
S e⃝MR
ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru
ISSN 1813-3304

Vol. 21, No. 2, pp. 1385�1399 (2024) ÓÄÊ 512.54,512.56

https://doi.org/10.33048/semi.2024.21.087 MSC 17A30,17B40,17B63

TRANSPOSED POISSON STRUCTURES ON THE

EXTENDED SCHR�ODINGER-VIRASORO AND THE

ORIGINAL DEFORMATIVE

SCHR�ODINGER-VIRASORO ALGEBRAS

Z.KH. SHERMATOVA

11/10/2019 ORCID-iD_icon-vector.svg

file:///Users/tao/Downloads/5008697/ORCID-iD_icon-vector.svg 1/1

Communicated by I.B. Gorshkov

Abstract: We compute 1
2 -derivations on the extended Schr�odin-

ger-Virasoro 1 algebras and the original deformative Schr�odinger-
Virasoro algebras. The extended Schr�odinger-Virasoro algebras
have neither nontrivial 1

2 -derivations nor nontrivial transposed
Poisson algebra structures. We demonstrate that the original defor-
mative Schr�odinger-Virasoro algebras have nontrivial 1

2 -deriva-
tions, indicating that they possess nontrivial transposed Poisson
structures.
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1 Introduction

Poisson algebras appear in a variety of geometric and algebraic contexts,
including Poisson manifolds, algebraic geometry, noncommutative geometry,
operads, quantization theory, quantum groups, etc. The study of Poisson
algebras also led to other algebraic structures, such as generic Poisson algeb-
ras, algebras of Jordan brackets and generalized Poisson algebras, Gersten-
haber algebras, Novikov-Poisson algebras, Quiver Poisson algebras, etc. In
the recent paper [2], the authors initiated a study of a notion of a transposed
Poisson algebra by reversing the roles of the two operations in the Leibniz rule
that de�nes a Poisson algebra. A transposed Poisson algebra de�ned in this
manner not only retains some characteristics of a Poisson algebra, such as
closure under tensor products and Koszul self-duality as an operad, but also
encompasses a diverse range of identities [24, 5, 21, 22]. It is noteworthy that
the authors provided several constructions of transposed Poisson algebras
from Novikov-Poisson algebras, commutative associative algebras and pre-
Lie algebras [2]. Moreover, transposed Poisson algebras are related to weak
Leibniz algebras [4].

Let Rz (resp., Lz) denote the operator of the right (resp., left) multiplica-
tion by an element z ∈ L. We see from de�nition of transposed Poisson
algebra that both Rz and Lz are 1

2 -derivations on Lie algebra. Actually,
Rz = Lz for all z ∈ L. This motivated to de�ne all transposed Poisson
structures on Witt and Virasoro algebras in [6]; on twisted Heisenberg-
Virasoro, Schr�odinger-Witt and extended Schr�odinger-Witt algebras in [29];
on Schr�odinger algebra in (n+1)-dimensional space-time in [28]; on the n-th
Schr�odinger algebra in [26]; on solvable Lie algebra with �liform nilradical
in [1]; on oscillator Lie algebras in [17]; on Witt type Lie algebras in [15]; on
generalized Witt algebras in [16], [18]; on Virasoro-type algebras in [19]; on
loop Heisenberg-Virasoro algebras [27]; Block Lie algebras in [14, 16] and on
Lie incidence algebras (for all references, see the survey [13]).

The characterization of transposed Poisson structures derived on the Witt
algebra [6] raises the question of identifying algebras related to the Witt
algebra that possess nontrivial transposed Poisson structures. Consequently,
several algebras associated with the Witt algebra are examined in prior
works [15, 14, 16]. This paper extends that line of research. Speci�cally, we
detail transposed Poisson structures on central extensions of the extended
Schr�odinger-Witt algebras and the original deformative Schr�odinger-Witt
algebras.

The Schr�odinger-Witt algebra so, originally introduced by Henkel [9]
during his study on the invariance of the free Schr�odinger equation, is a
vector space over the complex �eld C with a basis {Ln,Mn, Yn+ 1

2
| n ∈ Z}

satisfying the following non-vanishing relations

[Lm, Ln] = (n−m)Lm+n, [Ym+ 1
2
, Yn+ 1

2
] = (m− n)Mm+n+1

[Lm,Mn] = nMm+n, [Lm, Yn+ 1
2
] =

(
n+ 1−m

2

)
Ym+n+ 1

2
.
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It is easy to see that so is a semi-direct product of the Witt algebra
and the two-step nilpotent in�nite-dimensional Lie algebra. The structure
and representation theory of so have been extensively studied by Roger
and Unterberger [23]. In order to investigate vertex representations of so,
Unterberger [25] introduced a class of new in�nite-dimensional Lie algebras
s̃o called the extended Schr�odinger-Witt algebra, which can be viewed as an
extension of so by conformal current with conformal weight 1. In [8], authors
studied the derivations, the central extensions and the automorphism group
of the extended Schr�odinger-Witt algebra. In [30], Lie bialgebra structure
on the extended Schr�odinger-Witt algebra was obtained. The notion of n-
derivation of the extended Schr�odinger-Witt algebra was investigated in [31],
and the main result when n = 2 was applied to characterize the linear
commuting maps and the commutative post-Lie algebra structures on s̃o.

