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Abstract:We investigate a frictionless contact problem between a
linear elastic body and a rigid-plastic foundation. The problem can
be formulated as a variational inequality or constrained minimiza-
tion problem of the potential energy functional. To release con-
straints, we apply the duality scheme and prove convergence to
a saddle point for the modi�ed Lagrange functional. Finally, we
present numerical results using the �nite element method and
provide the corresponding mechanical interpretations.

Keywords: variational inequality, contact problem, modi�ed Lag-
range functional

1 Introduction

Mechanical contact problems and their simulations are of great interest to
industry. In particular, their analysis is primarily carried out by using the
weak formulation, which is usually in the form of a variational inequality or
constrained minimization problem. The theory of variational inequalities has
undergone signi�cant development in recent decades and is now a powerful
mathematical tool providing existence, uniqueness and convergence results
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for various nonlinear boundary value problems in contact mechanics, see for
instance [1, 2, 3, 4, 5, 6].
In this paper, we consider a mathematical model which describes the

frictionless contact between an elastic body and a foundation made of a rigid-
plastic material with yield limit ξ. The variational formulation and analysis
of this problem are presented in [7, 8]. To solve this problem, we employ a
duality method based on modi�ed Lagrange functionals. Its use is explained
by the fact that, for the classical Lagrange functionals, it is possible to prove
the convergence of the iterative Uzawa method for �nding a saddle point
by a primal variable only, under the simultaneous condition that the step in
the dual variable is su�ciently small [10, 11]. The application of modi�ed
Lagrange functionals to solve variational inequalities in mechanics has been
introduced and studied by the authors in papers [12, 13, 14] for problems
with a crack, and in [15, 16] and the references therein for contact problems.
In the �nite-dimensional case, similar constructions were proposed in the
monographs of R.T. Rockafellar [17], D.P. Bertsekas [18] and B.T. Polyak
[19].
In this paper we show the form of the saddle point of the classical Lagrange

functional and research its existence under the assumption of additional
regularity. Since the saddle points of the classical and modi�ed Lagrange
functionals coincide, the modi�ed approach allows us to prove convergence
to the saddle point of the Uzawa method and to implement the gradient
method to solve the dual problem. To demonstrate the e�ectiveness of the
proposed method, numerical results are presented using the �nite element
method.
The rest of the paper is organized as follows. Section 2 describes the initial

boundary value problem and the corresponding variational formulation. In
Section 3, we introduce the dual formulation of the problem and analyze
convergence of Uzawa method to the saddle point. Finally, Section 4 presents
the results of numerical experiments and gives mechanical interpretations.

2 Problem statement

We consider a two-dimensional contact problem between an elastic body
Ω and a rigid-plastic foundation. The boundary Γ = ∂Ω is assumed to be
Lipschitz continuous and is partitioned into three disjoint and measurable
parts: Γd, Γn and Γc, such that the measure of Γd is positive. Suppose that
on part Γd of the boundary the elastic body is rigidly �xed, on part Γn the
surface tractions p ∈ [L2(Γn)]

2 are applied, and Γc represents the possible
contact part (see Fig. 1). Moreover, volume forces f ∈ [L2(Ω)]

2 act in Ω.
We denote by u = (u1, u2) the displacement �eld of elastic body Ω, ε(u)

the linearized strain tensor, σ(u) the stress tensor and by ν the outward
unit normal on Γ. Assume that strain and stress tensors related by the linear
Hooke's law

σ(u) = λ tr(ε(u))I + 2µε(u),
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Γd Γd

Γn

Γc

Ω

Ðèñ. 1. Contact with rigid-plastic foundation.

where λ ≥ 0 and µ ≥ 0 denote the Lam�e constants and I is the identity
matrix.
We consider the following boundary value problem in Ω. Find a displace-

ment �eld u such that

−div σ(u) = f in Ω, (1)

u = 0 on Γd, (2)

σ(u)ν = p on Γn, (3)

στ (u) = 0, −ξ ≤ σν(u) ≤ 0, −σν(u) =

{
0 if uν < 0,

ξ if uν > 0.
on Γc, (4)

where uν = uiνi, σν(u) = σij(u)νiνj are normal components of the displace-
ment vector u and stress vector (σ1j(u)νj , σ2j(u)νj) on Γc. We assume that
there is no friction on Γc, so the tangential stress στ (u) = σij(u)νj −σν(u)ν
is equal to zero. Note that we use Einstein's summation convention to sum
over repeated indices i, j = 1, 2.
Boundary value problem (1)-(4) belongs to the class of free boundary

problems. Condition (4) models the contact with a foundation made of a
rigid-plastic material, where the function ξ ∈ L2(Γc), such that ξ(x) > 0 a.e.
x ∈ Γc, can be interpreted as the yield limit. This means that foundation
behaves like a rigid body as long as the inequality −ξ < σν(u) ≤ 0 holds.
When the threshold σν(u) = −ξ is reached, it allows penetration and o�ers
no additional resistance as surface plastic �ow begins [7, 8].
For the weak formulation of the problem, we introduce the Hilbert space

of virtual displacements

V =
{
v ∈ H1(Ω) := [H1(Ω)]2 | v = 0 on Γd

}
.

