
S e⃝MR
ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
ISSN 1813-3304

Vol. 21, No. 2, pp. 1414�1425 (2024) ÓÄÊ 510.6

https://doi.org/10.33048/semi.2024.21.089 MSC 03C64

ON DEFINABLE SETS IN SOME DEFINABLY

COMPLETE LOCALLY O-MINIMAL STRUCTURES

M. BERRAHO

Communicated by S.V. Sudoplatov

Abstract: In this paper, we show that the Grothendieck ring of
a de�nably complete locally o-minimal expansion of the set (not
the �eld) of real numbers R is trivial. Afterwards, we will give
a su�cient condition for which a de�nably complete locally o-
minimal expansion of an ordered group has no nontrivial de�nable
subgroups. In the last section, we study some sets that are de�nable
in a de�nably complete locally o-minimal expansion of an ordered
�eld. Finally, a decomposition theorem for a de�nable set into �nite
union of πL-quasi-special Cr submanifolds is demonstrated.

Keywords:De�nably complete, locally o-minimal structures, Grothendieck
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1 Introduction

Firstly, a locally o-minimal structureM := (M,<, ...) has been introduced
and studied in [14] as a local counterpart of an o-minimal one. In this
paper, we will focus on the elementary property, de�nable completeness (i.e.,
every non-empty de�nable bounded subset X of M has both supremum and
in�mum in M), since intervals have this property, every o-minimal structure
is de�nably complete.
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The notion of the Grothendieck ring for a �rst-order structure was founded
in ([11], [3]) independently.
The Grothendieck ring of a model-theoretical structure is built up as a
quotient of de�nable sets by de�nable bijections (see below).

In [2] and [15] the following explicit calculations of Grothendieck rings
(denoted K0) of structures are made: K0(R, <, Lring) is isomorphic to Z,
but K0(Qp, Lring) is trivial, where p is a prime number,Qp is the p-adic
numbers �eld and Lring is the language (+,−, ·, 0, 1).

In this paper, we prove the triviality of the Grothendieck ring for a de�nably
complete locally o-minimal expansion of the set of real numbers which is not
an o-minimal structure.

We know thanks to [9] that if G = (G,<,+, 0, ...) is an o-minimal expansion
of an ordered abelian group G, then K0(G) is isomorphic to either the ring
of the integers Z or the quotient ring Z[T ]/(T 2 + T ) as a ring. In the same
section, we show that if the Grothendieck ring of a de�nably complete locally
o-minimal expansion of an ordered group is not the zero ring, then this
structure has no nontrivial de�nable subgroups. But the converse of this
result does not hold true by applying Proposition 2 below.

In the fourth section, we �rst prove that an unary de�nable set in a locally
o-minimal expansion of an ordered �eld which does not contain an open
interval is bounded.

We review the theory DCTC as an extension of the theory of a dense linear
order without endpoints M := (M,<, ...) by the two axiom schemes given
by de�nable completeness and type completeness (De�nition 5). In other
words, in a model of DCTC, any de�nable subset has an in�mum and its
characteristic function has a left limit at each point. So, a de�nably complete
expansion of an ordered �eld is locally o-minimal if and only if it is a model
of DCTC.

We know by ([7], Theorem 4.4) that in a de�nably complete locally o-
minimal structure (M,<, ...) enjoying the property that the image of a
nonempty de�nable discrete set under a coordinate projection is again discrete,
Mn is a �nite union of π-quasi-special submanifolds partitioning a de�nable
set X of Mn, where n is a positive integer. By replacing the coordinate
projection π by the linear one πL and by using some techniques as in the
proof given in ([7], Section 4), and for a de�nably complete locally o-minimal
expansion of an ordered �eld, we get a decomposition into πL-quasi-special
Cr submanifolds.

2 Preliminaries

�De�nable� will always mean �de�nable with parameters�.

We recall that a densely linearly ordered set without endpoints M =
(M,<, ...) is o-minimal, if every de�nable subset X of M is a �nite union of
points and open intervals.
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De�nition 1. A densely linearly ordered structure without endpoints M =
(M,<, ...) is locally o-minimal if, for every de�nable subset X of M and for
every point a ∈ M there exists an open interval I containing the point a such
that X ∩ I is a �nite union of points and open intervals.

Example 1. The structure (R,⩽,+, sin) is locally o-minimal by [14, Theorem
2.7].

De�nition 2. An expansion of a densely linearly ordered set without endpoints
M = (M,<, ...) is de�nably complete if any de�nable subset X of M has the
supremum and in�mum in M ∪ {±∞}.

