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Abstract: In the present paper we study properties of p-preserving
convex-to-right (left) formulas in weakly o-minimal theories, where
p is a non-algebraic 1-type. It is proved that in the case of an
existence of a p-preserving convex-to-right (left) formula that is
not equivalence-generating, there exists a p-preserving convex-to-
left (right) formula that is also not equivalence-generating; it was
shown how it is built from the original formula.
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1 Preliminaries

Let L be a countable �rst-order language. Throughout this paper we
consider L�structures and suppose that L contains a binary relation symbol
< which is interpreted as a linear order in these structures. This paper
concerns the notion of weak o-minimality which was initially deeply studied
by H.D. Macpherson, D. Marker and C. Steinhorn in [1]. A subset A of a
linearly ordered structure M is convex if for all a, b ∈ A and c ∈ M whenever
a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly ordered
structure M = ⟨M,=, <, . . .⟩ such that any de�nable (with parameters)
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subset of M is a union of �nitely many convex sets in M . Real closed �elds
with a proper convex valuation ring provide an important example of weakly
o-minimal structures.

Let A and B be arbitrary subsets of a linearly ordered structure M . Then
the expression A < B means that a < b whenever a ∈ A and b ∈ B, and
A < b means that A < {b}. For an arbitrary subset A of M we introduce the
following notations: A+ := {b ∈ M | A < b} and A− := {b ∈ M | b < A}.
For an arbitrary one-type p we denote by p(M) the set of realizations of p
in M . If B ⊆ M and E is an equivalence relation on M then we denote by
B/E the set of equivalence classes (E�classes) which have representatives in
B. If f is a function on M then we denote by Dom(f) the domain of f . A
theory T is said to be binary if every formula of the theory T is equivalent
in T to a boolean combination of formulas with at most two free variables.

Further throughout the paper we consider an arbitrary complete theory
T (if unless otherwise stated), where M is a su�ciently saturated model of
T .

De�nition 1. [2] Let T be a weakly o-minimal theory, M |= T , A ⊆ M ,
p ∈ S1(A) be non-algebraic.

(1) An LA-formula F (x, y) is said to be p-preserving if there exist α, γ1,
γ2 ∈ p(M) such that

[F (M,α) \ {α}] ∩ p(M) ̸= ∅ and γ1 < F (M,α) ∩ p(M) < γ2.

(2) A p-preserving formula F (x, y) is said to be convex-to-right (left) if
there exists α ∈ p(M) such that F (M,α) ∩ p(M) is convex, α is the left
(right) endpoint of the set F (M,α) ∩ p(M) and α ∈ F (M,α).

De�nition 2. [3] Let F (x, y) be a p�preserving convex-to-right (left) for-
mula. We say that F (x, y) is said to be equivalence-generating if for any
α, β ∈ p(M) such that M |= F (β, α) the following holds:

sup[F (M,α) ∩ p(M)] = sup[F (M,β) ∩ p(M)]

(resp. inf[F (M,α) ∩ p(M)] = inf[F (M,β) ∩ p(M)]).

Let us recall some notions originally introduced in [1]. Let Y ⊂ Mn+1

be ∅-de�nable, let π : Mn+1 → Mn be a projection that drops the last
coordinate, and let Z := π(Y ). For each ā ∈ Z, let Yā := {y : (ā, y) ∈ Y }.
Suppose that for every ā ∈ Z, the set Yā is bounded from above but has
no supremum in M. Let ∼ be an ∅-de�nable equivalence relation on Mn,
de�ned as follows:

ā ∼ b̄ for all ā, b̄ ∈ Mn \ Z, and ā ∼ b̄ ⇔ supYā = supYb̄, if ā, b̄ ∈ Z.

Let Z := Z/ ∼, and for each tuple ā ∈ Z, we denote by [ā] the ∼-class of
tuple ā. There is a natural ∅�de�nable linear ordering on M ∪ Z, de�ned as
follows.

Let ā ∈ Z and c ∈ M . Then [ā] < c if and only if w < c for all w ∈ Yā. If
ā ̸∼ b̄, then there exists some x ∈ M such that [ā] < x < [b̄] or [b̄] < x < [ā],



296 B.SH. KULPESHOV

and therefore < induces a linear order on M ∪Z. We call such a set Z a sort
(in this case, an ∅�de�nable sort) in M , where M is the Dedekind completion
of the structure M , and we view Z as naturally embedded in M . Similarly,
we can obtain a sort in M by considering in�ma instead of suprema.