Both original and twisted Schr�odinger-Witt algebras, and also their
deformations were introduced by Henkel [9], Unterberger [10] and Roger
[23], in the context of non-equilibrium statistical physics, closely related to
both Schr�odinger Lie algebras and the Virasoro algebras, which are known
to be important in many areas of mathematics and physics. Unterberger
[25] constructed the explicit non-trivial vertex algebra representations of the
original sector. In [11] the derivation algebra and the automorphism group
of the original deformative Schr�odinger-Witt algebras Lλ,µ were described.
Moreover, the second cohomology group of Lλ,µ were determined in [20].

In this paper, we �rst point out if a Lie algebra L is Z-graded, then the
space consisting of all 1

2 -derivations of L is naturally Z-graded. With this

simple but key observation, we calculate 1
2 -derivations on central extensions

of the extended Schr�odinger-Witt algebras s̃o and the original deformative
Schr�odinger-Witt algebras Lλ,µ by directly calculating any homogeneous

subspace of 1
2 -derivations on them. In addition, we prove that central exten-

sion of Lλ,µ admits nontrivial transposed Poisson structures only for λ =

1; the extended Schr�odinger-Virasoro algebras do not admit nontrivial 1
2 -

derivations, also have no nontrivial transposed Poisson structures.

2 Preliminaries

In this section, we recall some de�nitions and known results for studying
transposed Poisson structures. Although all algebras and vector spaces are
considered over the complex �eld, many results can be proven over other
�elds without modi�cations of proofs.

De�nition 1. Let L be a vector space equipped with two nonzero bilinear
operations · and [·, ·]. The triple (L, ·, [·, ·]) is called a transposed Poisson
algebra if (L, ·) is a commutative associative algebra and (L, [·, ·]) is a Lie
algebra that satis�es the following compatibility condition

2z · [x, y] = [z · x, y] + [x, z · y].
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De�nition 2. Let (L, [·, ·]) be a Lie algebra. A transposed Poisson structure
on (L, [·, ·]) is a commutative associative multiplication · in L which makes
(L, ·, [·, ·]) a transposed Poisson algebra.

De�nition 3. Let (L, [·, ·]) be a Lie algebra, φ : L → L be a linear map.
Then φ is a 1

2 -derivation if it satis�es

φ([x, y]) = 1
2

(
[φ(x), y] + [x, φ(y)]

)
.

Observe that 1
2 -derivations are a particular case of δ-derivations introduced

by Filippov in 1998 [7] and recently the notion of 1
2 -derivations of algebras

was generalized to 1
2 -derivations from an algebra to a module [32]. The main

example of 1
2 -derivations is the multiplication by an element from the ground

�eld. Let us call such 1
2 -derivations as trivial

1
2 -derivations. It is easy to see

that [L,L] and Ann(L) are invariant under any 1
2 -derivation of L.

Let G be an abelian group, L =
⊕
g∈G

Lg be a G-graded Lie algebra. We say

that a 1
2 -derivation φ has degree g (deg(φ) = g) if φ(Lh) ⊆ Lg+h. Let △(L)

denote the space of 1
2 -derivations and write △g(L) = {φ ∈ △(L) | deg(φ) =

g}. The following trivial lemmas are useful in our work.

Lemma 1. Let L =
⊕
g∈G

Lg be a G-graded Lie algebra. Then

△(L) =
⊕
g∈G

△g(L).

Lemma 2. (see [6]) Let (L, ·, [·, ·]) be a transposed Poisson algebra and z an
arbitrary element from L. Then the left multiplication Lz in the commutative
associative algebra (L, ·) gives a 1

2 -derivation of the Lie algebra (L, [·, ·]).

Lemma 3. (see [6]) Let L be a Lie algebra without non-trivial 1
2 -derivations.

Then every transposed Poisson structure de�ned on L is trivial.

3 Transposed Poisson structures on the extended

Schr�odinger-Virasoro algebras

Unterberger [25] introduced a class of new in�nite-dimensional Lie algebras
s̃o called the extended Schr�odinger-Witt algebra.

De�nition 4. The extended Schr�odinger-Witt Lie algebra s̃o is a vector
space spanned by a basis {Ln,Mn, Nn, Yn+ 1

2
| n ∈ Z} with the following

brackets:

[Lm, Ln] = (n−m)Lm+n, [Lm,Mn] = nMm+n,

[Lm, Nn] = nNm+n, [Nm,Mn] = 2Mm+n,

[Lm, Yn+ 1
2
] = (n+ 1−m

2 )Ym+n+ 1
2
, [Nm, Yn+ 1

2
] = Ym+n+ 1

2
,

[Ym+ 1
2
, Yn+ 1

2
] = (m− n)Mm+n+1,
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for all m,n ∈ Z.