Example 2. Every expansion of (R, <) is de�nably complete.

It is well known thanks to [12, Corollary 1.5] that the de�nable completeness
is equivalent toM being de�nably connected, and also with the validity of the
intermediate value theorem for one variable de�nable continuous functions.

De�nition 3. Consider an expansion of a densely linearly order without
endpoints M = (M,<, ...). Let X be a nonempty de�nable subset of Mn.
The dimension of X is the maximal nonnegative integer d such that π(X)
has a nonempty interior for some coordinate projection π : Mn → Md. We
set dim(X) = −∞ when X is an empty set.

De�nition 4. Let M = (M,<, ...) be a structure and n is a positive integer.
The notation Defn (M) denotes the family of all de�nable subsets of Mn.
Let X ∈ Defn (M), [X] denotes the equivalence class for the equivalence
relation R de�ned on the set Defn (M) as follows: XRY if, X and Y are
de�nably isomorphic, and [X ∪ Y ] = [X] + [Y ] where X,Y ∈ Defn (M),
and X ∩ Y = ϕ. The Grothendieck group of a structure M is the abelian
group K0(M) generated by the symbols [X]. The ring structure is de�ned by
[X][Y ] = [X × Y ], where X × Y is the Cartesian product of de�nable sets.
The ring K0(M) with this multiplication is called the Grothendieck ring of
the structure M.

Remark 1. By [11], the Grothendieck ring of a structure M, K0(M) is
nontrivial if and only if there is no de�nable set X ⊆ M , a ∈ X and an
injective de�nable map from X onto X \ {a}.

De�nition 5. A densely linearly ordered structure without endpoints M =
(M,<, ...) is type complete if it is locally o-minimal, and in addition, for any
de�nable subset X ⊆ M there are c1 and c2 such that if I =] − ∞, c1[ or
I =]c2,+∞[, then either I ⊆ X or I ∩X = ϕ.

In this paper, DCTC is the abbreviation for the properties of being de�nably
complete and type complete.
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3 The Grothendieck ring of a de�nably complete locally

o-minimal expansion of an ordered group

Proposition 1. Let G be an o-minimal expansion of an ordered abelian group
(G,+) which contains the ring of the integers Z such that (G,Z) is a locally
o-minimal structure, then K0(G) is isomorphic to the ring Z[X]/(X2 +X).

Proof. Suppose that there exist a bounded de�nable set I of G and an
unbounded de�nable set J of G and a de�nable bijection Φ : I → J .
Applying the o-minimal monotonicity theorem [15, 3.1.2] and shrinking I
and J if necessary, we suppose that Φ is continuous and strictly increasing
or strictly decreasing. After possibly re�ecting and translating, we suppose
that ]0,+∞[⊆ J and that ϕ is strictly increasing. Then Φ−1(N) is an in�nite
bounded discrete subset of G, this contradicts the local o-minimality of the
structure (G,Z). By the proof of theorem 1 in [9](Case 2), we deduce that
the Grothendieck ring of G is isomorphic to Z[X]/(X2 +X) as a ring. □

Proposition 2. Consider a de�nably complete locally o-minimal expansion
of the set of real numbers R which is not an o-minimal structure. Then the
Grothendieck ring of this structure is the zero ring {0}. Here, the zero ring
means the ring whose unique element is the zero.

Proof. Let R be such a structure.
Claim: There exists a discrete closed in�nite de�nable set D′.

In fact, as the structure R is locally o-minimal and not o-minimal, by [6,
Lemma 3.5], there exists an unbounded discrete de�nable set D. Without
loss of generality, we may assume that D ∩ [0,∞[ is an in�nite set, so
D′ := D ∩ [0,∞[ is an in�nite discrete de�nable set. By [7, Lemma 2.4],
the de�nable set D′ is closed. Which proves the claim.

As the structure R is de�nably complete, the set D′ admits an in�mum
in R which we denote by m. According to [5, De�nition 3], if d is not the
maximum of D′, we say the minimum of D′ > d is the successor of d in D′

written sD′(d).

If the maximum M of D′ belongs to D′, the set D′
1 := D′\{M} is also

de�nable, discrete and closed by [7, Lemma 2.4].

The function sD′ determines a de�nable bijection from D′
1 onto

D′′ := D′
1\{m}. So [D′

1] = [D′′].

As [D′
1] = [D′′] + [m], we deduce that [m] = 0.