Thus, we will consider de�nable functions from M in its Dedekind comple-
tion M , more precisely into de�nable sorts of the structure M , representing
in�ma or suprema of de�nable sets.

Let A,D ⊆ M , D be in�nite, Z ⊆ M be an A�de�nable sort and f : D →
Z be an A-de�nable function. We say that f is locally increasing (locally
decreasing, locally constant) on D if for any a ∈ D there exists an in�nite
interval J ⊆ D containing {a} such that f is strictly increasing (strictly
decreasing, constant) on J ; we also say that f is locally monotonic on D if
it is locally increasing or locally decreasing on D.

Let f be an A-de�nable function on D ⊆ M , E be an A-de�nable equiva-
lence relation on D. We say that f is strictly increasing (decreasing) on D/E
if for any a, b ∈ D with conditions a < b and ¬E(a, b) we have f(a) < f(b)
(f(a) > f(b)).

Theorem 1. [4, 5] Let T be a weakly o-minimal theory, M |= T , A ⊆ M , p ∈
S1(A) be non-algebraic. Suppose that there exists an A-de�nable function f
the domain of which contains the set p(M), and f is not a constant on p(M).
Then f is locally monotonic or locally constant on p(M) and there exists
an A-de�nable equivalence relation E(x, y) partitioning p(M) into in�nitely
many convex classes such that f is strictly monotonic on p(M)/E.

De�nition 3. [6, 7] Let M be a weakly o-minimal structure, B,D ⊆ M ,
A ⊆ M be a B-de�nable sort and f : D → A be a B-de�nable function that is
locally increasing (decreasing) on D. We say that f has depth n on D if there
are B-de�nable equivalence relations E1(x, y), . . . , En(x, y), partitioning D
into in�nitely many in�nite convex classes, so that for any 2 ≤ i ≤ n every
Ei-class is partitioned into in�nitely many in�nite convex Ei−1-subclasses
and the following holds:

• f is strictly increasing (decreasing) on each E1-class,
• f is locally decreasing (increasing) onD/Ek for any odd k ≤ n (or the
same, f is strictly decreasing (increasing) on every Ek+1(a,M)/Ek

for any a ∈ D),
• f is locally increasing (decreasing) on D/Ek for any even k ≤ n,
• f is strictly monotonic on D/En.

In this case, the function f is called locally increasing (decreasing) of depth
n.

Obviously, a strictly increasing (decreasing) function is locally increasing
(decreasing) of depth 0.

Theorem 2. [7] Let T be a weakly o-minimal theory. Then any de�nable
function into a de�nable sort has �nite depth.
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In [8], De�nition 3 was extended by introducing the notion of a locally
constant function of depth n, i.e., in De�nition 3 the function f is a constant
on every E1-class. Note that in this case the function f can be either locally
increasing or locally decreasing on D/E1.

De�nition 4. [9] Let T be a weakly o-minimal theory, M |= T , A ⊆ M .
The rank of convexity of the set A (RC(A)) is de�ned as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is �nite and non-empty.
3) RC(A) ≥ 1 if A is in�nite.
4) RC(A) ≥ α + 1 if there exist a parametrically de�nable equivalence

relation E(x, y) and an in�nite sequence of elements bi ∈ A, i ∈ ω, such that:

• For every i, j ∈ ω whenever i ̸= j we have M |= ¬E(bi, bj);
• For every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset
of A.

5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ, where δ is a limit ordinal.
If RC(A) = α for some α, we say that RC(A) is de�ned. Otherwise (i.e.

if RC(A)) ≥ α for all α), we put RC(A) = ∞.
The rank of convexity of a formula ϕ(x, ā), where ā ∈ M , is de�ned as the

rank of convexity of the set ϕ(M, ā), i.e. RC(ϕ(x, ā)) := RC(ϕ(M, ā)).
The rank of convexity of an 1-type p is de�ned as the rank of convexity of

the set p(M), i.e. RC(p) := RC(p(M)).