Here, half-integer indices were chosen for the basis elements Ys. This is
because Y has a conformal weight of 3

2 under the action of the Virasoro �eld
L (see, e.g., [3] or [12]). Note, in particular, that although its weight is a half-
integer, Y is a bosonic �eld. This would contradict the spin-statistics theorem
if it were not for the fact that Y is not intended to represent a relativistic
�eld. These half-integer indices are very useful for describing derivations or
1
2 -derivation spaces using the grading of the algebras [29].

Theorem 1. (see [29]) Every 1
2 -derivation on s̃o is trivial.

In this section we consider a central extension of the extended Schr�odinger-
Witt algebra s̃o. In [8] it is referred that s̃o has only three independent classes
of central extensions. Let ŝo = s̃o⊕CCL⊕CCLN ⊕CCN be the vector space
over the complex �eld C with a basis {Ln,Mn, Nn, Yn+ 1

2
, CL, CLN , CN |n ∈

Z} satisfying the following relations

[Lm, Ln] = (n−m)Lm+n + δm+n,0
m3−m

12 CL, [Lm,Mn] = nMm+n,

[Lm, Nn] = nNm+n + δm+n,0(m
2 −m)CLN , [Nm,Mn] = 2Mm+n,

[Lm, Yn+ 1
2
] = (n+ 1−m

2 )Ym+n+ 1
2
, [Nm, Yn+ 1

2
] = Ym+n+ 1

2
,

[Ym+ 1
2
, Yn+ 1

2
] = (m− n)Mm+n+1, [Nm, Nn] = nδm+n,0CN ,

for all m,n ∈ Z. The in�nite-dimensional Lie algebra ŝo considered in this
paper called the extended Schr�odinger-Virasoro algebra. Denote

H =
⊕
n∈Z

CNn ⊕CCN , Vir =
⊕
n∈Z

CLn ⊕CCL, HV = H ⊕Vir⊕CCLN ,

S =
⊕
n∈Z

CMn

⊕
n∈Z

CYn+ 1
2
, HS = H ⊕ S.

They are subalgebras of ŝo, where H is an in�nite-dimensional Heisenberg
algebra, Vir is the classical Virasoro algebra, HV is the twisted Heisenberg-
Virasoro algebra, S is a two-step nilpotent Lie algebra and HS is the semi-
direct product of H and S. Then ŝo is the semi-direct product of the twisted
Heisenberg-Virasoro algebra HV and S, and S is an ideal of ŝo.

The description of 1
2 -derivations on Lie algebraHV is given in the following

theorem.

Theorem 2. (see [29]) Every 1
2 -derivation on HV is trivial.

There is a 1
2Z-grading on ŝo by

ŝo0 = ⟨L0,M0, N0, CL, CLN , CN ⟩

ŝon = ⟨Ln,Mn, Nn⟩, n ̸= 0, ŝon+ 1
2
= ⟨Yn+ 1

2
⟩,

then
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ŝo =
(⊕

n∈Z ŝon
)⊕(⊕

n∈Z ŝon+ 1
2

)
.

Hence ∆(ŝo) has a natural 1
2Z-grading, i.e.,

∆(ŝo) =
(⊕

n∈Z∆n(ŝo)
)⊕(⊕

n∈Z∆n+ 1
2
(ŝo)

)
.

Now we will compute 1
2 -derivations of the algebra ŝo.

Lemma 4. ∆0(ŝo) = ⟨Id⟩ and ∆j∈Z\{0}(ŝo) = 0.

Proof. Suppose that φj ∈ ∆j(ŝo) be a homogeneous 1
2 -derivation. In this

case, we have

φj(ŝon) ⊆ ŝon+j , φj(ŝon+ 1
2
) ⊆ ŝon+j+ 1

2
. (1)

By Theorem 2 and the relation (1) we can get

φj(Ln) = δj,0λLn + aj,nMn+j , φj(Nn) = δj,0λNn + bj,nMn+j ,

φj(Mn) = c1j,nLn+j + c2j,nMn+j + c3j,nNn+j+ δn+j,0(c
1
nCL + c2nCLN + c3nCN ),

φj(CL) = δj,0λCL, φj(CLN ) = δj,0λCLN ,

φj(Yn+ 1
2
) = dj,nYn+j+ 1

2
, φj(CN ) = δj,0λCN ,

for all n ∈ Z, and for some λ ∈ C.
(1) If j ̸= 0, then applying φj to both side of

[Lm, Ln] = (n−m)Lm+n + δm+n,0
m3 −m

12
CL,

we obtain

2(n−m)aj,m+n = (n+ j)aj,n − (m+ j)aj,m. (2)