For any de�nable set U , it is obviously de�nably isomorphic to the Cartesian
product U × {m}. Hence, [U ] = [U × {m}] = [U ] · [{m}] = 0.

Since the Grothendieck ring is generated by the elements of the form [U ],
this ring is the zero ring.

□
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Example 3. Let R := (R,⩽,+, sin) be the expansion of the additive ordered
group of reals by the sine function, It is well known thanks to [14, Theorem
2.7] that R is locally o-minimal, clearly it is not o-minimal. So the grothendieck
ring of R is null.

We know by [15, Chapter 1, Proposition 4.2] that if an expansion of an
ordered group G is o-minimal, then G is abelian, divisible and has no proper
nontrivial convex de�nable subgroups. So thanks to [12, Proposition 2.2], all
these properties still hold in a de�nably complete locally o-minimal expansion
of an ordered group.
In case of o-minimality, there are no nontrivial de�nable subgroups; alternatively,
there are nontrivial de�nable subgroups in case of de�nably complete locally
o-minimal structure. In fact, the structure (R,+, <,Z) has the nontrivial
de�nable subgroup (Z,+).

Therefore, the aim of the following theorem is to give a su�cient condition
for which a de�nably complete locally o-minimal expansion of an ordered
group has no nontrivial de�nable subgroups, and by using Proposition 2
above, we show that this condition is not necessary.

Lemma 1. Let G be a de�nably complete expansion of an ordered group G.
A nontrivial de�nable subgroup of G is unbounded.

Proof. Assume for contradiction that we can take a nontrivial bounded
de�nable subgroup H. Let s = sup(H). Since H is nontrivial, s > 0. We
also have s < ∞ because H is bounded.

By the de�nition of supremum, there exists g ∈ H such that s/2 < g.
Since H is a group, 2g ∈ H. It is a contradiction because 2g > s.

□

Theorem 1. If the Grothendieck ring of a de�nably complete locally o-
minimal expansion of an ordered group G is not the zero ring, then this
structure has no nontrivial de�nable subgroups.

Proof. Suppose that the structure G = (G,<,+, 0, ...) has a nontrivial de�nable
subgroup H. By [12, Lemma 2.1], the set G \H is dense, so H has an empty
interior, by [7, Lemma 2.3] it is closed and discrete. As H is nontrivial, by
lemma 1, the group H is unbounded. Set H ′ = {x ∈ G |x ⩾ 0}, H ′ is clearly
closed, discrete, de�nable and in�nite, as in the proof of Proposition 2, we
construct a de�nable bijection between H ′ and H ′ \ {0} to deduce that the
Grothendieck ring of the structure G is trivial. □

Example 4. Every o-minimal expansion of an ordered abelian group G is a
de�nably complete locally o-minimal structure (because it is o-minimal), as
its Grothendieck ring is nontrivial by [9, Theorem 1], consequently G has no
nontrivial de�nable subgroups.
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Remark 2. In the proof of Theorem 1, we don't need to use [7, Lemma 2.3],
because H must not be dense and co-dense, otherwise this would contradict
the local o-minimality. Then we apply [12, Lemma 2.1] to deduce that H is
closed and discrete.

Remark 3. The converse of Theorem 1 is not true. In fact, set E = {en |n ∈
N}, where e is the base of the natural logarithm. Then the structure (R,+, <
,E) is locally o-minimal by [10, Proposition 26]. Any nontrivial de�nable
subgroup G is of the form aZ, for some positive a ∈ R. The set aZ + E
is de�nable. By the local o-minimality and the compactness of the closed
interval [0, 1], there exist only �nitely many points in (aZ+E) ∩ [0, 1]. It is
a contradiction.

4 Some properties of a de�nably complete locally

o-minimal expansion of an ordered �eld

4.1. DCTC expansion of an ordered �eld.

Proposition 3. Consider a locally o-minimal expansion of an ordered �eld
F . Any de�nable subset X of F which does not contain an open interval is
bounded.

Proof. We demonstrate that X is bounded above.
Set X+ = {x ∈ X | x > 0}.
The notation F+ denotes the de�nable set {x ∈ F | x > 0}.
Consider the de�nable homeomorphism f ;F+ → F+ de�ned by f(x) =

1/x.
The image f(X+) is a de�nable set.
Since the structure is locally o-minimal, there exists an open interval I

containing the origin such that I∩f(X+) is the union of �nitely many points
and open intervals.

The intersection I ∩ f(X+) does not contain an open interval because X
does not contain an open interval by the assumption.

