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Communicated by I.B. Gorshkov

Abstract: As de�ned by Guralnick and Saxl, given a nonabelian
simple group S and its nonidentity automorphism x, a natural
number αS(x) is the minimum number of conjugates of x in ⟨x, S⟩
that generate a subgroup containing S. In this paper, for every
sporadic group S other than the Monster and an automorphism x
of S of prime order, we complete the determination of the precise
value of αS(x).

Keywords: sporadic group, automorphism group, conjugacy, gen-
erators.

1 Introduction

Let S be a nonabelian simple group (which we identify with InnS) and let
x ∈ AutS be a nonidentity automorphism (possibly, inner). R.Guralnick
and J. Saxl [27] introduced the notation α(x) = αS(x) for the minimum
number of elements conjugate to x in G = ⟨x, S⟩ that generate G. Thus,
αS(x) has a constant value on every conjugacy class xS = xG and thus may
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be viewed as a numeric invariant of the class. Even before [27] appeared,
J. Moori [35�37] called αS(x) the rank1 of class xS .

Given an arbitrary �nite simple group S, Guralnick and Saxl �nd a number
m = m(S) such that αS(x) ⩽ m for every automorphism x ̸= 1 of S.
In the case of alternating and classical groups, these estimates are precise.
They can be achieved on transpositions for the alternating groups and on
transvections or re�ections for the classical groups. The classes that are not
transpositions, transvections, or re�ections are supplied in [27] with their own
upper bounds. However, these bounds and the estimates for the exceptional
and sporadic groups are not always precise. Several relevant remarks and
conjectures are formulated in [27]. There is also a lengthy list of papers
[1�13, 17, 29, 35�37, 41, 42, 45], in which not only the estimates by Guralnick
and Saxl are improved, but also some precise bounds are found on the ranks
of many conjugacy classes for various simple groups.

A signi�cant number of these papers go back to the pioneering work by
Moori [35�37] who proved as early as 1993�1994 [35,36] that if S = F22 and
x ∈ S is a 3-transposition then αS(x) ∈ {5, 6}. Subsequently, J. Hall and
L. Soicher [28, Theorems (1.1)�(1.3)] classi�ed the groups of 3-transpositions
that may be generated by at most �ve 3-transpositions. In particular, it was
shown that the Fischer groups Fi22 and Fi23 cannot be generated by �ve
3-transpositions, which con�rmed Moori's conjecture [36] that αS(x) = 6
when S = Fi22 and x is a 3-transposition. With his paper [37], Moori
initiated a systematic calculation of the ranks of inner conjugacy classes of
sporadic simple groups. In a series of subsequent articles by J. Moori, F. Ali,
A.B.M. Basheer, M.A.F. Ibrahim, M.A. Al-Kadhi, et al. [1�13], the ranks of
inner conjugacy classes were found for many sporadic groups and the Tits
group.

A major breakthrough for sporadic groups was made by L. Di Martino,
M.A. Pellegrini, and A.E. Zalesskii in [17]. Their result reduces the deter-
mination to a limited number of cases, and, for most inner classes, it even
gives the exact value of the rank. More precisely, if S is not the Monster
M and x is a nonidentity element of S then either [17, Theorem 3.1] gives a
precise value of αS(x) or one of the following cases2 holds:

• (S, x) = (Fi22, 3B) and αS(x) ∈ {2, 3},
• (S, x) = (Suz, 3A) and αS(x) ∈ {3, 4},
• (S, x) ∈ {(Fi22, 2A), (Fi23, 2A)} and αS(x) ∈ {5, 6}.

Also, for S = M , [17, Theorem 3.1] states that αS(x) ∈ {2, 3} if the order
of x is bigger than 2, and αS(x) ∈ {3, 4} if x has order 2.

Although Di Martino, Pellegrini, and Zalesskii have left some freedom
for the possible values of the ranks of certain inner classes, the parameters

1We note that Moori and some other authors, e. g. in [1�13, 29, 35�37], use the term
�rank� in the case when x induces on S an inner automorphism.