Next, we de�ne the symmetric bilinear form a : V×V → R, the linear form
b : V → R, and the function j : V → R

a(u,v) =

∫
Ω

σ(u) : ε(v) dx, b(v) =

∫
Ω

f · v dx+

∫
Γn

p · v ds, j(v) =

∫
Γc

ξv+ν ds,
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where v+ν = max{vν , 0}, σ(u) : ε(v) = σij(u)εij(v), i, j = 1, 2. The function
j is continuous, convex and non-di�erentiable. Thus, j is weakly lower semi-
continuous on V.
Using these de�nitions we obtain the following variational formulation of

problem (1)-(4). Find a displacement �eld u ∈ V such that

a(u,v − u) + j(v)− j(u) ≥ b(v − u) ∀v ∈ V. (5)

Variational inequality (5) can be formulated as the minimization problem{
J(v) → min,

v ∈ V.
(6)

The functional to be minimized is de�ned as J(v) = Π(v) + j(v), where
Π(v) is the potential energy functional

Π(v) =
1

2
a(v,v)− b(v),

consisting of the internal energy of deformation 1
2a(v,v) and the work of the

external loads b(v). Function j(v) describes the work of the contact forces.
With the assumption meas(Γd) > 0, the functional Π(v) is convex, coer-

cive and weakly lower semi-continuous on V. Therefore using Stampacchia's
theorem [9], there exists a unique solution u = argmin

v∈V
J(v) of the problem

(6).

3 Dual formulation and analysis

To solve the extremal problem (6), we apply a modi�ed duality scheme
that allows us to smooth the non-di�erentiable functional J(v). Using the
fact that v+ν = (vν + |vν |)/2, we can rewrite problem (6) in an equivalent
form {

J̄(v, w) → min,
(v, w) ∈ V× L2(Γc), w = 0 on Γc.

(7)

Here functional de�ned as

J̄(v, w) = Π(v) +
1

2

∫
Γc

ξvν ds+
1

2

∫
Γc

ξ|vν − w| ds.

To release the equality constraint w = 0, we introduce the classical Lag-
range functional on the space V× [L2(Γc)]

2

L(v, w, l) = J̄(v, w) +

∫
Γc

lw ds.

The corresponding saddle-point problem consists in funding a point
(v∗, w∗, l∗) ∈ V× [L2(Γc)]

2 which satis�es the two-sided inequality

L(v∗, w∗, l) ≤ L(v∗, w∗, l∗) ≤ L(v, w, l∗) ∀(v, w, l) ∈ V× [L2(Γc)]
2. (8)
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Let us show that v∗ is the solution to problem (7). From the left inequality
of (8) we have

J̄(v∗, w∗) +

∫
Γc

lw∗ ds ≤ J̄(v∗, w∗) +

∫
Γc

l∗w∗ ds ∀l ∈ L2(Γc)

so that ∫
Γc

w∗(l − l∗) ds ≤ 0 ∀l ∈ L2(Γc).

Taking l = 2l∗ and l = 0, we deduce that w∗ = 0. Using the right inequality
of (8), we �nd that

J̄(v∗, w∗) +

∫
Γc

l∗w∗ ds ≤ min
v,w

{
J̄(v, w) +

∫
Γc

l∗w ds
}
≤ min

v∈V,w=0
J̄(v, w).

Thus, {v∗, w∗} = {v∗, 0} is a solution to the problem (7) and v∗ = u. In
general, the opposite statement is not true. The solution of the problem (7)
is not guaranteed to correspond to a certain saddle point of L(v, w, l) [10].

Theorem 1. Suppose that the solution u of the problem (6) belongs to space

H2(Ω). Then (u, 0,−σν(u) − ξ
2) is the unique saddle point of L(v, w, l) on

the space V× [L2(Γc)]
2.

