gronwall lemma, from this inequality we deduce
that Y (t) ≡ 0, which amounts to the uniqueness of solution.

Theorem 1 is fully proved.

4 Proof of Theorem 2

4.1. Limiting passage as n → +∞ in the sequence
{
(vn1 , v

n
2 )

}
. Proof

of assertion 1 of Theorem 2. Due to the uniform in n estimates (11)�
(13), assertion 1 of Theorem 2 follows immediately from the Aubin�Lions
�Simon compactness theorem [47, Corol. 4] and the Alaoglu theorem.
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4.2. Shift and rescaling in the sequence
{
(vn1 , v

n
2 )

}
n=1,2,...

. Prior to

passing to justi�cation of the limit as n → +∞ in equations (9)i=1,2, we need
several preliminary considerations. Assume that the test vector-functions in
equations (9)i=1,2 belong to H1(0, T ;V ) and vanish in a neighborhood of
the plane {t = T}. We integrate by parts the �rst term and the third term
in (9)i=1,2 in t and write out the resulting equality in an expanded form
separating the integrals over segments (0, 1/n) and (1/n, T ) from each other:

1/n∫
0

∫
Ω

(
−vni · ∂tϕi + divx(v

n
i ⊗ vni ) · ϕi − κi∇xv

n
i : ∇x∂tϕi

+

2∑
j=1

µij∇xv
n
j : ∇xϕi − γnΦ(nt)vni · ϕi

)
dxdt

−
∫
Ω

v0i(x) · ϕi(x, 0)dx− κi

∫
Ω

∇xv0i(x) · ∇xϕi(x, 0)dx

+

T∫
1/n

∫
Ω

(
−vni · ∂tϕi + divx

(
vni ⊗ vni

)
· ϕi − κi∇xv

n
i : ∇x∂tϕi

+

2∑
j=1

µij∇xv
n
j : ∇xϕi

)
dxdt = 0 (i = 1, 2), (44)

where the fact that the support of the function t 7→ Φ(nt) lays in [0, 1/n]
is taken into account. In (44), we change the independent variable t and
the sought variables vni (i = 1, 2) on the segments {0 < t < 1/n} and
{1/n < t ≤ T} as follows. On (1/n, T ] we shift the timescale backwards and
take

t̃ := t− 1/n, ṽni (x, t̃) := v
n
i (x, t) ≡ vni (x, t̃+ 1/n) for t ∈ (1/n, T ]

(i = 1, 2).
(45)

Note that t̃ ∈ (0, T − 1/n], dt = dt̃, ∂t = ∂t̃, and t = t̃ + 1/n. Further,
following the idea of rescaling from [50], we take

ϑ := nt, vni (x, ϑ) := v
n
i (x, t) ≡ vni (x, n−1ϑ) for t ∈ [0, 1/n] (i = 1, 2).

(46)
Note that ϑ ∈ [0, 1], dt = n−1 dϑ, ∂t = n∂ϑ, and t = n−1ϑ. Thus, (44) takes
the form

1∫
0

∫
Ω

(
−vni (x, ϑ) · ∂ϑϕi(x, n

−1ϑ)− κi∇xv
n
i (x, ϑ) : ∇x∂ϑϕi(x, n

−1ϑ)

+ n−1
2∑

j=1

µij∇xv
n
j (x, ϑ) : ∇xϕi(x, n

−1ϑ)
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+ n−1 divx
(
vni (x, ϑ)⊗ vni (x, ϑ)

)
· ϕi(x, n

−1ϑ)

− γΦ(ϑ)vni (x, ϑ) · ϕi(x, n
−1ϑ)

)
dxdϑ

−
∫
Ω

v0i(x) · ϕi(x, 0)dx− κi

∫
Ω

∇xv0i(x) : ∇xϕi(x, 0)dx

+

T−1/n∫
0

∫
Ω

(
−ṽni (x, t̃) · ∂t̃ϕi(x, t̃+ 1/n)− κi∇xṽ

n
i (x, t̃) · ∇x∂t̃ϕi(x, t̃+ 1/n)

+ divx
(
ṽni (x, t̃)⊗ ṽ

n
i (x, t̃)

)
· ϕi(x, t̃+ 1/n)

+

2∑
j=1

µij∇xṽ
n
j (x, t̃) : ∇xϕi(x, t̃+ 1/n)

)
dxdt̃ = 0 (i = 1, 2).

(47)

Keeping in mind the further limiting passage as n → +∞, in (47) we
take the test vector-functions ϕi = ϕ

n
i (x, t) (i = 1, 2) depending on n in the

following form:

ϕn
i (x, t) =


ϕi(x, ϑ) ≡ ϕi(x, nt) for t ∈ [0, 1/n],

i.e., for ϑ ∈ [0, 1],

ϕ̃i(x, t̃) ≡ ϕ̃i(x, t− 1/n) for t ∈ (1/n, T ],

i.e., for t̃ ∈ (0, T − 1/n]

(i = 1, 2),

(48)

where ϕi = ϕi(x, ϑ) and ϕ̃i = ϕ̃i(x, t̃) (i = 1, 2) are arbitrary smooth test
vector-functions de�ned on Ω× [0, 1] and Ω× (0, T ], respectively, such that