Therefore, I ∩ f(X+) consists of �nitely many points.
Let m be the smallest element in I ∩ f(X+), and set M = 1/m.
Then m is the smallest element in f(X+). Because m is the smallest

element in I ∩ f(X+), and I is a neighborhood of the origin and f(X+) is
always positive. Any element x ∈ X is not smaller than M .

It means that X is bounded above.
Similarly, we demonstrate that X is bounded below.

□

The following Corollary is pointed out in pp. 358-359 of [13].
Proposition 3 gives a complete proof of this fact.

Corollary 1. Consider a de�nably complete expansion of an ordered �eld.
If it is locally o-minimal, then it is a model of DCTC.
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Proof. If the structure is locally o-minimal, then by Theorem 2.10 in [13] and
Proposition 2.6 in [13], it su�ces to show that a discrete closed de�nable set
is bounded, and by proposition 3 any de�nable discrete set is bounded. □

Remark 4. Thanks to Corollary 2.4 in [13], the converse of Corollary 1
holds true if the underlying �eld is the real one.

We recall that an expansion of an ordered �eld F has a locally o-minimal
open core if the structure generated by all open de�nable subsets of Fn,
n ∈ N, is locally o-minimal.

Remark 5. If an expansion of an ordered �eld F is de�nably complete such
that every de�nable subset of F with an empty interior is bounded, we get by
[4, Theorem 3.3] that the open core of such expansion is locally o-minimal.

4.2. Decomposition into �nite union of πL-quasi-special Cr submanifolds.

Now let's recall the notion of linear projection. Let F be a �eld and L be a
linear subspace of Fn of dimension n − k (k < n). Consider the orthogonal
complement W := L⊥ of L in Fn, (i.e., Fn = W ⊕L). Then W is isomorphic
to F k as a vector space.

Let p : Fn → W be the projection onto the linear subspace W and
q : W → F k be the canonical isomorphism.

Then the composition πL := q ◦ p : Fn → F k is represented by a (k × n)-
matrix of rank k.

We call the map πL the linear projection.

Here is a de�nition of a πL-quasi-special Cr submanifold.
For a de�nably complete locally o-minimal expansion of an ordered �eld

F . Let πL : Fn → F k be the linear projection and X be a de�nable subset
of Fn.

A point x ∈ X is (X,πL)-Cr-normal if there exists an open box B in Fn

containing the point x such that B ∩X is the graph of a Cr map de�ned on
πL(B).

The de�nable set X is a πL-quasi-special Cr submanifold if, πL(X) is a
de�nable open set and for every point x ∈ πL(X), there exists an open box
U in F k containing the point x satisfying the following condition:

For any y ∈ X ∩π−1
L (x), there exists an open box V in Fn and a de�nable

Cr map τ : U → Fn such that πL(V ) = U , τ(U) = X∩V and the composition
πL ◦ τ is the identity map on U .

When k = 0, πL is the identity map and a de�nable subset of Fn is a
πL-quasi-special Cr submanifold if and only if it is open.
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The main aim of this section is to prove a decomposition for a de�nable set
in a de�nably complete locally o-minimal expansion of an ordered �eld into a
�nite union of πL-quasi-special Cr submanifolds in light of the decomposition
given in ([7], Section 4).

By following literally the proof of 2.11 in [15], we deduce that the inverse
function theorem holds true for a de�nably complete locally o-minimal expansion
of an ordered �eld and by following the proof of Theorem 4.2 given in [15]
and by [8, Lemma 3.1, Theorem 2.5], we deduce that de�nable choice holds
true for a de�nably complete expansion of an ordered abelian group and so
does the Monotonicity theorem, and therefore Good directions lemma holds
true for a de�nably complete locally o-minimal expansion of an ordered �eld
F and can be formulated as follows:

Proposition 4. (Good directions lemma). Let A ⊆ Fn+1 be de�nable
with dim(A) < n + 1. Let B ⊆ Fn be a box contained in the open disc
{x ∈ Fn | ||x|| < 1}. Then there exists x ∈ B such that for each p ∈ Fn+1,
the set {t ∈ F | p + t · v(x) ∈ A} is closed and discrete (where, v(x) =

(x,
√
1− ||x||2)).

We call v(x) a good direction, so this proposition tells us that the set of good
directions is dense in the unit sphere of Fn+1.

Proposition 5. Consider a de�nably complete locally o-minimal expansion
of an ordered �eld F . Let A ⊆ Fn be a de�nable set such that dim(A) ⩽
k < n, then there is an (n− k)-dimensional vector space L of Fn such that
π−1
L (y) ∩A is at most of dimension zero for all y ∈ F k.