Proof. If u ∈ H2(Ω), then from the trace theorem we have unique σν(u) ∈
H1/2(Γc) ⊂ L2(Γc) [4]. Therefore −σν(u) − ξ

2 ∈ L2(Γc). It is clear that the
left part of (8) is satis�ed because w∗ = 0. It remains to show that

L(v, w,−σν −
ξ

2
)− L(u, 0,−σν −

ξ

2
) ≥ 0, (9)

where σν ≡ σν(u).
We rewrite it as

1

2
a(v,v)− b(v) +

1

2

∫
Γc

(ξvν + ξ|vν − w|) ds+
∫
Γc

(−σν −
ξ

2
)w ds− 1

2
a(u,u)+

+ b(u)− 1

2

∫
Γc

(ξuν + ξ|uν |) ds =

= a(u,v − u)− b(v − u) +
1

2
a(v − u,v−u) +

1

2

∫
Γc

(ξvν + ξ|vν − w|) ds+

+

∫
Γc

(−σν −
ξ

2
)w ds−

∫
Γc

ξu+ν ds.
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Using the Green formula for a(u,v − u) and the fact that
ξu+ν = −σνuν , στ = 0 on Γc we obtain

1

2
a(v − u,v − u) +

∫
Γc

σν(vν − uν) ds+
1

2

∫
Γc

(ξvν + ξ|vν − w|) ds+

+

∫
Γc

(−σν −
ξ

2
)w ds−

∫
Γc

(−σνuν) ds =

=
1

2
a(v − u,v − u) +

∫
Γc

σνvν ds+
1

2

∫
Γc

(ξvν + ξ|vν − w|) ds−
∫
Γc

(σν +
ξ

2
)w ds.

In order to show the ful�llment of (9), we need to consider 3 cases:
1. For w = vν .

1

2
a(v−u,v−u)+

∫
Γc

σνvν ds+
1

2

∫
Γc

ξvν ds−
∫
Γc

(σν +
ξ

2
)vν ds =

1

2
a(v−u,v−u) ≥ 0.

2. For w < vν . Further we omit the bilinear form for simplicity.∫
Γc

σνvν ds+
1

2

∫
Γc

(ξvν + ξ(vν − w)) ds+

∫
Γc

(−σν −
ξ

2
)w ds =

=

∫
Γc

(σνvν + ξvν − ξw − σνw) ds =

∫
Γc

(vν − w)(σν + ξ) ds ≥ 0.

3. For w > vν .∫
Γc

σνvν ds+
1

2

∫
Γc

(ξvν − ξ(vν − w)) ds+

∫
Γc

(−σν −
ξ

2
)w ds =

=

∫
Γc

σν(vν − w) ds ≥ 0.

Denote by p = −σν(u)− ξ
2 . Above, we showed that (u, 0, p) is saddle point

of L on the space V× [L2(Γc)]
2.

Now we show uniqueness of saddle point. Let (u∗, 0, p∗) be another saddle
point of L on V× [L2(Γc)]

2. From the second inequality of (8) we have

L(u, 0, p) ≤ L(v, w, p) ∀(v, w) ∈ V× L2(Γc). (10)

Analogously,

L(u∗, 0, p∗) ≤ L(v, w, p∗) ∀(v, w) ∈ V× L2(Γc). (11)

Taking (v, w) = (u∗, 0) in (10) and (v, w) = (u, 0) in (11) we obtain

J̄(u, 0) ≤ J̄(u∗, 0) ≤ J̄(u, 0). (12)

Hence J̄(u, 0) = J̄(u∗, 0). Using this equality it can be shown that a(u∗ −
u,u∗ − u) = 0, i.e., u∗ = u.
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For arbitrary real number λ > 0 and (h, θ) ∈ V × L2(Γc) take (v, w) =
(u + λh, λθ) in (10), (v, w) = (u − λh,−λθ) in (11). The sum of obtained
inequalities can be expressed as∫

Γc

ξ|uν | ds ≤ a(λh, λh) +
1

2

∫
Γc

ξ|uν + λhν − λθ| ds+

+
1

2

∫
Γc

ξ|uν − λhν + λθ| ds+
∫
Γc

pλθ ds−
∫
Γc

p∗λθ ds.

Since h is arbitrary, we can take such function that hν = θ on Γc, then

0 ≤ λ2a(h,h) +

∫
Γc

(p− p∗)λθ ds ∀θ ∈ L2(Γc). (13)

Dividing (13) by λ and tending to zero, we have∫
Γc

(p− p∗)θ ds ≥ 0 ∀θ ∈ L2(Γc),

which implies that p∗ = p. The theorem is proved. □

Remark 1. Conditions under which the solution of the problem (6) has
additional regularity were not studied and remained outside the scope of
this article. Therefore, the theorem 1 has a conditional nature, and the H2-
regularity assumption is su�cient to prove it.

Introduce the modi�ed Lagrange functional on the space V× [L2(Γc)]
2

M(v, w, l) = J̄(v, w) +

∫
Γc

lw ds+
r

2

∫
Γc

w2 ds, r > 0− const

and give the de�nition of a saddle point for M(v, w, l).

De�nition 1. The point (v∗, w∗, l∗) ∈ V×[L2(Γc)]
2 is called the saddle point

of the modi�ed Lagrange functional M(v, w, l) if for any (v, w) ∈ V×L2(Γc)
and l ∈ L2(Γc) the two-sided inequality

M(v∗, w∗, l) ≤ M(v∗, w∗, l∗) ≤ M(v, w, l∗)

holds.