ϕi = ϕ̃i ≡ 0 in a neighborhood of ∂Ω, ϕ̃i ≡ 0 in a neighborhood of the plane
{t̃ = T}, and the matching conditions

ϕi(x, 1− 0) = ϕ̃i(x, 0+) (i = 1, 2) (49)

hold. Notice that conditions (49) yield that the weak derivatives ∂tϕ
n
i and

∇x∂tϕ
n
i (i = 1, 2) are essentially bounded in QT , which implies that ϕn

i ∈
L2(0, T ;H) and ∂tϕ

n
i ∈ L2(0, T ;H) (i = 1, 2). Therefore, ϕn

1 and ϕn
2 are

admissible test vector-functions for the respective equations (44)i=1 and
(44)i=2, and, equivalently, for the respective equations (47)i=1 and (47)i=2.
Inserting (48) into (47) (for the respective i = 1 and i = 2), we get

1∫
0

∫
Ω

(
−vni (x, ϑ) · ∂ϑϕi(x, ϑ)− κi∇xv

n
i (x, ϑ) : ∇x∂ϑϕi(x, ϑ)

+ n−1
2∑

j=1

µij∇xv
n
j (x, ϑ) : ∇xϕi(x, ϑ)

+ n−1 divx
(
vni (x, ϑ)⊗ vni (x, ϑ)

)
· ϕi(x, ϑ)
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− γΦ(ϑ)vni (x, ϑ) · ϕi(x, ϑ)
)
dxdϑ

−
∫
Ω

v0i(x) · ϕi(x, 0)dx− κi

∫
Ω

∇xv0i(x) : ∇xϕi(x, 0)dx

+

T−1/n∫
0

∫
Ω

(
−ṽni (x, t̃) · ∂t̃ϕ̃i(x, t̃)− κi∇xṽ

n
i (x, t̃) · ∇x∂t̃ϕ̃i(x, t̃)

+ divx
(
ṽni (x, t̃)⊗ ṽ

n
i (x, t̃)

)
· ϕ̃i(x, t̃)

+
2∑

j=1

µij∇xṽ
n
j (x, t̃) : ∇xϕ̃i(x, t̃)

)
dxdt̃ = 0 (i = 1, 2). (50)

Furthermore, we notice that

vni (x, 1− 0) = ṽni (x, 0+) in Ω (i = 1, 2) (51)

due to (45), (46) and the regularity properties of vni (i = 1, 2), see De�nition
1.

The rest of the proof of Theorem 1 is based on the systematical study of
(50) with account of (51).

4.3. Limiting passage as n → +∞ in the sequence
{
(vn1 , v

n
2 )

}
. Proof

of assertion 2 of Theorem 2. Applying shift and rescaling (i.å. transform-
ations (45) and (46)) in estimates (11) and (12) and discarding the nonnegat-
ive expressions containing ṽni (i = 1, 2), we derive the following uniform
estimates for the family

{
(vn1 ,v

n
2 )
}
n≥n0

:

2∑
i=1

∥vni ∥L∞(0,1;V 2) ≤
2∑

i=1

∥vni ∥L∞(0,T ;V 2) ≤ C0, (52)

2∑
i=1

(
∥∂ϑvni ∥L1(0,1;H) + ∥∇x∂ϑv

n
i ∥L1(0,1;L2(Ω)d×d)

)
≤

2∑
i=1

(
∥∂tvni ∥L1(0,T ;H) + ∥∇x∂tv

n
i ∥L1(0,T ;L2(Ω)d×d)

)
≤ C0, (53)

where C0 is the same constant, as in estimates (11) and (12).
Due to these estimates, assertion 2 of Theorem 2 follows immediately from

the Aubin�Lions �Simon compactness theorem and the Alaoglu theorem.

4.4. Limiting passage in Ω × {0 < ϑ < 1}. The initial layer equat-
ion. Taking ϕ̃i ≡ 0 in (50), we get

1∫
0

∫
Ω

(
−vni (x, ϑ) · ∂ϑϕi(x, ϑ)− κi∇xv

n
i (x, ϑ) : ∇x∂ϑϕi(x, ϑ)
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+ n−1
2∑

j=1

µij∇xv
n
j (x, ϑ) : ∇xϕi(x, ϑ)

+ n−1 divx
(
vni (x, ϑ)⊗ vni (x, ϑ)

)
· ϕi(x, ϑ)

− γΦ(ϑ)vni (x, ϑ) · ϕi(x, ϑ)
)
dxdϑ

−
∫
Ω

v0i(x) · ϕi(x, 0)dx− κi

∫
Ω

∇xv0i(x) : ∇xϕi(x, 0)dx = 0 (i = 1, 2)

(54)

for all test vector-functions ϕi (i = 1, 2) satisfying the conditions imposed
above for (48) and vanishing in a neighborhood of the plane {ϑ = 1}.