Proof. In this proof, we keep the same notations as in this section.
We �rst prove by induction on n−k that there exists an (n−k)-dimensional
linear subspace L such that for each y ∈ Fn, the set (L + y) ∩ A is closed
and discrete.

If n − k = 1, thanks to Proposition 4, we get by taking an open box
in the unit disc in Fn−1 a point v(x) such that for all p ∈ Fn, we have
{t ∈ F | p + tv(x) ∈ A} is closed and discrete. Thus, it su�ces to take the
1-linear subspace L to be the line spanned by the vector v(x).

Assume that the property holds true for n − k ; that is, there exists an
(n − k)-dimensional linear subspace L such that (L + y) ∩ A is closed and
discrete for all y ∈ Fn, we know by Proposition 4 that the set of good
directions v(x) is dense in the unit sphere of Fn. Thus, if all good directions
v(x) are contained in the space L, then the unit sphere is contained in this
space L, and therefore this space is equal to the whole space Fn, which is
absurd. So there exists at least a point x0 ∈ Fn−1 such that L does not
contain v(x0). We let < v(x0) >F denote the line spanned by the vector
v(x0) over F . Applying the induction hypothesis, we get for all y ∈ Fn that
the set {L+ < v(x0) >F +y)} ∩A is closed and discrete.
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It is well known that the dimension of the linear space L+ < v(x0) >F is
equal to to dim(L) + 1 = n− k + 1. Which proves the result.

Now let's prove that the inverse image π−1
L (a) ∩ A is at most closed and

discrete for all a ∈ F k.
By de�nition of the projection p : Fn → W := L⊥, we have p(x−p(x)) = 0

for all x ∈ Fn.
On the other hand, by linear algebra we choose the linear space L :=

ker p = p−1(0), because ker p is an (n− k)-dimensional vector space.
We have x− p(x) ∈ L. Therefore, we always have x+ L = p(x) + L.
Therefore, (w + L) ∩ A is closed and discrete for any w ∈ W if and only

if (x+ L) ∩A is closed and discrete for all x ∈ Fn.
It is easy to see that p−1(w) = w + L for any w ∈ W . As q is a de�nable

homeomorphism, we deduce by [7, Proposition 3.2] that the set π−1
L (y) ∩ A

is at most of dimension zero for all y ∈ F k. □

Lemma 2. Consider a de�nably complete locally o-minimal expansion of an
ordered �eld F , let X be a de�nable subset of Fn. Assume that all the points
x ∈ X are (X,πL)-Cr-normal. Then X is a πL-quasi-special Cr submanifold.

Proof. By [7, Corollary 2.16], this structure satis�es the property (a) in ([7],
De�nition 1.1), so it su�ces to replace the word continuous by the word Cr

and the coordinate projection π by the linear one πL in the proof of lemma
4.2 in [7]. □

Theorem 2. Consider a de�nably complete locally o-minimal expansion
of an ordered �eld F . Let X be a de�nable subset of Fn, there exists a
decomposition of X into pairwise disjoint πL-quasi-special Cr submanifolds
Ci, i = 1, .., k partitioning X.

Proof. Let X ⊆ Fn be a de�nable set.
If for all 1 ⩽ d ⩽ n, and all the coordinate projections onto the d-th

coordinates πd, the set πd(X) has an empty interior, we have that dim(X) =
0, therefore X is obviously a πL-quasi-special Cr submanifold (because X is
closed and discrete by [7, Proposition 3.2]).

If for some 1 ⩽ d ⩽ n, the set πd(X) has a nonempty interior, then let d0 be
the maximal d for which πd(X) has a nonempty interior for some coordinate
projection πd. By de�nition this d0 is the dimension of the de�nable set X.

Set G := {x ∈ X |x is (X,πL)-Cr-normal} and B = X\G. It is obvious
that any point x ∈ G is a (G, πL)-Cr-normal. The de�nable set G is πL-
quasi-special Cr submanifold by Lemma 2.

Suppose that d0 < n. Let πL be the linear projection onto the space Rd0 .
By proposition 5, we have dim(B∩π−1

L (y)) = 0 for all y ∈ πL(B). We deduce

by [7, Theorem 3.14] that dim(B) = dim(πL(B)) + dim(B ∩ π−1
L (y)) for all

y ∈ πL(B).
By the same argument as in the proof of Lemma 4.3 in [7] we get that the
set πL(B) has an empty interior.
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Suppose that dim(B) = dim(X). Consequently, the set dim(X) = dim(πL(B)),
we deduce that the set πL(B) has a nonempty interior, which is a contradiction.
So dim(B) < dim(X).