In particular, a theory has convexity rank 1 if there are no de�nable (with
parameters) equivalence relations with in�nitely many in�nite convex classes.
Clearly, each o-minimal theory has convexity rank 1.

In [3] properties of p-preserving convex-to-right (left) formulas were stu-
died. In particular, it was established that some of these formulas generate
an equivalence relation with in�nite convex classes. These results were used
at studying the number of pairwise non-isomorphic countable models for
a weakly o-minimal theory in series of papers [10]�[12]. Here we continue
studying properties of p-preserving convex-to-right (left) formulas. In par-
ticular, we prove the following: if there exists a p-preserving convex-to-
right (left) formula that is not equivalence-generating then there exists a
p-preserving convex-to-left (right) formula that is also not equivalence-gene-
rating (Theorem 3). We show how such a formula is constructed from an
existing one.

2 Properties of p-preserving formulas

Fact 1. Let T be a weakly o-minimal theory, M |= T , A ⊆ M , p ∈ S1(A)
be non-algebraic. Then either p(M ′) is densely ordered or p(M ′) is discretely
ordered for any M ′ ⪰ M .

Example 1. Let M := ⟨Q, <, f1⟩ be a linearly ordered structure, where Q
is the set of rational numbers, and f(x) = x + 1. Obviously, f is strictly
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increasing on M . It can be proved that M is an o-minimal 1-transitive
structure. Let p(x) := {x = x}. Obviously, p ∈ S1(∅), p is non-algebraic
and p(M) is densely ordered. Consider the following formula:

F (x, y) := y ≤ x ≤ f(y).

Obviously, F (x, y) is a p-preserving convex-to-right formula that is not
equivalence-generating.

Let G(x, y) := F (y, x). Since y ≤ f(x) i� f−1(y) ≤ x,

G(x, y) ≡ f−1(y) ≤ x ≤ y

and G(x, y) is a p-preserving convex-to-left formula that is also not equiva-
lence-generating.

If M = ⟨Z, < f1⟩, where Z is the set of integers, then M also is an o-
minimal 1-transitive structure. Obviously, p(x) := {x = x} ∈ S1(∅) and
p(M) is discretely ordered. Consider the following formulas:

F1(x, y) := y ≤ x < f(y), F2(x, y) := y ≤ x < f2(y).

Since F1(M,α) \ {α} = ∅, F1(x, y) is not p-preserving. But F2(x, y) is a
p-preserving convex-to-right formula.

Proposition 1. Let T be a weakly o-minimal theory of convexity rank 1,
M |= T , A ⊆ M , p ∈ S1(A) non-algebraic, F (x, y) a p-preserving convex-to-
right (left) formula. Then for any α ∈ p(M) the following holds:

M |= ∀x[F (x, α) ∧ x ̸= α → ∃z(F (z, x) ∧ ¬F (z, α))].

Proof. Without loss of generality, suppose that F (x, y) is convex-to-right.
Since T has convexity rank 1 and p(M) is 1-indiscernible over A, the function
f(y) := supF (M,y) is strictly monotonic on p(M). Prove that f is strictly
increasing on p(M). Assume the contrary: f is strictly decreasing on p(M).
Then consider the following formula:

ϕ(x) := ∀y[y < x → F (x, y)].

Obviously, we have ϕ(M) ∩ p(M) ̸= ∅ and ¬ϕ(M) ∩ p(M) ̸= ∅, whence
p(M) is not 1-indiscernible over A. Consequently, f is strictly increasing on
p(M).

Take an arbitrary α ∈ p(M) and consider F (M,α). Take an arbitrary
β ∈ F (M,α) such that β ̸= α. Obviously, α < β. Since f is strictly increasing
on p(M), f(α) < f(β), whence there exists γ ∈ F (M,β) \ F (M,α). □

Proposition 2. Let T be a weakly o-minimal theory of convexity rank 1,
M |= T , A ⊆ M , p ∈ S1(A) be non-algebraic, F (x, y) be a p-preserving
convex-to-right (left) formula. Then G(x, y) := F (y, x) is a p-preserving
convex-to-left (right) formula.