De�ne the dual functional

M(l) = inf
(v,w)∈V×L2(Γc)

M(v, w, l) ∀l ∈ L2(Γc).

Dual functional has the other representation

M(l) = inf
m∈L2(Γc)

{
χ(m) +

∫
Γc

lmds+
r

2

∫
Γc

m2 ds
}
,
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where

χ(m) =

 inf
(v,w)∈Km

J̄(v, w), if Km = {(v, w) ∈ V× L2(Γc) : w = m} ≠ ∅,

+∞, otherwise.

Functional χ(m) is called sensitivity functional. It can be proved that
χ(m) is a proper weakly lower semicontinuous functional in L2(Γc) [12].
For an arbitrary point l ∈ L2(Γc) let us denote the functional

Fl(m) = χ(m) +

∫
Γc

lmds+
r

2

∫
Γc

m2 ds.

Obviously Fl(m) is a strongly convex functional. It means that for any l
there is a unique element m(l) = argmin

m∈L2(Γc)
Fl(m).

It can be shown that sets of saddle points for both the modi�ed and
classical Lagrange functionals coincide [18, 20]. Typically, the search for
saddle points is conducted using classical Lagrange functional. Nonetheless,
these methods occasionally do not converge due to the linear nature of
classical functionals with respect to the dual variable [10]. Considering the
coincidence of saddle points, we propose the following algorithm for �nding
a saddle point. Set the initial element l0 ∈ L2(Γc). Next, for k = 0, 1, . . . we
perform two steps:

(i) Knowing point l0, we �nd

(vk+1, wk+1) = argmin
(v,w)∈V×L2(Γc)

M(v, w, lk). (14)

(ii) Determine lk+1 by the formula

lk+1 = lk + rwk+1. (15)

For the dual functional M(l) can be proved the next important statement,
similar as in [15].

Theorem 2. The dual functional M(l) is Gateaux di�erentiable in L2(Γc)

and its derivative ∇M(l) satis�es a Lipschitz condition with a constant
1

r
,

that is

∥∇M(l1)−∇M(l2)∥L2(Γc) ≤
1

r
∥l1 − l2∥L2(Γc) ∀ l1, l2 ∈ L2(Γc).

In addition, the equality ∇M(l) = m(l) is correct.

Proof. Since the sensitivity functional χ(m) is weakly lower semicontinuous
on L2(Γc), then the functional

Fl(m) = χ(m) +

∫
Γc

lmds+
r

2

∫
Γc

m2 ds

is also a weakly lower semicontinuous on L2(Γc). From the convexity of χ(m)
it follow that its epigraph epiχ = {(m, a) ∈ L2(Γc) × R : χ(m) ≤ a} is a
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closed convex set on L2(Γc)× R, where R = (−∞,+∞). Then epiχ can be
strictly separated by a hyperplane from an arbitrary �xed point of the strict
hypograph hypS = {(m, a) ∈ L2(Γc)×R : χ(m) > a}. This means that there
exist such Ψ ∈ L2(Γc), α ∈ R, for which the inequality holds∫

Γc

Ψmds+ χ(m) + α ≥ 0 ∀m ∈ L2(Γc).

From here it follows that Fl(m) → ∞ under ∥m∥L2(Γc) → ∞, which
means Fl(m) has the property of coercivity. From the coercivity and weak
lower semicontinuity of the functional Fl(m) it follows the existence of the
elementm(l) = argmin

m∈L2(Γc)
Fl(m). Moreover, the elementm(l) is unique for any

l due to the strong convexity of Fl(m) in L2(Γc).
From the strong convexity of Fl(m) it follows that for element m(l) such

inequality

χ(m(l)) +

∫
Γc

lm(l) ds+
r

2

∫
Γc

m(l)2 ds+
r

2
∥m−m(l)∥2L2(Γc)

≤

≤ χ(m) +

∫
Γc

lmds+
r

2

∫
Γc

m2 ds ∀l ∈ L2(Γc)

is correct.
Let us take two arbitrary elements l̂, ˆ̂l from L2(Γc). Denote m̂ = m(l̂),

ˆ̂m = m(ˆ̂l). We write the last inequality for m = m̂, and then for m = ˆ̂m.

χ(m̂) +

∫
Γc

l̂m̂ ds+
r

2

∫
Γc

m̂2 ds+
r

2
∥ ˆ̂m− m̂∥2L2(Γc)

≤

≤ χ( ˆ̂m) +

∫
Γc

l̂ ˆ̂mds+
r

2

∫
Γc

ˆ̂m2 ds,

χ( ˆ̂m) +

∫
Γc

ˆ̂l ˆ̂mds+
r

2

∫
Γc

ˆ̂m2 ds+
r

2
∥ ˆ̂m− m̂∥2L2(Γc)

≤

≤ χ(m̂) +

∫
Γc

ˆ̂lm̂ ds+
r

2

∫
Γc

m̂2 ds.