Setting n = 0 in (2), we get (j −m)aj,m = jaj,0. Then taking m = j
in this equation, we derive aj,0 = 0. Consequently, we have aj,m = 0
for m ̸= j. Letting m = j and n = −j in (2), we obtain aj,j = 0,
this shows aj,m = 0 for all m ∈ Z. Now applying φj to both side of
[Lm, Nn] = nNm+n + δm+n,0(m

2 −m)CLN , we obtain

2nbj,m+n = (n+ j)bj,n. (3)

Setting n = 0 in (3), we get bj,0 = 0. Then taking m = −n in this
equation, we derive bj,n = 0 for n ̸= −j. Letting m = −2j and n = j
in (3), this implies bj,−j = 0, this shows bj,n = 0 for all n ∈ Z. Next
applying φj to both side of [Nm,Mn] = 2Mm+n, it gives

c1j,m+n = 0, 2c2j,m+n = c2j,n, 4c3j,m+n = −mc1j,n, (4)

δm+n+j,0(4c
1
m+nCL + (4c2m+n + ((n+ j)2 − (n+ j))c1j,n)CLN+

(4c3m+n − (n+ j)c3j,n)CN ) = 0
(5)

Taking m = 0 in (4), we obtain c1j,n = c2j,n = c3j,n = 0 for all n ∈ Z.
Setting m = 0, n = −j in (5) it gives c1−j = c2−j = c3−j = 0. Then
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applying φj to both side of the multiplication [Ym+ 1
2
, Yn+ 1

2
] = (m−

n)Mm+n+1, we have

(m− n+ j)dj,m + (m− n− j)dj,n = 0.

Putting n = m−j in this equation, we deduce dj,m = 0 for allm ∈ Z.
It proves φj = 0 for j ∈ Z \ {0}.

(2) If j = 0, then applying φ0 to both side of [Lm, Ln] = (n−m)Lm+n+

δm+n,0
m3−m

12 CL, we obtain (2) for j = 0. Takingm = 0 in (2), it gives
a0,n = 0 for n ̸= 0. Settingm = −n ̸= 0 in (2), we have a0,0 = 0. Now
applying φ0 to both side of [Lm, Nn] = nNm+n+δm+n,0(m

2−m)CLN ,
we obtain (3) for j = 0. Setting m = 0 in (3), we get b0,n = 0 for
n ̸= 0. Then taking m = −n ̸= 0 in this equation, we derive b0,0 = 0.
Next applying φ0 to both side of [Nm,Mn] = 2Mm+n, it gives

c10,m+n = 0, 2c20,m+n = c20,n + λ, 4c30,m+n = −mc10,n, (6)

and the relation (5) for j = 0. Taking m = 0 in (6), this implies
c10,n = c30,n = 0 and c20,n = λ for all n ∈ Z. Setting m = −n in (5)

it gives c10 = c20 = c30 = 0. Similarly, applying φ0 to both side of the
multiplication [Ym+ 1

2
, Yn+ 1

2
] = (m− n)Mm+n+1, we have

(m− n)(d0,m + d0,n) = 2(m− n)λ.

Putting m = 0 in this equation, we deduce d0,n = 2λ − d0,0 for all
n ∈ Z. So we can get d0,n = d0,0 = λ for n ∈ Z. Hence φ0 = λ Id.

□

Lemma 5. ∆j+ 1
2
(ŝo) = 0.

Proof. Let φj+ 1
2
∈ ∆j+ 1

2
(ŝo) be a homogeneous 1

2 -derivation. Then we have

φj+ 1
2
(ŝon) ⊆ ŝon+j+ 1

2
, φj+ 1

2
(ŝon+ 1

2
) ⊆ ŝon+j+1. (7)

By (7) we can assume that

φj+ 1
2
(Ln) = αj,nYn+j+ 1

2
, φj+ 1

2
(Nn) = βj,nYn+j+ 1

2
,

φj+ 1
2
(Mn) = γj,nYn+j+ 1

2
,

φj+ 1
2
(Yn+ 1

2
) = σj,nLn+j+1 + µj,nNn+j+1 + τj,nMn+j+1.

where αj,n, βj,n, γj,n, σj,n, µj,n, τj,n ∈ C.
Let us say φ = φj+ 1

2
. The algebra ŝo admits a Z2-grading. Namely,

ŝo0 = ⟨ŝoj⟩j∈Z and ŝo1 = ⟨ŝoj+ 1
2
⟩j∈Z.

The mapping φ changes the grading components. It is known, that the
commutator of one derivation and one 1

2 -derivation gives a new 1
2 -derivation.

Hence, [φ, adY
n+1

2

] is a 1
2 -derivation which preserve the grading components.

Namely, it is a 1
2 -derivation, described in Lemma 4, i.e., [φ, adY

n+1
2

] = αnId.
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It is easy to see, that

αnMm = [φ, adY
n+1

2

](Mm) = φ([Mm, Yn+ 1
2
])− [φ(Mm), Yn+ 1

2
]

= −γj,m[Ym+j+ 1
2
, Yn+ 1

2
] = −(m+ j − n)γj,mMm+n+j+1.