Proof. Without loss of generality, suppose that F (x, y) is convex-to-right.
Take an arbitrary α ∈ p(M). Since f(y) := supF (M,y) is strictly increasing
on p(M), F (α,M) is convex, α ∈ F (α,M) and there exists γ1 ∈ p(M)
such that γ1 < F (α,M). And also for any β ∈ p(M) with β > α we have
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f(β) > α, i.e. α ̸∈ F (M,β), whence α is the right endpoint of F (α,M).
Thus, G(x, y) is p-preserving convex-to-left. □

Example 2. Let M := ⟨M,<,E2, f1⟩ be a linearly ordered structure, where
M = Q×Q is ordered lexicographically.

We de�ne E as follows: for any a = (a1, a2), b = (b1, b2) ∈ M we have
E(a, b) i� a1 = b1. Obviously, E(x, y) is an equivalence relation partitioning
M into in�nitely many in�nite convex classes so that the induced ordering
on E-classes is dense.

We de�ne f as follows: for any a = (a1, a2) ∈ M we have

f(a) = (a1 + 1,−a2).

Then f is strictly decreasing on each E-class and f is strictly increasing
on M/E.

It can be proved that T = Th(M) is a weakly o-minimal theory, and M
is 1-transitive.

Let p(x) := {x = x}. Obviously, p ∈ S1(∅), p is non-algebraic and p(M) =
M . Consider the following formula:

F (x, y) := y ≤ x ≤ f(y).

Obviously, F (x, y) is a p-preserving convex-to-right formula that is not
equivalence-generating. Observe that for any α ∈ p(M) there exists β ∈
p(M) such that α < β and

M |= F (β, α) ∧ ∃x[F (x, α) ∧ ¬F (x, β)].

Let G(x, y) := F (y, x). Since f is strictly increasing on M/E, G(x, y) is
p-preserving. Observe also that F (γ,M) consists of two convex sets for any
γ ∈ p(M). Then G(M,γ) is not convex, whence G(x, y) is not convex-to-left.
Let

G′(x, y) := ∃t[F (y, t) ∧ t ≤ x ≤ y].

It can be checked that G′(x, y) is a p-preserving convex-to-left formula that
is not equivalence-generating.

Observe that F (M,α) has the right endpoint f(α) in M , but G′(M,α)
has no a left endpoint in M .

Consider the following formulas:

F1(x, y) := ∃z[F (z, y) ∧ F (x, z)],

Fn(x, y) := ∃z[Fn−1(z, y) ∧ F (x, z)], n ≥ 2,

G′
1(x, y) := ∃z[G′(z, y) ∧G′(x, z)],

G′
n(x, y) := ∃z[G′

n−1(z, y) ∧G′(x, z)], n ≥ 2.

Obviously, for any a ∈ p(M) we have the following:

F (M,a) ⊂ F1(M,a) ⊂ . . . ⊂ Fn(M,a) ⊂ . . . and

G′(M,a) ⊂ G′
1(M,a) ⊂ . . . ⊂ G′

n(M,a) ⊂ . . . .

Consider the following set:

Vp,F (a) := {b ∈ p(M) | b ∈ Fn(M,a) ∪Gn(M,a) for some n ≥ 1}.
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We call this set by F -component of an element a in p. Further we consider
the following set of formulas:

S(x, a) := p(x) ∪ {x > a} ∪ {¬Fi(x, a) | i ∈ ω \ {0}}.
It is locally consistent, and can be extended to a non-isolated type p′ ∈

S1({a}). Then there exists M ′ ≻ M in which p′ is realized. Take an arbitrary
b ∈ p′(M ′). Then Vp,F (a) < b. Moreover, Vp,F (a) < Vp,F (b). Similarly, we can
realize the type extending S(x, b). Thus, there exists a model of T in which
there are arbitrarily many such F -components, these components can be
both discretely and densely ordered between themselves. Whence we obtain
that T has 2ω countable models.

Example 3. Let M := ⟨M,<,E2
1 , E

2
2 , f

1⟩ be a linearly ordered structure,
where M = Q3 is ordered lexicographically.