2As in [17], slightly abusing the notation we will often denote a conjugacy class and its
representative by the same symbol.
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αS(x) for x ∈ S have virtually been completely determined by now, ex-
cept for S = M . Thus, in the Fischer groups F22 and Fi23, the conjugacy
classes denoted by 2A contain 3-transpositions, and the above-mentioned
result by Hall and Soicher [28] implies that αS(x) = 6 whenever (S, x) ∈
{(Fi22, 2A), (Fi23, 2A)}. F. Ali [1, Theorem 11] showed that αS(x) = 3 for
(S, x) = (Fi22, 3B). We will also prove the following assertion:

Proposition 1. If S = Suz and x is in class 3A of S then αS(x) = 4.

Proposition 1 corrects the inaccuracy in the survey papers [11, Assertion 1
in Section 3.1] and [12, Assertion (1) in Section 3], where it is stated, among
other things, that αS(x) = 3 for (S, x) = (Suz, 3A). Neither of [11, 12] cites
a source of this information.

In summary, the following theorem holds.

Theorem 1. Let S be a sporadic group, other than the Monster, and let
x ∈ S \ {1}. Then

either |x| > 2 and αS(x) = 2, except in the following cases:
• (S, x) ∈ {(J2, 3A), (HS, 4A), (McL, 3A), (Ly, 3A), (Co1, 3A),
(F22, 3A), (Fi22, 3B), (Fi23, 3A), (Fi23, 3B), (Fi′24, 3A),
(Fi′24, 3B)} and αS(x) = 3,

• (S, x) = (Suz, 3A) and αS(x) = 4,
or |x| = 2 and αS(x) = 3, except in the following cases:

• (S, x) ∈ {(J2, 2A), (Co2, 2A), (B, 2A)} and αS(x) = 4,
• (S, x) ∈ {(Fi22, 2A), (Fi23, 2A)} and αS(x) = 6.

Therefore, as far as the inner conjugacy classes of the sporadic groups
S, there are some open questions only for the Monster. For the �outer�
conjugacy classes, i. e. those contained in AutS \ S, the information on the
values of αS(x) has until recently been exhausted by the general estimates
of Guralnick and Saxl which, in the case S = Fi24

′, for example, gives
αS(x) ⩽ 8.

We recall that AutS ̸= S precisely for the following twelve sporadic
groups S:

M12,M22, J2, J3,McL,O′N,HS,He, Suz,HN,F i22, F i24
′. (1)

In our recent paper [42], it was shown that, for x ∈ AutS \ S, we either
have αS(x) ⩽ 4, or (S, x) = (Fi24

′, 2C) and αS(x) = 5. The peculiarity
of class 2C in Aut(Fi24

′) = Fi24 is that it is a class of 3-transpositions.
The fact that Fi24 is generated by �ve 3-transpositions was established by
S.Norton [38], and that Fi24 cannot be generated by four 3-transpositions
was proved in [28, Theorem (1.1)].

As remarked in [27], the values of αS(x) with x of prime order are of
special interest. Indeed, for x ∈ AutS and y ∈ ⟨x⟩, if ⟨yg1 , . . . , ygm⟩ ⩾ S
then ⟨xg1 , . . . , xgm⟩ ⩾ S. Therefore, αS(x) ⩽ αS(y). Note that an element
y ∈ ⟨x⟩ may be chosen so that |y| is prime.
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This work continues [41,42], where we re�ne the estimates on αS(x) for S
sporadic and 2F4(q

2)′, where x has prime order. Besides proving Proposition
1, the aim of the present paper is to indicate, for every sporadic group S
with AutS ̸= S and every x ∈ AutS \ S of prime order, a precise value
of αS(x). Since |AutS : S| = 2 for the groups in (1), every such x is an
involution. Our result is as follows.

Theorem 2. Let S be a sporadic group and let x ∈ AutS \ S be of order 2.
Then αS(x) = 3 except in the following cases:

(i) (S, x) ∈
{
(M22, 2B), (HS, 2C), (Fi22, 2D)

}
and αS(x) = 4;

(ii) (S, x) = (Fi24
′, 2C) and αS(x) = 5.

We note that, in item (i), the group AutS is a 4-transposition group with
respect to the class D = xS , i. e. AutS is generated by the involutions in D
and the product of every two such involutions has order at most 4. Other
known examples of sporadic 4-transposition groups S with αS(x) = 4 are
Co2 and B, where x ∈ D = 2A in both cases, see [17, Theorem 3.1].

2 Preliminaries

We consider �nite groups only.
The following lemma is known as Brauer's trick, see [14].