For �xed elements m and j, we can choose an element n, such that n ̸=
m+ j and n ̸= −1− j. The next observations give γj,m = 0 for each (j,m) ∈
Z× Z. Hence, αn = 0 for all n ∈ Z. Then we consider

0 = [φ, adY
n+1

2

](Nm) = φ([Nm, Yn+ 1
2
])− [φ(Nm), Yn+ 1

2
]

= φ(Ym+n+ 1
2
)−βj,m[Ym+j+ 1

2
, Yn+ 1

2
] = σj,m+nLm+n+j+1+µj,m+nNm+n+j+1

+τj,m+nMm+n+j+1 − βj,m(m− n+ j)Mm+n+j+1.

From this we have σj,m = µj,m = 0 and

τj,m+n − βj,m(m− n+ j) = 0 (8)

for all m ∈ Z. Taking m = 0 in (8), then setting n = 0 we can get

βj,m =
j −m

j +m
βj,0, m ̸= −j.

By the relation (8) we obtain βj,0 = 0, it gives τj,m = βj,m = 0 for each
(j,m) ∈ Z× Z.

0 = [φ, adY
n+1

2

](Lm) = φ([Lm, Yn+ 1
2
])− [φ(Lm), Yn+ 1

2
] =

(n+ 1−m
2 )φ(Ym+n+ 1

2
)− αj,m[Ym+j+ 1

2
, Yn+ 1

2
] =

−αj,m(m− n+ j)Mm+n+j+1,

we can choose an element n, such that n ̸= m + j. It shows that αj,m = 0
for each (j,m) ∈ Z× Z, summarizing, φ = 0. □

Summarizing the results from Lemmas 4 and 5, we conclude that ŝo does
not have nontrivial 1

2 -derivations.

Theorem 3. ŝo has no nontrivial 1
2 -derivations.

Corollary 1. ŝo has no nontrivial transposed Poisson algebra structures.

4 Transposed Poisson structures on original deformative

Schr�odinger-Virasoro algebras

The in�nite-dimensional original deformative Schr�odinger-Witt algebras
were considered in the paper [20] and denoted by Lλ,µ (λ, µ ∈ C), possess the
basis {Ln,Mn, Yn+ 1

2
| n ∈ Z} with the following non-vanishing Lie brackets:

[Lm, Ln] = (n−m)Lm+n, [Lm, Yn+ 1
2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
,

[Lm,Mn] = (n− λm+ 2µ)Mm+n, [Ym+ 1
2
, Yn+ 1

2
] = (n−m)Mm+n+1.
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From [20] it is known that the original deformative Schr�odinger-Witt
algebras have central extensions and it can be formulated follows:

L̃λ,µ

1
:


[Lm, Ln] = (n−m)Lm+n + m3−m

12 δm+n,0CL,
[Lm, Yn+ 1

2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
,

[Lm,Mn] = (n− λm+ 2µ)Mm+n,

[Ym+ 1
2
, Yn+ 1

2
] = (n−m)Mm+n+1,

L̃λ,µ

2
:


[Lm, Ln] = (n−m)Lm+n + m3−m

12 δm+n,0CL,
[Lm, Yn+ 1

2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
+ δm+n+µ+ 1

2 ,0
CLY ,

[Lm,Mn] = (n− λm+ 2µ)Mm+n,

[Ym+ 1
2
, Yn+ 1

2
] = (n−m)Mm+n+1,

L̃λ,µ

3
:



[Lm, Ln] = (n−m)Lm+n + m3−m
12 δm+n,0CL,

[Lm, Yn+ 1
2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
+ m(m−1)

2 δm+n+µ+ 1
2 ,0

CLY ,

[Lm,Mn] = (n− λm+ 2µ)Mm+n,

[Ym+ 1
2
, Yn+ 1

2
] = (n−m)Mm+n+1,

[Mm, Yn+ 1
2
] = δm+n+3µ+ 1

2 ,0
CMY ,

L̃λ,µ

4
:


[Lm, Ln] = (n−m)Lm+n + m3−m

12 δm+n,0CL,
[Lm, Yn+ 1

2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
−m(m2 − 1)δm+n+µ+ 1

2 ,0
CLY ,

[Lm,Mn] = (n− λm+ 2µ)Mm+n −m(m2 − 1)δm+n+2µ,0CM ,
[Ym+ 1

2
, Yn+ 1

2
] = (n−m)Mm+n+1 − (m+ µ)((m+ µ)2 − 1)δm+n+2µ,0CM ,

L̃λ,µ

5
:


[Lm, Ln] = (n−m)Lm+n + m3−m

12 δm+n,0CL,
[Lm, Yn+ 1

2
] = (n+ 1

2 − λ+1
2 m+ µ)Ym+n+ 1

2
,

[Lm,Mn] = (n− λm+ 2µ)Mm+n,
[Ym+ 1

2
, Yn+ 1

2
] = (n−m)Mm+n+1 − (m+ µ+ 1

2 )δm+n+2µ+1,0CY ,

where

L̃λ,µ
1
: µ /∈ {1

2Z} or µ ∈ 1
2 + Z and λ ̸= −3,−1, 1 or µ ∈ Z and λ ̸= −1;

L̃λ,µ
2
: µ ∈ 1

2 + Z and λ = −3;

L̃λ,µ
3
: µ ∈ 1

2 + Z and λ = −1;

L̃λ,µ
4
: µ ∈ 1

2 + Z and λ = 1;

L̃λ,µ
5
: µ ∈ Z, and λ = −1.

In this work, the algebras denoted by L̃λ,µ
i
(i = 1, 5) will be referred to

as the original deformative Schr�odinger-Virasoro algebras. Now, we compute
1
2 -derivations on L̃λ,µ

i
(i = 1, 5). We begin by calculating 1

2 -derivations on

L̃λ,µ
1
.

There is a 1
2Z-grading on L̃λ,µ

1
by

W0 = ⟨L0,M0, CL⟩, Wn = ⟨Ln,Mn⟩, n ̸= 0, Wn+ 1
2
= ⟨Yn+ 1

2
⟩,

then

L̃λ,µ
1
=

(⊕
n∈ZWn

)⊕(⊕
n∈ZWn+ 1

2

)
.
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Hence ∆(L̃λ,µ
1
) has a natural 1

2Z-grading, i.e.,

∆(L̃λ,µ
1
) =

(⊕
n∈Z∆n(L̃λ,µ

1
)
)⊕(⊕

n∈Z∆n+ 1
2
(L̃λ,µ

1
)
)
.

Lemma 6. (1) If µ ∈ 1
2+Z and λ ̸= −3,−1, 1, then ∆j(L̃λ,µ

1
) is trivial;

(2) if µ /∈ {1
2Z} or µ ∈ Z and λ ̸= −1, then ∆j(L̃λ,µ

1
) = ⟨Id⟩ for λ ̸= 1

and ∆j(L̃1,µ
1
) = ⟨Id, φj⟩ where φj(Ln) = αjMn+j for all n ∈ Z.

Proof. Suppose that φj ∈ ∆j(L̃λ,µ
1
)) be a homogeneous 1

2 -derivation. In this
case, we have

φj(Wn) ⊆ Wn+j , φj(Wn+ 1
2
) ⊆ Wn+j+ 1

2
. (9)

Note that L̃λ,µ
1
contains a subalgebra ⟨Lm | m ∈ Z⟩, which isomorphic to

the well-known algebra Vir and every 1
2 -derivation on Virasoro algebra is

trivial [6]. By (9), we can assume that

φj(Ln) = δj,0λ1Ln + αj,nMn+j , φj(Yn+ 1
2
) = σj,nYn+j+ 1

2
,

φj(Mn) = βj,nLn+j + γj,nMn+j + δn+j,0cnCL, φj(CL) = δj,0λ1CL,

where αj,n, βj,n, γj,n, σj,n, cn ∈ C.
Now, we start with applying φj to both side of

[Ym+ 1
2
, Yn+ 1

2
] = (n−m)Mm+n+1,

and we have

(n−m)βj,m+n+1 = 0, (10)

(n−m)δm+n+j+1,0cm+n+1 = 0, (11)

2(n−m)γj,m+n+1 = (n−m− j)σj,m + (n+ j −m)σj,n. (12)

Putting n = −1 in (10), we get βj,m = 0 for m ̸= −1, then taking m = 0,
n = −2, we have βj,−1 = 0, which follows βj,m = 0 for all m ∈ Z. From
(11), we deduce c−j = 0 for all j ∈ Z. Next, applying φj to [Lm, Ln] =

(n − m)Lm+n + m3−m
12 δm+n,0CL and [Lm,Mn] = (n − λm + 2µ)Mm+n, we

have equations

2(n−m)αj,m+n = (n+ j − λm+ 2µ)αj,n + (m+ j − λn+ 2µ)αj,m, (13)

2(n−λm+2µ)γj,m+n = δj,0λ1(n−λm+2µ)+ (n+ j−λm+2µ)γj,n. (14)

Taking m = 0 in (13), we obtain (j − n+ 2µ)αj,n = (j − λn+ 2µ)αj,0 for
all n ∈ Z. If λ = 1, then we have αj,n = αj,0 for all n ∈ Z. If λ ̸= 1, then it
follows

αj,n =
(j − λn+ 2µ)

(j − n+ 2µ)
αj,0, 2µ /∈ Z. (15)

Then using (15) in (13), we can get

mn(λ− 1)(n−m)(2µ(λ+ 2)− (m+ n− j)λ+ 2j)

(j −m+ 2µ)(j − n+ 2µ)(j −m− n+ 2µ)
αj,0 = 0, 2µ /∈ Z. (16)
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Due to arbitrary m in (16), it gives that αj,0 = 0, and from (15) it follows
αj,n = 0 for arbitrary n ∈ Z. If 2µ ∈ Z, then it shows αj,n = 0 for n ̸= j+2µ.
Putting m ̸= 0 and n = j + 2µ in (13), it gives αj,j+2µ = 0, so we derive
αj,n = 0 for all n ∈ Z.