Due to the integration by parts formula, elementary inequality AB ≤
(A2 +B2)/2 (∀A,B ∈ R), and estimate (52), we have∣∣∣∣∣

1∫
0

∫
Ω

n−1 divx
(
vni (x, ϑ)⊗ vni (x, ϑ)

)
· ϕi(x, ϑ)dxdϑ

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫
Ω
n−1(vni (x, ϑ)⊗ vni (x, ϑ)) : ∇xϕi(x, ϑ) dxdϑ

∣∣∣∣∣
≤ d

2n
∥vni ∥2L∞(0,1;H(Ω))∥∇xϕi∥C(Ω×[0,T ]) ≤

d

2n
C2
0∥∇xϕi∥C(Ω×[0,T ]) −→

n→+∞
0

for i = 1, 2, i.e., the convective terms in (54) tend to zero as n → +∞. The
rest of the integrals in (54) are linear in vni . The limiting passage in these
integrals is based on the limiting relations (16) and causes no di�culties.
Thus, as n → +∞, from (54) we deduce the integral equalities∫ 1

0

∫
Ω

(
−vi(x, ϑ) · ∂ϑϕi(x, ϑ)− κi∇xvi(x, ϑ) : ∇x∂ϑϕi(x, ϑ)

− γΦ(ϑ)vi(x, ϑ) · ϕi(x, ϑ)
)
dxdϑ

−
∫
Ω
v0i(x) · ϕi(x, 0) dx− κi

∫
Ω
∇xv0i(x) : ∇xϕi(x, 0) dx = 0 (i = 1, 2)

(55)

for all test vector-functions ϕi satisfying the above imposed conditions.
Remark that the integral equalities (55)i=1 and (55)i=2 are not coupled,

since the terms containing coe�cients µij do not appear in them. Finally,
note that the integral equality (55)i (for each i = 1, 2) is linear in vi and
that (55)i has already been well studied by the classical methods of the
theory of generalized solutions of mathematical physics. More certainly, by
Theorem 2.1 from [45] we readily conclude that (55)i along with inclusion
vi ∈ L∞(0, 1;V 2) is equivalent to system (17)i. In this system, the pressure
gradient ∇xπi ∈ L2(Ω × (0, 1))d is standardly recovered after the already
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found solenoidal velocity �eld vi and the pair (vi, πi) is the strong solution
of (55)i in the sense of the �rst part of De�nition 2.

4.5. Limiting passage in Ω × {0 < t̃ < T}. Equations of the outer

�ow. Taking ϕ ≡ 0 in (50), we get

T∫
0

∫
Ω

1(0<t̃<T−1/n)

(
−ṽni (x, t̃) · ∂t̃ϕ̃i(x, t̃)− κi∇xṽ

n
i (x, t̃) · ∇x∂t̃ϕ̃i(x, t̃)

+ divx
(
ṽni (x, t̃)⊗ ṽ

n
i (x, t̃)

)
· ϕ̃i(x, t̃)

+

2∑
j=1

µij∇xṽ
n
j (x, t̃) : ∇xϕ̃i(x, t̃)

)
dxdt̃ = 0 (i = 1, 2) (56)

for all test vector-functions ϕ̃i (i = 1, 2) satisfying the conditions imposed
above for (48) and vanishing in a neighborhood of the plane {t̃ = 0}.

Similarly to estimates (52) and (53) for vni , using shift and rescaling we
derive the following uniform in n estimates for the family

{
(ṽn1 , ṽ

n
2 )
}
n≥n0

:

2∑
i=1

∥ṽni ∥L∞(0,T−1/n;V 2) ≤ C0, (57)

2∑
i=1

(
∥∂t̃ṽ

n
i ∥L1(0,T−1/n;H) + ∥∇x∂t̃ṽ

n
i ∥L1(0,T−1/n;L2(Ω)d×d)

)
≤ C0, (58)

where C0 is the same constant, as in estimates (11), (12), (52), and (53).
Due to (57), (58), the Aubin�Lions�Simon compactness theorem, and the
limiting relation

1(0<t̃<T−1/n) −→
n→+∞

1 strongly in Lr(0, T ) ∀ r ∈ [1,+∞), (59)

there exist a subsequence from
{
(ṽn1 , ṽ

n
2 )
}
and a limit pair of vector-functions

(ṽn1 , ṽ
n
2 ) ∈ L∞(0, T ;V 2)2 such that

1(0<t̃<T−1/n)ṽ
n
i −→

n→+∞
ṽi strongly in L2−ν(0, T ;V ),

weakly in Lr(0, T ; V ),

∀ ν ∈ (0, 1], ∀ r ∈ [1,+∞), (60)

for i = 1, 2.
Recall that, by the Sobolev embedding theorem, V is compactly embedded

in L4(Ω)d for d = 2 and d = 3. From this and relation (60) it follows that

1(0<t̃<T−1/n)ṽ
n
i ⊗ ṽni −→

n→+∞
ṽi ⊗ ṽi strongly in L2−ν(0, T ;L2(Ω)d×d)

(i = 1, 2).(61)
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Further, due to representations (45), estimate (12), and the elementary �nite
increment formula (see, for example, in [47, � 5, Lem. 4]), we have∫ T−1/n

0
∥ṽni (·, t̃)− vni (·, t̃)∥Hdt̃

(45)
=

∫ T−1/n

0
∥vni (·, t̃+ 1/n)− vni (·, t̃)∥Hdt̃

≤ n−1

∫ T

0
∥∂t̃ v

n
i (·, t̃)∥H(Ω)dt̃

(12)

≤ n−1C0 −→
n→+∞

0 (i = 1, 2).