(16)

Adding these two inequalities, we get

r∥m̂− ˆ̂m∥2L2(Γc)
≤

∫
Γc

(l̂ − ˆ̂l)( ˆ̂m− m̂) ds. (17)

Finally, we use the Cauchy-Schwarz inequality in (17) and obtain

∥m̂− ˆ̂m∥L2(Γc) ≤
1

r
∥l̂ − ˆ̂l∥L2(Γc). (18)



ON CONTACT BETWEEN BODY AND RIGID-PLASTIC FOUNDATION 283

In addition, it follows from (16) that∫
Γc

ˆ̂l( ˆ̂m− m̂) ds+
r

2

∫
Γc

( ˆ̂m2 − m̂2) ds ≤ χ(m̂)− χ( ˆ̂m) ≤

≤
∫
Γc

l̂( ˆ̂m− m̂) ds+
r

2

∫
Γc

( ˆ̂m2 − m̂2) ds.

Therefore, the limit equality lim
ˆ̂
l→l̂

χ( ˆ̂m) = χ(m̂) holds. It means that the

dual functional M(l) is continuous in L2(Γc). Hence, the subdi�erential
∂(−M(l)) of the convex functional −M(l) is not an empty set for any
l ∈ L2(Γc). To prove the di�erentiability of M(l), it is enough to show
that ∂(−M(l)) consists of only one element [21]. This element will be the
derivative of the dual functional M(l). Let the element l ∈ L2(Γc) be �xed
and −t ∈ ∂(−M(l)). Then for any ζ ∈ L2(Γc) we have

M(ζ) ≤ M(l) +

∫
Γc

t(ζ − l) ds. (19)

From (19) and m(l) = argmin
m∈L2(Γc)

Fl(m), it follows that for real β > 0 such

inequality is correct

β−1

∫
Γc

(m(ζ)− t)(ζ − l) ≤ 0.

Let us put ζ = l+ βp, where p is an arbitrary element from L2(Γc). Then
the last inequality takes the form

β−1β

∫
Γc

(m(l + βp)− t)p ≤ 0.

Taking into account (18), under β → 0 we have∫
Γc

(m(l)− t)p ≤ 0 ∀p ∈ L2(Γc).

It means that t = m(l). From the uniqueness of the element m(l) for a
�xed l it follows that ∇M(l) = m(l). Together with (18), this ensures the
Gateaux di�erentiability of the functional M(l) and the satisfaction of the
Lipschitz condition for its derivative. Theorem has been proved. □

Let us consider the dual problem{
M(l) → sup,

l ∈ L2(Γc).
(20)
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Since the derivative of the M(l) satis�es the Lipschitz condition, then to
solve the problem (20) one can apply the well-known gradient method

lk+1 = lk + r∇M(lk), k = 0, 1, . . . (21)

Introduce the mapping P(l) = l + r∇M(l), ∀l ∈ L2(Γc).

Theorem 3. Let the set of optimal solutions

Y = {y ∈ L2(Γc) : M(y) = sup
κ∈L2(Γc)

M(κ)}

of the dual problem (20) be non-empty. Then P(l) = l for any l ∈ Y and,
moreover,

∥P(l)− P(z)∥L2(Γc) < ∥l − z∥L2(Γc)

for any z /∈ Y.

Proof. The functional M(l) is concave and di�erentiable. Therefore, the
condition l ∈ Y is equivalent to the condition ∇M(l) = 0. Hence P(l) = l
for any l ∈ Y. Let l ∈ Y, z ∈ L2(Γc) \ Y. From Theorem 2 it follows
∇M(l) = m(l). Then

∥P(l)− P(z)∥2L2(Γc)
= ∥l − z + r(m(l)−m(z))∥2L2(Γc)

=

= ∥l − z∥2L2(Γc)
+ 2r

∫
Γc

(l − z)(m(l)−m(z)) ds+ r2∥m(l)−m(z)∥2L2(Γc)
.

From here and inequality (17) we have

∥P(l)− P(z)∥2L2(Γc)
≤ ∥l − z∥2L2(Γc)

− 2r2∥m(l)−m(z)∥2L2(Γc)
+

+ r2∥m(l)−m(z)∥2L2(Γc)
= ∥l − z∥2L2(Γc)

− r2∥m(l)−m(z)∥2L2(Γc)
,

that is ∥P(l)− P(z)∥2L2(Γc)
< ∥l − z∥2L2(Γc)

. Theorem has been proved. □

We will further show that formula (15) coincides with the gradient method
(21) for solving the dual problem (20). We have

M(l) = inf
(v,w)∈V×L2(Γc)

{
J̄(v, w) +

∫
Γc

lw ds+
r

2

∫
Γc

w2 ds
}
=

= inf
m∈L2(Γc)

{
χ(m)+

∫
Γc

lmds+
r

2

∫
Γc

m2 ds
}
= J̄(v̄, w̄)+

∫
Γc

lm̄ ds+
r

2

∫
Γc

m̄2 ds,

where (v̄, w̄) = argmin
(v,w)∈V×L2(Γc)

J̄(v, w), m̄ = w̄.