There exists a decomposition B = C1∪...∪Ck of B into πL-quasi-special Cr

submanifolds by the induction hypothesis. By Lemma 2, the decomposition
X = G ∪ C1 ∪ ... ∪ Ck is the desired decomposition of X.

Suppose that d0 = n, by [8, Proposition 2.2] the set X has a nonempty

interior X̊, so X = (X \ X̊) ∪ X̊, the set X \ X̊ has an empty interior so

dim(X \ X̊) < n. As X̊ ⊆ Fn is open, the set X̊ is a πL-quasi-special Cr

submanifold (this corresponds to the case when k = 0) and by applying the
previous case, we get a �nite decomposition of X into πL-quasi-special Cr

submanifolds. □

Remark 6. By replacing the linear projection πL by the coordinate one π,
Lemma 2 holds true. We know thanks to ([4], Theorem 5.11) that if a function
is de�nable in a de�nably complete locally o-minimal expansion of an ordered
�eld F on an open set U ⊆ Fn, then it is of class Cr except on a set D ⊆ U
with empty interior, so the set at which this function is not of class Cr has
dimension smaller than that of U . By following the proof given in [7, Lemma
4.3, Theorem 4.4], we get the same decomposition into πL-quasi-special Cr

submanifolds as in theorem 2.

4.3. The Whitney conditions.

Let R be the real �eld endowed with a manifold structure, let X and Y be
two disjoint locally closed submanifolds of Rn. We denote by Gn,k(R) the set
of vector subspaces of dimension k of Rn and by Tx(X) the tangent space of
X at x. We recall by [1, De�nition 9.7.1] (with the same notations as in [1])
the Whitney conditions as follows:

- The pair (X,Y) is said to satisfy condition (a) at a point y in Y if,
for every sequence (xν)ν∈N of points of X such that limν→∞ xν = y and
limν→∞ Txν (X) = τ ∈ Gn,k(R), τ contains Ty(Y ).

- The pair (X,Y) is said to satisfy condition (b) at a point y in Y if,
for every sequence (xν)ν∈N of points of X and for every sequence (yν)ν∈N
of points of Y which both converge to y and that the sequence of secant
lines Lν between xν and yν converges to a line L as v tends to in�nity and
limν→∞ Txν (X) = τ ∈ Gn,k(R), then L is contained in τ .

In the original de�nition of Whitney's conditions, converging sequence is
used. Now, Let's replace it with a de�nable continuous curve, that's why we
will guarantee the existence of this new formulation.

Proposition 6. Consider a de�nably complete locally o-minimal expansion
of the ordered real �eld R. Let s > 0 and f :]0, s[→ Rn be a bounded de�nable
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map. There exists a unique point x ∈ Rn satisfying the following condition:

∀ε > 0, ∃δ > 0, ∀t, 0 < t < δ ⇒ |x− f(t)| < ε.

The notation limt→0+ f(t) denotes the point x.

Proof. We remark that [8, Corollary 2.7] holds true for a model of a DCTC
using [13, Theorem 3.2] instead of Theorem 2.5 described in [8], and by
applying Corollary 1, we get the proposition.

□

Thanks to [4, Theorem 5.1], we may assume that the de�nable curve
f :]0, s[→ Rn is continuous. So, the formulation of Whitney's conditions
becomes as follows:

- Condition (a'): The pair (X,Y ) is said to satisfy condition (a) at the point
y in Y if, for any de�nable curve γ : (0, ε) → X such that limt→0+ γ(t) = y
and limt→0+ Tγ(t)(X) = τ ∈ Gn,k(R), τ contains Ty(Y ).

- Condition (b'): The pair (X,Y ) is said to satisfy condition (b) at the
point y in Y if, for any de�nable curves γ1 : (0, ε) → X and γ2 : (0, ε) → Y
such that limt→0+ γ1(t) = y and limt→0+ γ2(t) = y and the sequence of secant
lines Lt between γ1(t) and γ2(t) converges to a line L as t tends to 0+ and
limt→0+ Tγ1(t)(X) = τ ∈ Gn,k(R), then L is contained in τ .

We end this paper by the following open problem.

Open problem: with the same assumptions as in theorem 2, if the �eld
F is the real one, is there a decomposition satisfying Whitney's conditions
(a') and (b')?
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