From this and from the limiting relations (14) and (61) it follows that

ṽi(x, t̃) = vi(x, t̃) for a.e. (x, t̃) ∈ QT (i = 1, 2). (62)

Now, using relations (59)�(62) and re-denoting t := t̃, we pass to the limit
in (56) as n → +∞ and by this derive the integral equalities∫ T

0

∫
Ω

(
−vi(x, t) · ∂tϕ̃i(x, t)− κi∇xvi(x, t) : ∇x∂tϕ̃(x, t)

)
+ divx(vi(x, t)⊗ vi(x, t)) · ϕ̃i(x, t)

+
2∑

j=1

µij∇xvj(x, t) : ∇xϕ̃i(x, t)
)
dxdt = 0 (i = 1, 2). (63)

Due to the su�cient regularity of test vector-functions ϕ̃i (i = 1, 2), the
integral equalities (63) along with inclusions vi ∈ L∞(0, T ;V 2) (i = 1, 2)
are equivalent to system (18)1,2,4 in the sense of the theory of distributions.

Moreover, the pressure gradients ∇xπi ∈ L2(QT )
d are standardly recovered

after the already found solenoidal velocity �elds vi, and the incompressibility
conditions (18)2 (for i = 1, 2) hold a.e. in QT . Further, analogously to
Lemma 4.1 from [39] or Lemma 3.5 from [37], based on (63) we establish
that ∂tvi ∈ L∞(0, T ;H), which yields vi ∈ C([0, T ];H) (i = 1, 2). Thus,
in particular, vi(·, 0+) ∈ H (i = 1, 2), i.e., vector-functions vi have the
strong right-sided traces from H on the plane {t = 0}. Also, based on
(63), inclusions ∂tvi ∈ L∞(0, T ;H) and v ∈ L∞(0, T ;V 2), and the notion
of Sobolev weak derivative, using the standard arguments we deduce that
∆x∂tv ∈ L∞(0, T ;H). Thus equations (15)1 for i = 1 and i = 2 hold a.e.
in QT and the pair of limit vector-functions (v1,v2) satis�es all regularity
conditions in (20a).

4.6. Matching condition at ϑ = 1 − 0. Completion of the proof of
assertion 3 of Theorem 2. Justi�cation of conditions (18)3 in this section
is a natural modi�cation of arguments from [39, �4.5]. At �rst, note that, by
the �nite increment formula [47, �5], from (53) it follows that the family of
mappings vni : [0, 1] 7→ H (i = 1, 2) is equi-continuous. On the other hand,
due to estimate (52) the values of functions ϑ 7→ vni (·, ϑ) (i = 1, 2) belong
to the interval ∥vni (·, ϑ)∥V ≤ C0 (i = 1, 2). By the Rellich theorem, this
interval is a compact set in H. Therefore, by the Arcel�Ascoli theorem, the
set {vni }n≥n0 (i = 1, 2) is relatively compact in C([0, 1];H). Consequently,
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there is a subsequence, still denoted by n, such that vni (·, ϑ) −→
n→+∞

vi(·, ϑ)
in H uniformly on {0 ≤ ϑ ≤ 1} for i = 1, 2. Quite analogously, from (57)
and (58) we deduce that ṽni (·, t̃) −→

n→+∞
ṽi(·, t̃) strongly in H uniformly on

{0 ≤ t̃ ≤ T − 1/n0} for i = 1, 2. These two limiting relations, identities (51)

and inclusions vi(·, 1 − 0) ∈ H and ṽi(·, 0+)
(62)
= vi(·, 0+) ∈ H imply that

the initial conditions (18)3 hold in the sense of the strong trace sense in H.
Recall that conditions (18)3 are at the same time the matching conditions
at ϑ = 1− 0.

Theorem 2 is fully proved.

4.7. A note on uniqueness of the solution to problem (17)�(18).
Theorem 2.5.2 from [51] and the uniqueness assertion of Theorem 1 directly
imply that the weak solution and therefore the strong solution of problem
(17)�(18) (in the sense of De�nition 2) is unique. In this regard, the pressure
functions πi and πi (i = 1, 2) are de�ned uniquely up to a constant value.
In turn, since the solution is unique, we conclude that the entire family{
(vn1 ,v

n
2 )
}
n≥n0

of regular weak solutions of problem (1) tends to the quadru-

ple (v1,v2,v1,v2) as n → +∞ in the sense of relations (14) and (16). Hence,
there is no need to extract any subsequence from

{
(vn1 ,v

n
2 )
}
n→+∞.