(1) If j ̸= 0, then letting m = 0 in (14), we obtain

(n− j + 2µ)γj,n = 0. (17)

If 2µ /∈ Z, then γj,n = 0 for all n ∈ Z, if 2µ ∈ Z, then γj,n = 0 for
n ̸= j−2µ. Settingm ̸= 0 and n = j−2µ in (17), it gives γj,j−2µ = 0,
which derive γj,n = 0 for all n ∈ Z. Next letting m = n − j in (12),
we obtain σj,n = 0 for all n ∈ Z.

(2) If j = 0, then using (12) and (14), we get γ0,n = σ0,n = λ1 for all
n ∈ Z.

Hence,

φj(Ln) = αj,0Mn+j , for λ = 1,

φj = 0, j ̸= 0, φ0 = λ1 Id, for λ ̸= 1.

□

Lemma 7. (1) If µ ∈ 1
2 + Z and λ ̸= −3,−1, 1, then ∆j+ 1

2
(L̃λ,µ

1
) = 0

for all j ∈ Z ;

(2) if µ /∈ {1
2Z} or µ ∈ Z and λ ̸= −1, then ∆j+ 1

2
(L̃λ,µ

1
) = 0 for λ ̸= 1

and

∆j+ 1
2
(L̃1,µ

1
) = {φj+ 1

2
| φj+ 1

2
(Ln) = αjYn+j+ 1

2
, φj+ 1

2
(Yn+ 1

2
) = αjMn+j+1}

for all n ∈ Z.

Proof. Let φj+ 1
2
∈ ∆j+ 1

2
(L̃λ,µ

1
) be a homogeneous 1

2 -derivation. Then we

have
φj+ 1

2
(Wn) ⊆ Wn+j+ 1

2
, φj+ 1

2
(Wn+ 1

2
) ⊆ Wn+j+1. (18)

By (18), we can assume that

φj+ 1
2
(Ln) = αj,nYn+j+ 1

2
, φj+ 1

2
(Mn) = βj,nYn+j+ 1

2
,

φj+ 1
2
(Yn+ 1

2
) = γj,nLn+j+1 + µj,nMn+j+1 + δn+j+1,0cnCL.

where αj,n, βj,n, γj,n, µj,n, cn ∈ C. Since Ann(L̃λ,µ
1
) is invariant under any

1
2 -derivation, it gives φj+ 1

2
(CL) = 0 for all j ∈ Z.

Let us say φ = φj+ 1
2
. The algebra L̃λ,µ

1
admits a Z2-grading. Namely,

L̃λ,µ
1

0 = ⟨Wj⟩j∈Z and L̃λ,µ
1

1 = ⟨Wj+ 1
2
⟩j∈Z.

The mapping φ changes the grading components. It is known, that the
commutator of one derivation and one 1

2 -derivation gives a new 1
2 -derivation.

Hence, [φ, adY
n+1

2

] is a 1
2 -derivation which preserve the grading components.



1396 Z.KH. SHERMATOVA

Namely, it is a 1
2 -derivation, described in Lemma 6, i.e., [φ, adY

n+1
2

] = αnId

for λ ̸= 1. Similarly to the proof of the Lemma 5, we deduce φ = 0 for λ ̸= 1.
Now, we consider the case of λ = 1. Using the Lemma 6, we can get these

relations [φ, adY
n+1

2

](Mm) = αnMm and [φ, adY
n+1

2

](Yn+ 1
2
) = αnYm+ 1

2
. It

gives βj,m = γj,m = 0 for all m ∈ Z. Next applying φj+ 1
2
to both side of

[Lm, Ln] = (n−m)Lm+n +
m3 −m

12
δm+n,0CL,

it implies

(2(n+ j) + 1− 2m+ 2µ)αj,n − (2(m+ j) + 1− 2n+ 2µ)αj,m =

4(n−m)αj,m+n.
(19)

Taking m = 0 in (19), we have αj,n = αj,0 for n ∈ Z. Then applying φj+ 1
2

to [Lm, Yn+ 1
2
] = (n+ 1

2 −m+ µ)Ym+n+ 1
2
, we obtain

(2n+ 1− 2m+ 2µ)δm+n+j+1,0cm+nCL = 0, (20)

(n−m− j)αj,0 + (n+ j + 1−m+ 2µ)µj,n = (2n+ 1− 2m+ 2µ)µj,m+n. (21)

From (20), we derive c−j−1 = 0 and similarly to the previous case from (21)
we imply µj,n = αj,0 for all n ∈ Z. □

Summarizing the results from Lemmas 6 and 7, we conclude that if λ ̸=
1, then L̃λ,µ

1
does not have nontrivial 1

2 -derivations. On the other side,

Theorem 4 gives the full description of nontrivial 1
2 -derivations of L̃1,µ

1
.