Therefore, the formula of the gradient method (21) can be rewritten as
follows

lk+1 = lk + r∇M(lk) = lk + rm(lk) = lk + rm̄k+1 = lk + rw̄k+1.

This shows that formulas (15) and (21) are equivalent.
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Theorem 4. Let the set Y be non-empty. Then for sequence {lk}, where
lk = lk−1 + r∇M(lk−1), k = 1, 2, . . . , the limit equality

lim
k→∞

M(lk) = max
l∈L2(Γc)

M(l)

is ful�lled for an arbitrary starting l0 ∈ L2(Γc).

Proof. Let l∗ ∈ Y. From theorem 3 it follows

∥lk+1 − l∗∥L2(Γc) < ∥lk − l∗∥L2(Γc), k = 0, 1, . . .

Hence, non-negative number sequence {∥lk − l∗∥L2(Γc)} is decreasing and

bounded from below, so it has a limit. Moreover, it is known that lim
k→∞

m(lk) =

0 [12, 19].
Then

lim
k→∞

M(lk) = lim
k→∞

inf
m∈L2(Γc)

{
χ(m) +

∫
Γc

lkmds+
r

2

∫
Γc

m2 ds
}
=

= lim
k→∞

{
χ(m(lk))+

∫
Γc

lkm(lk) ds+
r

2

∫
Γc

m(lk)2 ds
}
= lim

k→∞
χ(m(lk)) ≥ χ(0).

On the other hand, following the de�nition of the functional M(l), we
have

M(lk) = χ(m(lk)) +

∫
Γc

lkm(lk) ds+
r

2

∫
Γc

m(lk)2 ds =

= inf
m∈L2(Γc)

{
χ(m) +

∫
Γc

lkmds+
r

2

∫
Γc

m2 ds
}
≤ χ(0).

Then

lim
k→∞

{
χ(m(lk)) +

∫
Γc

lkm(lk) ds+
r

2

∫
Γc

m(lk)2 ds
}
≤ χ(0).

Therefore lim
k→∞

M(lk) exists and

lim
k→∞

M(lk) = χ(0) = max
l∈L2(Γc)

M(l).

Theorem has been proved. □

Theorem 5. Let the set of saddle points of the modi�ed Lagrange functional
M(v, w, l) be non-empty, and let the set of points (vk+1, wk+1, lk) belong to

the space H2(Ω)× [H1/2(Γc)]
2 and be bounded in it. Then any limit point of

the sequence {(vk+1, wk+1, lk)}, generated by the Uzawa method (14), (15),
is a saddle point of M(v, w, l).
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Proof. From the conditions of the theorem it follows that the sequence
{(vk+1, wk+1, lk)} is compact in H1(Ω) × [H1/2(Γc)]

2. It means, that the
sequence {lk} has at least one limit point l in L2(Γc). Let l = lim

i→∞
lki and

l∗ ∈ Y is arbitrary. From the continuity of the operator P the validity of the
relations follows

∥P(l)− P(l∗)∥L2(Γc) = lim
i→∞

∥P(lki)− P(l∗)∥L2(Γc) =

= lim
i→∞

∥lki+1 − l∗∥L2(Γc) = ∥l − l∗∥L2(Γc).

The last equality in the chain of equalities is a consequence of the fact that
the sequence {∥lk−l∗∥L2(Γc)} is convergent. From theorem 3 now it follows l ∈
Y. So we have lim

i→∞
∥lki − l∥L2(Γc) = 0. Besides, ∥lj − l∥L2(Γc) ≤ ∥lki − l∥L2(Γc)

for all j ≥ ki, i = 1, 2, . . . By tending i to in�nity, while maintaining the
inequality j ≥ ki, we obtain lim

j→∞
lj = l. So {lj} is a sequence converging to

the optimal solution of the dual problem (20).
Now consider the sequence {(vk+1, wk+1)}. It is compact in V × L2(Γc).

Therefore it has at least one limit point (v, w). Without loss of generality,
we can assume that {(vk+1, wk+1)} is a strongly convergent sequence and

lim
k→∞

(vk+1, wk+1) = (v, w)

in space V× L2(Γc). Since J̄(vk, wk) = χ(m(lk−1)), then

J̄(v̄, w̄) = lim
k→∞

J̄(vk+1, wk+1) = lim
k→∞

χ(m(lk)) = χ(0).