References

[1] A.V. Zvyagin, On the existence of weak solutions of the Kelvin�Voigt model,
Mathematical Notes, 116:1 (2024), 130�135. Zbl. 7942191

[2] V.G. Zvyagin, M.V. Turbin, An existence theorem for weak solutions of the initial-
boundary value problem for the inhomogeneous incompressible Kelvin�Voigt model in
which the initial value of density is not bounded from below, Mathematical Notes, 114:1
(2023), 630�634. Zbl 1528.35140

[3] M. Turbin, A. Ustiuzhaninova, Existence of weak solution to initial-boundary value
problem for �nite order Kelvin�Voigt �uid motion model, Boletin de la Sociedad
Matematica Mexicana, 29 (2023), 54. Zbl 1518.35556

[4] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Kelvin-Voigt equations for
incompressible and nonhomogeneous �uids with anisotropic viscosity, relaxation
and damping, Nonlinear Di�erential Equations and Applications, 29 (2022), 60.
Zbl 1492.35215

[5] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, The classical Kelvin-Voigt problem
for incompressible �uids with unknown non-constant density: existence, uniqueness and
regularity, Nonlinearity, 34:5 (2021), 3083�3111. Zbl 1468.35125

[6] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Kelvin�Voigt equations with
anisotropic di�usion, relaxation and damping: Blow-up and large time behavior,
Asymptotic Analysis, 121:2 (2021), 125�157. Zbl 1472.35284

[7] S.N. Antontsev, Kh. Khompysh, An inverse problem for generalized Kelvin�Voigt
equation with p-Laplacian and damping term, Inverse Problems, 37:8 (2021), 085012.
Zbl 1480.35321

[8] M.T. Mohan, On the three dimensional Kelvin-Voigt �uids: global solvability,
exponential stability and exact controllability of Galerkin approximations, Evolution
Equations and Control Theory, 9:2 (2020), 301�339.

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mzm&paperid=14344&option_lang=eng
https://doi.org/10.1134/S0001434623090316
https://doi.org/10.1134/S0001434623090316
https://doi.org/10.1134/S0001434623090316
https://doi.org/10.1007/s40590-023-00526-y
https://doi.org/10.1007/s40590-023-00526-y
https://link.springer.com/content/pdf/10.1007/s00030-022-00794-z.pdf
https://link.springer.com/content/pdf/10.1007/s00030-022-00794-z.pdf
https://link.springer.com/content/pdf/10.1007/s00030-022-00794-z.pdf
https://iopscience.iop.org/article/10.1088/1361-6544/abe51e
https://iopscience.iop.org/article/10.1088/1361-6544/abe51e
https://iopscience.iop.org/article/10.1088/1361-6544/abe51e
https://doi.org/10.3233/asy-201597
https://doi.org/10.3233/asy-201597
https://iopscience.iop.org/article/10.1088/1361-6420/ac1362/pdf
https://iopscience.iop.org/article/10.1088/1361-6420/ac1362/pdf
https://doi.org/10.3934/eect.2020007
https://doi.org/10.3934/eect.2020007


584 S.N. ANTONTSEV, I.V. KUZNETSOV, D.A. PROKUDIN, S.A. SAZHENKOV

[9] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Regularity and uniqueness of
Kelvin-Voigt models for nonhomogeneous and incompressible �uids, Journal of Physics:
Conference Series, 1666 (2020), 012003.

[10] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Generalized Kelvin-Voigt equations
for nonhomogeneous and incompressible �uids, Communications in Mathematical
Sciences, 17:7 (2019), 1915�1948. Zbl 1433.35257

[11] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Kelvin�Voigt equations perturbed
by anisotropic relaxation, di�usion and damping, Journal of Mathematical Analysis
and Applications, 473:2 (2019), 1112�1154. Zbl 1458.74026

[12] S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh, Existence and large time behavior
for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible
�uids, Journal of Physics: Conference Series, 1268 (2019), 012008.

[13] A.V. Zvyagin,Weak solvability of Kelvin-Voigt model of thermoviscoelasticity, Russian
Mathematics, 62:3 (2018), 79�83. Zbl 1393.35192

[14] S.N. Antontsev, Kh. Khompysh, Kelvin-Voight equation with p-Laplacian and
damping term: existence, uniqueness and blow-up, Journal of Mathematical Analysis
and Applications, 446:2 (2017), 1255�1273. Zbl 1354.35086

[15] S.N. Antontsev, Kh. Khompysh, Generalized Kelvin-Voigt equations with p-Laplacian
and source/absorption terms, Journal of Mathematical Analysis and Applications,
456:1 (2017), 99�116. Zbl 1377.35220

[16] A.P. Oskolkov, Initial-boundary value problems for equations of motion of Kelvin�
Voight �uids and Oldroyd �uids, Proceedings of the Steklov Institute of Mathematics,
179 (1989), 137�182. Zbl 0674.76004

[17] A.P. Oskolkov, Theory of nonstationary �ows of Kelvin�Voigt �uids, J. Sov. Math.,
28 (1985), 751�758. Zbl 0561.76017

[18] D.A. Prokudin, On the stabilization of the solution to the initial boundary
value problem for one-dimensional isothermal equations of viscous compressible
multicomponent media dynamics, Mathematics, 11:14 (2023), 3065.

[19] A.E. Mamontov, D.A. Prokudin, Solubility of unsteady equations of the three-
dimensional motion of two-component viscous compressible heat-conducting �uids,
Izvestiya: Mathematics, 85:4 (2021), 755�812. Zbl 1479.35688

[20] D.A. Prokudin, Existence of weak solutions to the problem on three-dimensional steady
heat-conductive motions of compressible viscous multicomponent mixtures, Siberian
Mathematical Journal, 62:5 (2021), 895�907. Zbl 1487.35323

[21] A.D Kirwan, M. Massoudi, The heat �ux vector(s) in a two component �uid mixture,
Fluids, 5:2 (2020), 77.