We de�ne E1 and E2 as follows: for any a = (a1, a2, a3), b = (b1, b2, b3) ∈
M we have E1(a, b) i� a1 = b1 ∧ a2 = b2, and E2(a, b) i� a1 = b1. Obviously,
E1(x, y) and E2(x, y) are equivalence relations partitioning M into in�nitely
many in�nite convex classes so that E1(M,a) ⊂ E2(M,a) for any a ∈ M .

We de�ne f as follows: for any a = (a1, a2, a3) ∈ M we have

f(a) = (a1 + 1,−a2, a3).

Then f is strictly increasing on each E1-class, f is strictly decreasing on
E2(M,a)/E1 for each a ∈ M and f is strictly increasing on M/E2.

It can be proved that Th(M) is a weakly o-minimal theory. Let p(x) :=
{x = x}. Obviously, p ∈ S1(∅) and p is non-algebraic. Consider the following
formula:

F (x, y) := y ≤ x ≤ f(y).

Obviously, F (x, y) is a p-preserving convex-to-right formula that is not
equivalence-generating. Here F (γ,M) consists of three convex sets for any
γ ∈ p(M).

Example 4. Let M := ⟨M,<,E2
1 , E

2
2 , . . . , E

2
n−1, f

1⟩ be a linearly ordered
structure, where M = Qn is ordered lexicographically.

We de�ne Ek for each 1 ≤ k ≤ n−1 as follows: for any a = (a1, a2, . . . , an),
b = (b1, b2, . . . , bn) ∈ M we have

Ek(a, b) i� a1 = b1 ∧ a2 = b2 ∧ . . . ∧ an−k = bn−k.

Obviously, Ek(x, y) is an equivalence relation partitioningM into in�nitely
many in�nite convex classes for each 1 ≤ k ≤ n− 1 so that

E1(M,a) ⊂ E2(M,a) ⊂ . . . ⊂ En−1(M,a)

for any a ∈ M .
We de�ne f as follows: for any a = (a1, a2, . . . , an) ∈ M we have

f(a) = (a1 + 1,−a2, a3, . . . , (−1)i+1ai, . . . , (−1)n+1an).

Then f is strictly increasing on M/En−1. If n is even then f is strictly
decreasing on each E1-class, and f is strictly increasing (decreasing) on
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Ek+1(M,a)/Ek for each a ∈ M , where 1 ≤ k ≤ n− 2 and k is odd (even). If
n is odd then f is strictly increasing on each E1-class, f is strictly decreasing
(increasing) on Ek+1(M,a)/Ek for each a ∈ M , where 1 ≤ k ≤ n− 2 and k
is odd (even).

It can be proved that Th(M) is a weakly o-minimal theory. Let p(x) :=
{x = x}. Obviously, p ∈ S1(∅) and p is non-algebraic. Consider the following
formula:

F (x, y) := y ≤ x ≤ f(y).

Obviously, F (x, y) is a p-preserving convex-to-right formula that is not
equivalence-generating. Here F (γ,M) consists of n convex sets for any γ ∈
p(M).

Thus, we established the following:

Proposition 3. For each natural n ≥ 1 there exist a weakly o-minimal theory
T , M |= T , non-algebraic p ∈ S1(∅) and a p-preserving convex-to-right (left)
formula F (x, y) such that for any γ ∈ p(M) the set F (γ,M) consists of n
convex sets in p(M).

Notation 1. Let E(x, y) be an equivalence relation with convex classes on
M , and f : M → M be a function to a de�nable sort. Take arbitrary a, b ∈ M
and suppose that f(b) ∈ M \M . We write E∗(a, f(b)) if a < f(b) and there
exists c ∈ M such that f(b) < c and E(a, c). We also write E∗(f(b), a) if
f(b) < a and there exists c ∈ M such that c < f(b) and E(c, a).

Proposition 4. Let T be a weakly o-minimal theory, M |= T , A ⊆ M , p ∈
S1(A) non-algebraic, F (x, y) a p-preserving convex-to-right (left) formula.
Suppose that the function f(y) := supF (M,y) is locally monotonic of depth
n on p(M) for some n ∈ ω. Then

(1) n is even (odd) i� f is locally increasing (decreasing) on p(M);
(2) F (γ,M) consists of n+ 1 convex sets in p(M).