Lemma 1. Let A and B be subgroups of a group G. If there is a non-
principal ordinary irreducible character χ of G such that

(χA, 1A) + (χB, 1B) > (χA∩B, 1A∩B)

then ⟨A,B⟩ is a proper subgroup of G.

It is known from character theory that, given elements a, b and c of a
group G, the number m(a, b, c) of pairs (u, v), where u is conjugate to a, v
is conjugate to b, and uv = c, can be found from the character table using
the formula

m(a, b, c) =
|G|

|CG(a)||CG(b)|
∑

χ∈Irr(G)

χ(a)χ(b)χ(c)

χ(1)
,

see [30, Exercise (3.9), p. 45]. For our purposes, the value of m(a, b, c) can
thus be determined either from the Atlas [16] or using the computer algebra
system GAP [20] which has the relevant built-in function

ClassMultiplicationCoefficient().

Lemma 2. Let S be a sporadic simple group and let nX be a conjugacy class
of G = AutS.

(i) Assume that p is a prime such that (S, nX, p) is one of

(M12, 2C, 11), (M22, 2C, 11), (J2, 2C, 7), (J3, 2B, 19), (O′N, 2B, 31),

(HS, 2D, 11), (HN, 2C, 19).

Then
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� a Sylow p-subgroup of S is cyclic of order p;
� for every nonidentity g ∈ G, there exists s ∈ S of order p such

that S ⩽ ⟨g, s⟩;
� m(nX, nX, pA) > 0.

In particular, if x ∈ nX then αS(x) ⩽ 3.
(ii) Assume that (S, nX) is one of

(Fi22, 16AB), (Fi24
′, 29AB), (He, 14CD), (Suz, 14A).

Then, for every g ∈ G \ S, there exists x ∈ nX such that G = ⟨g, x⟩.

Proof. (i) The existence of s as stated is proven in [26, Proposition 6.2].
This implies that if x ∈ nX then S ⩽ ⟨x, s⟩ for some s ∈ S of order p. Since
⟨s⟩ is a Sylow p-subgroup of S, we may assume that s ∈ pA. Using [20]
we check that m(nX, nX, pA) > 0 in all cases under consideration, see [43]
for a detailed GAP code. This implies that s = x1x2 for some x1, x2 ∈ nX.
Therefore, S ⩽ ⟨x, x1, x2⟩ and so αS(x) ⩽ 3.

(ii) See [15, Section 4.8, Table 9]. □

3 Proof of main results

We begin by proving Proposition 1 which is the �nal clarifying step in the
proof of Theorem 1.

Proof of Proposition 1. Conjugacy class 3A of S has the following property.
Every pair of elements in 3A generates a subgroup isomorphic to one of the
groups

Z3, Z3 × Z3, A4, A5, or SL2(3). (2)

This fact is known and can also be checked using [20]. A detailed GAP code
for such a veri�cation is available in [43]. We brie�y outline here the idea
behind it. S can be constructed from two explicit standard generators a and
b, where a is in class 2B, b is in class 3B, ab has order 13 and (ab)2b has order
15, see [46]. We check that t = ((ab2)3ab)7 has order 3 and the centralizer of
t in S has order 9797760, i. e. t is in class 3A. This enables us to construct
this class using t as a representative. S acts by conjugation on pairs of
elements in 3A. It su�ces to consider the subgroups of S generated by orbit
representatives under this action. Note that these orbits are naturally in a
one-to-one correspondence with the orbits of CS(t) on class 3A. We �nd
that there are 8 such orbits and, if we exclude the ones containing inverses,
there are only 5 orbits whose representatives generate precisely the 5 types
of subgroups (2).

The �nite simple groups generated by a conjugacy class D of elements
of order 3 such that every two members of D generates one of the groups
(2) were classi�ed in [44]. The structure of subgroups generated by three
elements in D was clari�ed in [44, Section 1], whence it follows that Suz
cannot be such a subgroup. In particular, αS(x) > 3 and so αS(x) = 4
by [17, Theorem 3.1].
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□

Taking into account the information about conjugacy classes from the in-
troduction and the Atlas [16], Theorem 2 amounts to the following assertion
which we are going to prove.

Proposition 2. Let S be a sporadic group and let x be a representative of
conjugacy class nX of G = AutS.