[22] A.E. Mamontov, D.A. Prokudin,Global unique solvability of the initial-boundary value
problem for the equations of one-dimensional polytropic �ows of viscous compressible
multi�uids, Journal of Mathematical Fluid Mechanics, 21:1 (2019), 9. Zbl 1411.76150

[23] A.E. Mamontov, D.A. Prokudin, Solvability of a problem for the equations of the
dynamics of one�temperature mixtures of heat-conducting viscous compressible �uids,
Doklady Mathematics, 99:3 (2019), 273�276. Zbl 1428.35386

[24] A.E. Mamontov, D.A. Prokudin, Solubility of unsteady equations of multi-
component viscous compressible �uids, Izvestiya: Mathematics, 82:1 (2018), 140�185.
Zbl 1423.76385

[25] A.E. Mamontov, D.A. Prokudin, Existence of weak solutions to the three-dimensional
problem of steady barotropic motions of mixtures of viscous compressible �uids, Siberian
Mathematical Journal, 58:1 (2017), 113�127. Zbl 1381.35141

[26] A.E. Mamontov, D.A. Prokudin, Viscous compressible homogeneous multi-�uids
with multiple velocities: barotropic existence theory, Siberian Electronic Mathematical
Reports, 14 (2017), 388�397. Zbl 1379.35248

https://iopscience.iop.org/article/10.1088/1742-6596/1666/1/012003/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1666/1/012003/pdf
https://www.intlpress.com/site/pub/files/_fulltext/journals/cms/2019/0017/0007/CMS-2019-0017-0007-a007.pdf
https://www.intlpress.com/site/pub/files/_fulltext/journals/cms/2019/0017/0007/CMS-2019-0017-0007-a007.pdf
https://doi.org/10.1016/j.jmaa.2019.01.011
https://doi.org/10.1016/j.jmaa.2019.01.011
https://iopscience.iop.org/article/10.1088/1742-6596/1268/1/012008/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1268/1/012008/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1268/1/012008/pdf
https://link.springer.com/article/10.3103/S1066369X18030106
https://doi.org/10.1016/j.jmaa.2016.09.023
https://doi.org/10.1016/j.jmaa.2016.09.023
https://doi.org/10.1016/j.jmaa.2017.06.056
https://doi.org/10.1016/j.jmaa.2017.06.056
https://www.mathnet.ru/links/c3de2a9591c4aff8c83f3689af933419/tm2102.pdf
https://www.mathnet.ru/links/c3de2a9591c4aff8c83f3689af933419/tm2102.pdf
https://doi.org/10.1007/BF02112340
https://www.mdpi.com/2227-7390/11/14/3065
https://www.mdpi.com/2227-7390/11/14/3065
https://www.mdpi.com/2227-7390/11/14/3065
https://doi.org/10.1070/im9019
https://doi.org/10.1070/im9019
https://link.springer.com/article/10.1134/S0037446621050128
https://link.springer.com/article/10.1134/S0037446621050128
https://doi.org/10.3390/fluids5020077
https://link.springer.com/article/10.1007/s00021-019-0416-7
https://link.springer.com/article/10.1007/s00021-019-0416-7
https://link.springer.com/article/10.1007/s00021-019-0416-7
https://link.springer.com/article/10.1134/S1064562419030074
https://link.springer.com/article/10.1134/S1064562419030074
https://chooser.crossref.org/?doi=10.1070%\protect \protect \leavevmode@ifvmode \kern +.1667em\relax 2FIM8507
https://chooser.crossref.org/?doi=10.1070%\protect \protect \leavevmode@ifvmode \kern +.1667em\relax 2FIM8507
https://link.springer.com/article/10.1134/S0037446617010153
https://link.springer.com/article/10.1134/S0037446617010153
https://doi.org/10.17377/semi.2017.14.031
https://doi.org/10.17377/semi.2017.14.031


THE IMPULSIVE KELVIN�VOIGT EQUATIONS FOR MIXTURES 585

[27] A.E. Mamontov, D.A. Prokudin, Solubility of a stationary boundary-value problem
for the equations of motion of a one-temperature mixture of viscous compressible heat-
conducting �uids, Izvestiya: Mathematics, 78:3 (2014), 554�579. Zbl 1359.76244

[28] R.T. Lee, K.T. Yang, Y.C. Chiou, A novel model for a mixed-�lm lubrication with
oil-in-water emulsions, Tribology International, 66 (2013), 241�248.