Proof. By the hypothesis f(y) := supF (M,y) is locally monotonic of depth
n on p(M) for some n ∈ ω. Consequently, there exist A-de�nable equiva-
lence relations E1(x, y), . . . , En(x, y) partitioning p(M) into in�nitely many
in�nite convex classes so that E1(M,a) ⊂ . . . ⊂ En(M,a) for any a ∈ p(M).

Prove (1). If n is even then we assert that f is locally increasing on p(M).
Assume the contrary: f is locally decreasing on p(M). Then f is strictly
decreasing on each E1-class, f is locally increasing on p(M)/Ek for every
odd k ≤ n, f is locally decreasing on p(M)/Ek for every even k ≤ n.
Whence we obtain that f is strictly decreasing on p(M)/En. Then we have
a contradiction with the 1-indiscernibility of p(M).

Similarly, we can establish that if n is odd then f is locally decreasing on
p(M).

Let's prove (2). If f is locally monotonic of depth 1 then by (1) f is locally
decreasing on p(M), i.e. f is strictly decreasing on each E1-class and f is
strictly increasing on p(M)/E1. Take an arbitrary γ ∈ p(M) and consider
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E1(M,γ). Then there exist a1, a2 ∈ p(M) such that

a1 < a2, E1(a1, a2), f(a2) < γ < f(a1), E
∗
1(γ, f(a1)) and E∗

1(f(a2), γ).

Then we assert that the following convex sets are contained in F (γ,M):
the set de�nable by ¬E1(x, a2)∧ a2 < x ≤ γ and a nonempty proper convex
subset of the set de�nable by E1(x, a2) ∧ x < a2. These convex sets are
separable by the formula E1(x, a2) ∧ x > a2. Thus, F (γ,M) consists of two
convex sets in p(M).

Case A. n is even.
Then by (1) f is locally increasing on p(M). Take an arbitrary γ ∈ p(M)

and consider E1(M,γ). Then there exist a1, a2 ∈ p(M) such that

a1 < a2, E1(a1, a2), f(a1) < γ < f(a2), E
∗
1(f(a1), γ) and E∗

1(γ, f(a2)).

Then we assert that the following convex sets are contained in F (γ,M):
the sets de�nable by ¬En(x, a2)∧a2 < x ≤ γ, Ek(x, a2)∧¬Ek−1(x, a2)∧x <
a2 for every even 1 < k ≤ n, Ek(x, a2)∧¬Ek−1(x, a2)∧x > a2 for every odd
2 < k ≤ n, and a nonempty proper convex subset of the set de�nable by
E1(x, a2) ∧ x > a2. Observe that these convex sets are de�nably separable.
For example, ¬En(x, a2)∧a2 < x ≤ γ and En(x, a2)∧¬En−1(x, a2)∧x < a2
are separable by the formula

En(x, a2) ∧ ¬En−1(x, a2) ∧ x ≥ a2.

Thus, F (γ,M) consists of n+ 1 convex sets in p(M).
Case B. n is odd. This case considered similarly. □

Example 5. LetM := ⟨M,<,E2, R2⟩ be a linearly ordered structure, where
M = Q×Q is ordered lexicographically.

We de�ne E as follows: for any a = (a1, a2), b = (b1, b2) ∈ M we have
E(a, b) i� a1 = b1. Obviously, E(x, y) is an equivalence relation partitioning
M into in�nitely many in�nite convex classes so that the induced ordering
on E-classes is dense.

We de�ne R as follows: for any a = (a1, a2), b = (b1, b2) ∈ M we have

R(b, a) i� a1 ≤ b1 < a1 +
√
2.

Then r(y) := supR(M,y) is locally constant on M , and more exactly, r is
constant on each E-class and r is strictly increasing on M/E (i.e. r is locally
constant of depth 1 on M).

It can be proved that Th(M) is a weakly o-minimal theory. Let p(x) :=
{x = x}. Obviously, p ∈ S1(∅), p is non-algebraic and p(M) = M . Also,
R(x, y) is a p-preserving convex-to-right formula that is not equivalence-ge-
nerating. Observe that R(γ,M) is convex for any γ ∈ p(M).

Example 6. Let M := ⟨M,<,E2
1 , E

2
2 , R

2⟩ be a linearly ordered structure,
where M = Q3 is ordered lexicographically.