(i) If (S, nX) is one of (M12, 2C), (M22, 2C), (J2, 2C), (J3, 2B),
(McL, 2B), (O′N, 2B), (HS, 2D), (He, 2C), (Suz, 2C), (Suz, 2D),
(HN, 2C), (Fi22, 2E), (Fi22, 2F ), or (Fi24

′, 2D) then αS(x) = 3;
(ii) If (S, nX) is (M22, 2B), (HS, 2C), or (Fi22, 2D) then αS(x) = 4.

Proof. Since x has order 2, we have αS(x) ⩾ 3, because two involutions
always generate a solvable subgroup. In view of Lemma 2(i), it remains
to consider the cases listed below. A GAP code for calculating the relevant
constants m(a, b, c) is available in [43]. We will use without further reference
the information from [16] on the maximal subgroups of sporadic groups and
their automorphism groups.

• Let (S, nX) = (McL, 2B). In this case, we have m(2B, 2B, 14A) = 14
and m(2B, 14A, 22A) = 16236. Consequently, there exist three elements in
class 2B that generate a subgroup H not included in S such that |H| is
divisible by 7 and 11. But there is no maximal subgroup of G that is not
included in S and whose order is divisible by both 7 and 11. Therefore, these
three elements in 2B generate G and so αS(x) = 3.

• Let (S, nX) = (He, 2C). We have m(2C, 2C, 14CD) = 14. (For He.2,
class 14CD in the notation of [16] is class 14B in [20].) This, together with
Lemma 2(ii), implies that there are three elements in 2C that generate G.
Thus, αS(x) = 3.

• Let (S, nX) = (Suz, 2C). We have

m(2C, 2C, 7A) = 7 and m(2C, 7A, 22A) = 3630.

Therefore, there are three elements in 2C that generate a subgroup H which
is not included in S and has order divisible by 7 and 11. But the order of
every maximal subgroup of Suz.2 not included in S is not divisible by either
7 or 11. Thus, H = G and αS(x) = 3.

• Let (S, nX) = (Suz, 2D). Thenm(2D, 2D, 14A) = 14. By Lemma 2(ii),
there are three elements in 2C that generate G. Thus, αS(x) = 3.

• Let (S, nX) = (Fi22, 2E). Then m(2E, 2E, 16AB) = 16. (For Fi22.2,
class 16AB in [16] is class 16A in [20].) As in the previous case, αS(x) = 3
by Lemma 2(ii).

• Let (S, nX) = (Fi22, 2F ). In this case, we have m(2F, 2F, 11A) = 11
and m(2F, 11A, 42A) = 1867488. Hence, there exist three elements in 2F
that generate a subgroup H not included in S such that |H| is divisible by
7 and 11 and H contains an element of order 21. Every maximal subgroup
of Fi22.2 of order divisible by both 7 and 11 not included in S is isomorphic
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to either 2 . U6(2) . 2 or 210.M22 . 2. But these groups contain no elements of
order 21. Thus, H = G and αS(x) = 3.

• Let (S, nX) = (Fi24
′, 2D). In this case, we have m(2D, 2D, 33A) =

33 and m(2D, 33A, 46A) = 172322171820. Thus, there are three elements
in 2D that generate a subgroup H not being included in S, having order
divisible by 11 and 23, and containing an element of order 33. Every maximal
subgroup of G of order divisible by both 11 and 23 that is not included in
S is isomorphic to either Fi23 × 2 or 212.M24, see [33, Theorem 1.1 and
Table 1.1]. But these groups contain no elements of order 33. Again, H = G
and αS(x) = 3.

The proof of (i) is complete.

• Let (S, nX) be one of (M22, 2B), (HS, 2C), or (Fi22, 2D). In this case,
as we mentioned in the introduction, G = AutS is a 4-transposition group
with respect to the class D = nX. This can be veri�ed by checking that
m(x, x, y) ̸= 0 only when y has order at most 4. By [42, Theorem 2], we
know that 3 ⩽ αS(x) ⩽ 4. However, 3-generated 4-transposition groups
have been classi�ed, see [31, Sections 3.1, 3.2] and [32, Theorem 3.4.2]. This
classi�cation implies, in particular, that S cannot be a composition factor of
a 3-generated 4-transposition group as the only possible such factor is L2(7).
This shows that αS(x) = 4.