[29] A.E. Mamontov, D.A. Prokudin, Viscous comressible multi��uids: modeling and
multi�d existence, Methods and Applications of Analysis, 20:2 (2013), 179�196.
Zbl 1290.35203

[30] J. Frehse, W. Weigant, On quasi-stationary models of mixtures of compressible �uids,
Applications of Mathematics, 53:4 (2008), 319�345. Zbl 1199.76026

[31] J. Frehse, S. Goj, J. Malek, On a Stokes-like system for mixtures of �uids, SIAM
Journal on Mathematical Analysis, 36:4 (2005), 1259�1281. Zbl 1084.35057

[32] J. Frehse, S. Goj, J. Malek, A uniqueness result for a model for mixtures in the
absence of external forces and interaction momentum, Applications of Mathematics,
50:6 (2005), 527�541. Zbl 1099.35079

[33] F.A.B. Coutinho, Y. Nogami, F.M. Toyama, Unusual situations that arise with
the Dirac delta function and its derivative, Revista Brasileira de Ensino de F��sica,
31:4(4302) (2009), 1�7.

[34] D. Gri�ths, S. Walborn, Dirac deltas and discontinuous functions, American Jornal
of Physics, 67 (1999), 446�447. Zbl 1219.46038

[35] B.M. Miller, E.Ya. Rubinovich, Impulsive Control in Continuous and Discrete-
Continuous Systems, Kluwer Acad. Publ., New York, 2003. Zbl 1065.49022

[36] S.N. Antontsev, I.V. Kuznetsov, S.A. Sazhenkov, Impulsive Kelvin�Voigt equations
of dynamics of viscous incompressible viscoelastic �uid, Journal of Applied Mechanics
and Technical Physics, 65:5 (2024).

[37] S. Antontsev, I. Kuznetsov, S. Sazhenkov, S. Shmarev, Strong solutions of a semilinear
impulsive pseudoparabolic equation with an in�nitesimal initial layer, Journal of
Mathematical Analysis and Applications, 530:1 (2024), 127751. Zbl 1526.35223

[38] S. Antontsev, I. Kuznetsov, S. Sazhenkov, S. Shmarev, Solutions of impulsive p(x, t)-
parabolic equations with an in�nitesimal initial layer, Nonlinear Analysis: Real World
Applications, 80 (2024), 104162. Zbl 1548.35293

[39] I. Kuznetsov, S. Sazhenkov, Weak solutions of impulsive pseudoparabolic equations
with an in�nitesimal transition layer, Nonlinear Analysis. Theory, Methods,
Applications, 228 (2023), 113190. Zbl 1507.35335

[40] H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology, Elsevier,
Amsterdam, 1993. Zbl 0729.76001

[41] S. G�urgen (editor), Shear Thickening Fluid: Theory and Applications, Springer,
Cham, 2023.

[42] M. Soutrenon, V. Michaud, Impact properties of shear thickening �uid impregnated
foams, Smart Materials and Structures, 23 (2014), 035022.

[43] J.F. Mian, S. Kontoe, M. Free, Assessing and managing the risk of earthquake-
induced liquefaction to civil infrastructure, in Handbook of Seismic Risk Analysis and
Management of Civil Infrastructure Systems, S. Tesfamariam and K. Goda (editors),
Woodhead Publishing Limited, Oxford, 2013.

[44] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics,
Springer-Verlag, New York, 1985. Zbl 0588.35003

[45] A.P. Oskolkov, Some nonstationary linear and quasilinear systems occurring in the
investigation of the motion of viscous �uids, Journal of Soviet Mathematics, 10 (1978),
299�335. Zbl 0389.76005

[46] S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics.
Translations of Mathematical Monographs, vol. 90 (third edition), AMS, Providence,
RI, 1991. Zbl 0732.46001

https://chooser.crossref.org/?doi=10.1070%2FIM2014v078n03ABEH002698
https://chooser.crossref.org/?doi=10.1070%2FIM2014v078n03ABEH002698
https://chooser.crossref.org/?doi=10.1070%2FIM2014v078n03ABEH002698
https://doi.org/10.1016/j.triboint.2013.05.013
https://doi.org/10.1016/j.triboint.2013.05.013
https://www.intlpress.com/site/pub/pages/journals/items/maa/content/vols/0020/0002/a005/
https://www.intlpress.com/site/pub/pages/journals/items/maa/content/vols/0020/0002/a005/
https://link.springer.com/article/10.1007/s10492-008-0029-6
https://epubs.siam.org/doi/10.1137/S0036141003433425
https://link.springer.com/article/10.1007/s10492-005-0035-x
https://link.springer.com/article/10.1007/s10492-005-0035-x
https://doi.org/10.1590/S1806-11172009000400004
https://doi.org/10.1590/S1806-11172009000400004
https://doi.org/10.1119/1.19283
https://doi.org/10.1007/978-1-4615-0095-7
https://doi.org/10.1007/978-1-4615-0095-7
https://doi.org/10.15372/PMTF202415472
https://doi.org/10.15372/PMTF202415472
https://doi.org/10.1016/j.jmaa.2023.127751
https://doi.org/10.1016/j.jmaa.2023.127751
https://doi.org/10.1016/j.nonrwa.2024.104162
https://doi.org/10.1016/j.nonrwa.2024.104162
https://doi.org/10.1016/j.na.2022.113190
https://doi.org/10.1016/j.na.2022.113190
https://api.semanticscholar.org/CorpusID:135628073
https://doi.org/10.1007/978-3-031-25717-9
https://doi.org/10.1088/0964-1726/23/3/035022
https://doi.org/10.1088/0964-1726/23/3/035022
https://doi.org/10.1533/9780857098986.1.113
https://doi.org/10.1533/9780857098986.1.113
https://doi.org/10.1007/978-1-4757-4317-3
https://doi.org/10.1007/BF01566608
https://doi.org/10.1007/BF01566608
https://doi.org/10.1090/mmono/090
https://doi.org/10.1090/mmono/090


586 S.N. ANTONTSEV, I.V. KUZNETSOV, D.A. PROKUDIN, S.A. SAZHENKOV

[47] J. Simon, Compact sets in the space Lp(0, T ;B), Annali di Matematica Pura ed
Applicata, 146 (1986), 65�96.