We de�ne E1 and E2 as follows: for any a = (a1, a2, a3), b = (b1, b2, b3) ∈
M we have E1(a, b) i� a1 = b1 ∧ a2 = b2, and E2(a, b) i� a1 = b1. Obviously,
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E1(x, y) and E2(x, y) are equivalence relations partitioning M into in�nitely
many in�nite convex classes so that E1(M,a) ⊂ E2(M,a) for any a ∈ M .

We de�ne R as follows: for any a = (a1, a2, a3), b = (b1, b2, b3) ∈ M we
have

R(b, a) i� b1 = a1 + 1 and b2 < −a2 +
√
2.

Then r(y) := supR(M,y) is locally constant on M , and more exactly,
r is constant on each E1-class, r is strictly decreasing on E2(M,a)/E1 for
each a ∈ M and r is strictly increasing on M/E2 (i.e. r is locally constant
of depth 2 on M).

It can be proved that Th(M) is a weakly o-minimal theory. Let p(x) :=
{x = x}. Obviously, p ∈ S1(∅), p is non-algebraic and p(M) = M . Also,
R(x, y) is a p-preserving convex-to-right formula that is not equivalence-ge-
nerating. Here R(γ,M) consists of two convex sets for any γ ∈ p(M).

Example 7. Let M := ⟨M,<,E2
1 , E

2
2 , . . . , E

2
n, f

1⟩ be a linearly ordered
structure, where M = Qn+1 is ordered lexicographically.

We de�ne Ek for each 1 ≤ k ≤ n as follows: for any a = (a1, a2, . . . , an,
an+1), b = (b1, b2, . . . , bn, bn+1) ∈ M we have

Ek(a, b) i� a1 = b1 ∧ a2 = b2 ∧ . . . ∧ an−k+1 = bn−k+1.

Obviously, Ek(x, y) is an equivalence relation partitioningM into in�nitely
many in�nite convex classes for each 1 ≤ k ≤ n so that E1(M,a) ⊂
E2(M,a) ⊂ . . . ⊂ En(M,a) for any a ∈ M .

We de�ne R as follows: for any a = (a1, . . . , an, an+1), b = (b1, . . . , bn,
bn+1) ∈ M we have

R(b, a) i� b1 = a1 + 1, b2 = −a2, . . . , bi = (−1)i+1ai, . . . , bn−1 = (−1)nan−1,

and bn < (−1)n+1an +
√
2. Then r(y) := supR(M,y) is locally constant

on M , r is constant on each E1-class and r is strictly increasing on M/En.
If n is even then r is strictly decreasing (increasing) on Ek+1(M,a)/Ek for
each a ∈ M , where 1 ≤ k ≤ n − 1 and k is odd (even). If n is odd then r
is strictly increasing (decreasing) on Ek+1(M,a)/Ek for each a ∈ M , where
1 ≤ k ≤ n− 1 and k is odd (even). Here r is locally constant of depth n on
M .

It can be proved that Th(M) is a weakly o-minimal theory. Let p(x) :=
{x = x}. Obviously, p ∈ S1(∅), p is non-algebraic and p(M) = M . Also,
R(x, y) is a p-preserving convex-to-right formula that is not equivalence-ge-
nerating. Here R(γ,M) consists of n convex sets for any γ ∈ p(M).

Proposition 5. Let T be a weakly o-minimal theory, M |= T , A ⊆ M , p ∈
S1(A) non-algebraic, F (x, y) a p-preserving convex-to-right (left) formula.
Suppose that the function f(y) := supF (M,y) is locally constant of depth n
on p(M) for some natural n ≥ 1. Then

(1) there exist A-de�nable equivalence relations E1(x, y), . . . , En(x, y) par-
titioning p(M) into in�nitely many in�nite convex classes so that E1(M,a) ⊂
. . . En(M,a) for any a ∈ p(M), f is strictly increasing on p(M)/En and n is
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even (odd) i� f is locally decreasing (increasing) on p(M)/Ek for every odd
k ≤ n and f is locally increasing (decreasing) on p(M)/Ek for every even
k ≤ n;

(2) F (γ,M) consists of n convex sets in p(M).