In the case (S, nX) = (HS, 2C), we can also give an alternative proof
which does not depend on the classi�cation of 3-generated 4-transposition
groups, but uses Brauer's trick (Lemma 1) instead. Assume to the contrary
that G = AutS is generated by some distinct x1, x2, x3 ∈ 2C. Denote
A = ⟨x1, x2⟩ and B = ⟨x3⟩. Clearly, A ∩ B = 1. Hence, to obtain a
contradiction by Lemma 1, it su�ces to show that

(χA, 1A) + (χB, 1B) > χ(1) (3)

for some nonprincipal irreducible ordinary character χ of G. We may take
for χ a characters of degree 22; namely, the one that takes positive values
on the elements in 2C. The required values of χ are as follows:

1A 2A 2B 3A 4B 2C
χ 22 6 -2 4 2 8

We have

(χB, 1B) =
1

2

(
χ(1) + χ(2C)

)
=

1

2
(22 + 8) = 15

and so (3) is equivalent to

(χA, 1A) > 7 (4)

The possible conjugacy classes the product x1x2 belongs to are 2A, 2B,
3A, and 4B, which follows from determining when m(2C, 2C, nX) ̸= 0 for
various nX. We consider these cases separately.
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If x1x2 ∈ 2A then A ∼= Z2 × Z2 and

(χA, 1A) =
1

4

(
χ(1) + χ(2A) + 2χ(2C)

)
=

1

4
(22 + 6 + 2 · 8) = 11 > 7.

If x1x2 ∈ 2B then also A ∼= Z2 × Z2 and

(χA, 1A) =
1

4

(
χ(1) + χ(2B) + 2χ(2C)

)
=

1

4
(22− 2 + 2 · 8) = 9 > 7.

If x1x2 ∈ 3A then A ∼= S3 and

(χA, 1A) =
1

6

(
χ(1) + 2χ(3A) + 3χ(2C)

)
=

1

6
(22 + 2 · 4 + 3 · 8) = 9 > 7.

If x1x2 ∈ 4B then A ∼= D8. Observe that the squares of elements in 4B
are in 2A. Also, both classes of noncentral involutions in D8 fuse to 2C,
because each generator x1 and x2 is in its own class. Therefore, we have

(χA, 1A) =
1

8

(
χ(1)+χ(2A)+2χ(4B)+4χ(2C)

)
=

1

8
(22+6+2·2+4·8) = 8 > 7.

We see that in all cases inequality (4) holds and so ⟨A,B⟩ is a proper sub-
group of G by Lemma 1, a contradiction. □

4 Final remarks

Both the original results by Guralnick and Saxl and their re�nements
�nd wide application. For example, in the proper paper [27], the estimates
on αS(x) are used to classify bire�ection groups. DiMartino, Pellegrini,
and Zalesskii used their results to study almost cyclic matrices in repre-
sentations of sporadic groups. The recent paper [39] by I. N. Ponomarenko,
S.V. Skresanov, and A.V.Vasil'ev uses the estimates from [27] to study the
inheritance of properties of permutation groups by their k-closures. Finally,
another area where the estimates on αS(x) are used and play a key role is
proving analogs of Baer�Suzuki theorems, see [19,21�25,34,41,45,47�49]. It
is often necessary (see, e. g., [34,41,45,48,49]) to re�ne the results of [27] for
certain groups and automorphisms. The present work may be viewed as a
contribution to �nding such re�nements.

We also mention some problems that remain open for sporadic groups.
Theorem 1 gives no information on the value of αS(x) in the case where S
is the Monster. Recall that, in this case, [17, Theorem 3.1] implies αS(x) ∈
{2, 3} if |x| > 2 and αS(x) ∈ {3, 4} if |x| = 2. The precise value of αS(x) is
also unknown when S is sporadic and x ∈ Aut(S)\S has composite order. In
many such cases, there is a power y ̸= 1 of x such that y ∈ S and αS(y) = 2.
Then we clearly have αS(x) = 2. Despite these remarks, many open cases
remain whose treatment is beyond the scope of this short paper.

Acknowledgement. The authors are thankful to Prof. Andrey S. Mamon-
tov for helpful consultations.

Added in proof. After this work was accepted for publication, we received
a letter from Prof. J.M�uller dated May 15, 2025 informing us about the
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paper [18], where the values of αS(x) were determined independently using
other methods for all sporadic groups S and all nonidentity x ∈ AutS.
Theorems 1 and 2 of the present paper are particular cases of the results
in [18] whose existence we had no knowledge of. We are thankful to Prof.
M�uller for this information.
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