[48] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd
Edition, Gordon and Breach, New York, 1969. Zbl 0184.52603

[49] D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, A Series of
Comprehensive Studies in Mathematics, vol. 314, Springer-Verlag, New York, 1996.

[50] A. Vasseur,Well-posedness of scalar conservation laws with singular sources, Methods
and Applications of Analysis, 9:2 (2002), 291�312. Zbl 1084.35046

[51] V.G. Zvyagin, M.V. Turbin, The study of initial-boundary value problems for
mathematical models of the motion of Kelvin�Voigt �uids, Journal of Mathematical
Sciences, 168:2 (2010), 157�308. Zbl 1288.35005

Stanislav Nikolaevich Antontsev

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the

Russian Academy of Sciences,

15, pr. Lavrent'eva,

630090, Novosibirsk, Russia

Email address: antontsevsn@mail.ru

Ivan Vladimirovich Kuznetsov

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the

Russian Academy of Sciences,

15, pr. Lavrent'eva,

630090, Novosibirsk, Russia

Email address: kuznetsov_i@hydro.nsc.ru

Dmitry Alexeyevich Prokudin

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the

Russian Academy of Sciences,

15, pr. Lavrent'eva,

630090, Novosibirsk, Russia

Email address: prokudin@hydro.nsc.ru

Sergey Alexandrovich Sazhenkov

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the

Russian Academy of Sciences,

15, pr. Lavrent'eva,

630090, Novosibirsk, Russia

Email address: sazhenkovs@yandex.ru

https://dx.doi.org/10.1007/BF01762360
https://api.semanticscholar.org/CorpusID:121053945
https://api.semanticscholar.org/CorpusID:121053945
https://doi.org/10.1007/978-3-662-03282-4
https://doi.org/10.1007/978-3-662-03282-4
https://www.intlpress.com/site/pub/files/_fulltext/journals/maa/2002/0009/0002/MAA-2002-0009-0002-a006.pdf
https://doi.org/10.1007/s10958-010-9981-2
https://doi.org/10.1007/s10958-010-9981-2

	Introduction
	The main results
	Solvability of problem (1) for fixed bold0mu mumu nNnNnNnNnNnN
	Passage to the limit in problem (1), as bold0mu mumu n+n+n+n+n+n+

	Proof of Theorem 1
	Galerkin's approximations
	The first energy estimate and continuation of bold0mu mumu (to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.(to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.(to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.(to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.(to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.(to.bold0mu mumu vvvvvv1m,n,bold0mu mumu vvvvvv2m,n)to.
	The second energy estimate
	Uniform estimates for bold0mu mumu t bold0mu mumu vvvvvvim,nt bold0mu mumu vvvvvvim,nt bold0mu mumu vvvvvvim,nt bold0mu mumu vvvvvvim,nt bold0mu mumu vvvvvvim,nt bold0mu mumu vvvvvvim,n and bold0mu mumu x t bold0mu mumu vvvvvvim,nx t bold0mu mumu vvvvvvim,nx t bold0mu mumu vvvvvvim,nx t bold0mu mumu vvvvvvim,nx t bold0mu mumu vvvvvvim,nx t bold0mu mumu vvvvvvim,n
	Passage to the limit as bold0mu mumu mmmmmm. Uniform bounds in bold0mu mumu nnnnnn for the sequence bold0mu mumu {to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0{to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0{to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0{to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0{to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0{to.(to.bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)to.}to.n n0
	Uniqueness of the regular weak solution

	Proof of Theorem 2
	Limiting passage as n+ in the sequence bold0mu mumu {to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.. Proof of assertion 1 of Theorem 2
	Shift and rescaling in the sequence bold0mu mumu {to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.n=1,2,…
	Limiting passage as bold0mu mumu n+n+n+n+n+n+ in the sequence bold0mu mumu {to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.{to.(bold0mu mumu vvvvvv1n,bold0mu mumu vvvvvv2n)}to.. Proof of assertion 2 of Theorem 2
	Limiting passage in bold0mu mumu {0<<1}{0<<1}{0<<1}{0<<1}{0<<1}{0<<1}. The initial layer equation
	Limiting passage in bold0mu mumu {0<t"0365t< T}{0<t"0365t< T}{0<t"0365t< T}{0<t"0365t< T}{0<t"0365t< T}{0<t"0365t< T}. Equations of the outer flow
	Matching condition at bold0mu mumu =1-0=1-0=1-0=1-0=1-0=1-0. Completion of the proof of assertion 3 of Theorem 2
	A note on uniqueness of the solution to problem (17)–(18)