Proof. Prove (1). By the hypothesis f(y) := supF (M,y) is locally constant
of depth n on p(M) for some natural n ≥ 1. Consequently, there exist A-
de�nable equivalence relations E1(x, y), . . . , En(x, y) partitioning p(M) into
in�nitely many in�nite convex classes so that E1(M,a) ⊂ . . . ⊂ En(M,a)
for any a ∈ p(M), and f is constant on each E1-class.

Without loss of generality suppose n is even. Since f has depth n, f is
locally increasing or locally decreasing on p(M)/Ek for every odd k ≤ n
and f is locally decreasing or locally increasing on p(M)/Ek for every even
k ≤ n. If f is locally increasing on p(M)/E1 then f is strictly decreasing
on p(M)/En, whence we have a contradiction with the 1-indiscernibility of
p(M). Consequently, f is locally decreasing on p(M)/Ek on every odd k ≤ n
and f is locally increasing on p(M)/Ek on every even k ≤ n. Similar reasons
for case when n is odd.

Let's prove (2). If f is locally constant of depth 1 then by (1) f is constant
on each E1-class and f is strictly increasing on p(M)/E1. Take an arbitrary
γ ∈ p(M). Then there exist a1, a2 ∈ p(M) such that a1 < a2, ¬E1(a1, a2)
and f(a1) < γ < f(a2). Since f is strictly increasing on p(M)/E1, there
exist a nonempty proper convex subset of the set de�nable by the formula
¬E1(x, a1)∧x > a1 that de�nes F (γ,M). Thus, F (γ,M) is convex in p(M).

Case A. n is even.
Then by (1) f is locally decreasing on p(M)/Ek for every odd k ≤ n and

f is locally increasing on p(M)/Ek for every even k ≤ n.. Take an arbitrary
γ ∈ p(M). Then there exist a1, a2 ∈ p(M) such that a1 < a2, E2(a1, a2),
¬E1(a1, a2), f(a2) < γ < f(a1). Then we assert that the following convex
sets are contained in F (γ,M): the sets de�nable by ¬En(x, a2)∧a2 < x ≤ γ,
Ek(x, a2) ∧ ¬Ek−1(x, a2) ∧ x < a2 for every even 1 < k ≤ n, Ek(x, a2) ∧
¬Ek−1(x, a2) ∧ x > a2 for every odd 2 < k ≤ n, and a nonempty proper
convex subset of the set de�nable by E2(x, a2)∧¬E1(x, a2)∧x < a2. Observe
that these convex sets are de�nably separable. For example,

¬En(x, a2) ∧ a2 < x ≤ γ and En(x, a2) ∧ ¬En−1(x, a2) ∧ x < a2

are separable by the formula En(x, a2) ∧ ¬En−1(x, a2) ∧ x ≥ a2. Thus,
F (γ,M) consists of n convex sets in p(M).

Case B. n is odd. This case considered similarly. □

Theorem 3. Let T be a weakly o-minimal theory, M |= T , A ⊆ M , p ∈
S1(A) non-algebraic, F (x, y) a p-preserving convex-to-right formula that is
not equivalence-generating. Then

G(x, y) := ∃t[F (y, t) ∧ t ≤ x ≤ y]

is a p-preserving convex-to-left formula that is also not equivalence-genera-
ting.
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Proof. Consider f(y) := supF (M,y). By Theorems 1 and 2 either f is locally
monotonic of depth n for some n ∈ ω or f is locally constant of depth n for
some natural n ≥ 1.

Case 1. f is locally monotonic of depth n for some n ∈ ω.
By Proposition 4 F (γ,M) consists of n+1 convex sets in p(M) being to the

left from γ and including the element γ. Then obviously G(M,γ) ∩ p(M) is
convex, γ is the right endpoint of G(M,γ)∩ p(M) and γ ∈ G(M,γ), whence
we obtain that G(x, y) is a p-preserving convex-to-left formula. Since f is
strictly increasing on p(M)/En, we obatin that G(x, y) is not equivalence-
generating.

Case 2. f is locally constant of depth n for some natural n ≥ 1.
By Proposition 5 F (γ,M) consists of n convex sets in p(M) being to the

left from γ and including the element γ. The remaining reasons are similar
as in Case 1. □
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