Theorem 4. Let φ be a 1
2 -derivation of the algebra L̃1,µ

1
, then there are two

sets of elements from the basic �eld {αt}t∈Z and {βt}t∈Z such that

φ(Lm) = λ1Lm +
∑
t∈Z

αtMm+t +
∑
t∈Z

βtYm+t+ 1
2
, φ(Mm) = λ1Mm,

φ(Ym+ 1
2
) = λ1Ym+ 1

2
+

∑
t∈Z

βtMm+t+1, φ(CL) = λ1CL.

Proof. The proof follows directly from the lemmas 6 and 7. □

In the following, we aim to classify all transposed Poisson structures on

L̃1,µ
1
.

Theorem 5. Let (L̃1,µ
1
, ·, [·, ·]) be a transposed Poisson algebra structure

de�ned on the Lie algebra L̃1,µ
1
. Then the commutative associative

multiplication on (L̃1,µ
1
, ·) has the following form:

Lm · Ln =
∑
t∈Z

αtMm+n+t +
∑
t∈Z

βtYm+n+t+ 1
2
,

Lm · Yn+ 1
2

=
∑
t∈Z

βtMm+n+t+1,

where αt, βt ∈ C for all t ∈ Z.
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Proof. We aim to describe the multiplication ·. By Lemma 2, for every
element X ∈ {Li,Mi, Yi+ 1

2
, CL | i ∈ Z}, there is a related 1

2 -derivation φX

of L̃1,µ
1
, such that φX(Y ) = X · Y. Then by Theorem 4, we have that

φX(Lm) = λ1,XLm +
∑
t∈Z

αt,XMm+t +
∑
t∈Z

βt,XYm+t+ 1
2
, φX(CL) = λ1,XCL,

φX(Ym+ 1
2
) = λ1,XYm+ 1

2
+

∑
t∈Z

βt,XMm+t+1, φX(Mm) = λ1,XMm.

Now we consider φX(Y ) = X · Y = Y · X = φY (X) for X,Y ∈
{Li,Mi, Yi+ 1

2
, CL | i ∈ Z}. Firstly, by φX(CL) = λ1,XCL it follows

CL ·X = X · CL = 0.

Similarly, we can get

Mi ·X = X ·Mi = 0

for X ∈ {Li,Mi, Yi+ 1
2
, CL | i ∈ Z}.

(1) Let X = Lm and Y = L0. Then the equality φLm(L0) = Lm · L0 =
L0 · Lm = φL0(Lm), gives∑

t∈Z
αt,LmMt +

∑
t∈Z

βt,LmYt+ 1
2
=

∑
t∈Z

αt,L0Mm+t +
∑
t∈Z

βt,L0Ym+t+ 1
2
.

Hence, we obtain αk,Lm = αk−m,L0 and βk,Lm = βk−m,L0 .
(2) Let X = L0 and Y = Yn+ 1

2
, then from φL0(Yn+ 1

2
) = φY

n+1
2

(L0), we

get ∑
t∈Z

βt,L0Mn+t+1 =
∑
t∈Z

αt,Y
n+1

2

Mt +
∑
t∈Z

βt,Y
n+1

2

Yt+ 1
2
.

Thus, we obtain βk,Y
n+1

2

= 0, αk,Y
n+1

2

= βk−n−1,L0 .

Summarizing all the above parts, we have that the multiplication table of

(L̃1,µ
1
, ·) is given by following non-trivial relations.

Lm · Ln =
∑
t∈Z

αt,L0Mm+n+t +
∑
t∈Z

βt,L0Ym+n+t+ 1
2
,

Lm · Yn+ 1
2

=
∑
t∈Z

βt,L0Mm+n+t+1,

It gives the complete statement of the theorem. □

In the following theorem we give a description 1
2 -derivations on the original

deformative Schr�odinger-Virasoro algebras L̃−3,µ

2
, L̃−1,µ

3
and L̃−1,µ

5
.

Theorem 6. Every 1
2 -derivation on L̃−3,µ

2
, L̃−1,µ

3
, L̃1,µ

4
and L̃−1,µ

5
is

trivial.

Proof. The proof is similar to the proof of Lemmas 6 and 7. □

By Theorem 6, the following is straightforward.
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Corollary 2. The in�nite-dimensional Lie algebras L̃−3,µ

2
, L̃−1,µ

3
, L̃1,µ

4

and L̃−1,µ

5
have no nontrivial transposed Poisson algebra structures.
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