Thus, (v, w, l) = (v, 0, l) is a saddle point of the modi�ed Lagrange functional
M(v, w, l). □

The minimization problem with respect to (v, w) can be rewritten as
follows [15]

inf
(v,w)∈V×L2(Γc)

M(v, w, l) =

= inf
(v,w)∈V×L2(Γc)

{
Π(v)+

1

2

∫
Γc

ξvν ds+
1

2

∫
Γc

ξ|vν − w| ds+
∫
Γc

(
lw +

r

2
w2

)
ds
}

= inf
v∈V

{
Π(v) +

1

2

∫
Γc

ξvν ds+

∫
Γc

inf
w∈L2(Γc)

(
1

2
ξ|vν − w|+ lw +

r

2
w2

)
ds
}
.

Let us de�ne the last expression under the integral as a function of vν

Ξ(vν) = inf
w∈L2(Γc)

(
1

2
ξ|vν − w|+ lw +

r

2
w2

)
.
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It has an explicit representation in the form

Ξ(vν) =


−0.5ξvν −

(0.5ξ + l)2

2r
, vν < w = −0.5ξ + l

r
,

lvν +
r

2
v2ν , −0.5ξ + l

r
≤ vν = w ≤ 0.5ξ − l

r
,

0.5ξvν −
(0.5ξ − l)2

2r
, vν > w =

0.5ξ − l

r
.

It is possible to show that Ξ(vν) is a continuously di�erentiable convex
function and its derivative at the points −(0.5ξ + l)/r, (0.5ξ − l)/r is equal
to −0.5ξ, 0.5ξ respectively.
This gives us the problem of minimizing the continuously di�erentiable

functional M̃(v, l) on the space V in (14)

inf
v∈V

M̃(v, l) = inf
v∈V

{
Π(v) +

1

2

∫
Γc

ξvν ds+

∫
Γc

Ξ(vν) ds
}
.

The considered approach allows us to replace the problem of minimizing
nondi�erentiable functional (7) with a smooth problem of �nding saddle
point of the modi�ed Lagrange functional. This fact makes it possible to use
e�ective generalized Newton methods for its numerical solution.

4 Numerical experiments

This section is devoted to the numerical solution of the plane strain
problem based on the �nite element method.
Example 1. The body Ω = (0, 5) × (0, 1) (in m) is made of an elastic

isotropic, homogeneous material characterized by Young's modulus E = 2000
N ·m−2 and Poisson's ratio µ = 0.3. It is �xed along Γd = ({0} × [0, 1]) ∪
({5}×[0, 1]) and loaded by surface tractions of density p = (0,−20 sin(πx1/5))
N ·m−1 on Γn = (0, 5)×{1}. Part Γc = (0, 5)×{0} represents the potential
contact region. The volume forces will be neglected, i.e. f = 0 in Ω.
We construct a regular mesh with step size h = 1

N by dividing body Ω into
5N ×N 4-node quadrilateral �nite elements (Q1). The mesh size h varies to
obtain problems of di�erent sizes.
To solve the discrete problem of minimizing a piecewise quadratic functi-

onal, we use the generalized Newton method [15, 22, 23] and choose the
following stopping criterion for it

∥u̇i+1
h − u̇i

h∥2
∥u̇k+1

h ∥2
< 10−10, i = 0, 1, . . . ,

where u̇h is vector of displacement values at the mesh nodes and ∥·∥2 denotes
the Euclidean norm. The parameter r is taken equal to 108, which ensures
fast convergence of the gradient method in the Uzawa algorithm. We choose

∥l̃k+1
h − l̃kh∥2
∥l̃k+1

h ∥2
< 10−8
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as stopping criterion for it. Here l̃h is the vector whose components are the
values of dual variable at the contact nodes.
All experiments are implemented in Python, using the scikit-fem library

ver. 10.0.0 [24] for performing �nite element assembly and CuPy library [25]
for GPU-accelerated computing. Computation was carried out on IBM Power
System AC922 (8335-GTH) server with NVIDIA Tesla V100 GPUs.
Table 1 presents results for the di�erent mesh sizes with ξ = 2 N ·m−1,

where np, nd are the numbers of primal (displacements) and dual (stresses)
variables respectively.

Òàáëèöà 1. The number of Uzawa iterations for di�erent
meshes.

h np nd Uzawa it J(uh), N ·m
1/8 738 41 3 -3.906382
1/16 2754 81 3 -3.954664
1/32 10626 161 3 -3.969465
1/64 41730 321 3 -3.974141
1/128 165378 641 3 -3.975677
1/256 658434 1281 3 -3.976198
1/512 2627586 2561 3 -3.976381

It can be seen that the number of iterations of the Uzawa method does
not depend on h and the values of the energy functional J(uh) stabilize with
decreasing h.
Fig. 2 shows the dependence of the relative error on the mesh size h. We

use the numerical solution u∗ corresponding to h = 1/512 as the reference
solution for computing the solution errors, since the exact solution u is not
available. The results highlight the linear asymptotic convergence of the
numerical solutions, where the energy norm has the form ∥v∥E =

√
a(v,v).

The number of Uzawa iterations with respect to ξ is shown in Table 2.
It can be seen that with an increase in ξ, the number of iterations slightly
increases. Calculations show that increasing the yield limit makes the founda-
tion more rigid and for a su�ciently large ξ, it starts to behave like a rigid
foundation. In Figs. 3a, 3b we can observe that the foundation is deformed
when the normal stress reaches the yield limit.

Òàáëèöà 2. Dependence of the number of Uzawa iterations
on ξ with h = 1/128.

ξ 4 8 12 16 18 20
Uzawa it 3 3 3 4 4 4

The resulting deformations of the body and the von Mises stresses are
shown in Fig. 4.
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Ðèñ. 2. Relative errors with respect to the mesh size h using
log2 scales.
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Ðèñ. 3. Normal displacements (A) and stresses (B) on Γc

for di�erent ξ.

Ðèñ. 4. Deformation and Von mises stress with ξ = 16.

Example 2. The problem consists of an in�nitely long elastic cylinder
with radius R=8 resting on rigid-plastic foundation
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S =
{
(x1, x2) ∈ R2|x2 ≤ 0

}
, where d is initial gap between them. The body

has the same material parameters as in the �rst example. Taking into account
the symmetry of the problem we de�ne

Ω =

{
(x1, x2) ∈ R2| − 8 ≤ x1 ≤ 8, R−

√
R2 − x21 ≤ x2 ≤ 8

}
.

We impose a downward vertical displacement of 0.1 on the top of the half
cylinder Γd = (−8, 8)× {8} and neglect surface forces p. Contact part is

Γc =

{
(x1, x2) ∈ R2| − 2 ≤ x1 ≤ 2, x2 = d, d = R−

√
R2 − x21

}
.

The remaining part of the boundary Γn is stress free. Domain is discretized
using nonuniform mesh consisting of 30578 quadratic triangular elements and
15599 nodes as shown in Fig. 5. Number of nodes on Γc is 407, parameter r
is taken 108.

Ðèñ. 5. The mesh of the elastic body.

The resulting deformations of the body and von Mises stresses are depicted
in Fig. 6a. In Fig. 6b the normal position of the body on Γc with an ampli�ca-
tion factor 10 is plotted against the value of normal stress. We can observe
that the foundation is deformed when the stress reaches the yield limit ξ = 2.
In this example, it took only 2 iterations for the Uzawa algorithm to converge.

(a)
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0.0

0.5

1.0

1.5

2.0
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−σν

(b)

Ðèñ. 6. Deformed con�guration and von Mises stress (A),
normal stress, displacements for ξ = 2 (B) on Γc.



ON CONTACT BETWEEN BODY AND RIGID-PLASTIC FOUNDATION 291

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1 (m)

0

20

40

60

80

100
−σ

ν
(N

⋅m
−1
)

Hertz
ξ=100
ξ=64
ξ=32
ξ=16
ξ=8
ξ=4
ξ=2

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1 (m)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−u
ν
+
d
(m

)

ξ=100
ξ=64
ξ=32
ξ=16
ξ=8
ξ=4
ξ=2

(b)

Ðèñ. 7. Normal stress (A) and displacements (B) for
di�erent ξ on Γc.

At each internal step, 5 iterations of the generalized Newton method were
performed. Numerical calculations correspond to the boundary conditions
(4).
Figs. 7a and 7b show the normal stress and displacements for di�erent

ξ on Γc. We can see that with an increase of ξ the penetration of elastic
body into foundation decreases and for ξ = 100 there is no penetration since
−σν < ξ. With further increase of ξ foundation behaves as a rigid one and
in the limiting case we get Hertz contact problem which has explicit analytic
solution. In Fig. 7a we can observe a convergence of the calculated normal
stresses to the Hertz analytical solution with increase of ξ.

Conclusion

In this paper, a variational method for solving the frictionless contact
problem between an elastic body and a rigid-plastic foundation is presented.
The method is based on �nding the saddle point of the modi�ed Lagrange
functional. We derive the form of the saddle point and prove the convergence
of the Uzawa method to it. Furthermore, we show that the considered ap-
proach smooths the minimized functional of the problem. After �nite element
approximation of the problem, Uzawa's algorithm reduces to an iterative
process in which a continuously di�erentiable piecewise quadratic function
is minimized at each step using the generalized Newton method. Finally,
numerical experiments are conducted to demonstrate the performance of the
algorithm.
A continuation of our work would involve investigating the e�ect of intro-

ducing the assumption of friction in the contact zone. Moreover, it would be
interesting to consider models with nonlinear stress-strain dependence.
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