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Abstract:We introduce and study the class of spherically ordered
groups. Axioms of spherical orders used for these groups are exami-
ned and their (in)dependence is shown. The notions of spherically
orderable groups and their spectra of spherical orderability are
de�ned. Values of these spectra are found for a series of certain
groups.

Keywords: spherical order, group, spectrum of spherical orderabi-
lity.

1 Introduction

Well known linearly ordered groups and circularly ordered groups are both
deeply investigated and described [1, 2] and admit various generalizations
and modi�cations for partial, left and right orderings [1, 3], betweenness and
separation groups [4, 5, 6], semigroups [7], and T -generically ordered groups
[8].

We continue to study n-sphericall orders and spread the notions of linearly
ordered groups and circularly ordered groups to n-spherically ordered ones,
where linearly and circularly ordered groups have the values n = 2 and
n = 3, respectively. We examine axioms of spherical orders, used for these
groups, and show their (in)dependence. We introduce the notion of spectrum
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1338 S.V. SUDOPLATOV

of spherical orderability for an arbitrary group. Values of these spectra are
found for a series of known groups.

2 Spherical orders

Let x be a n-tuple (x1, x2, . . . , xn), σ be a permutation of degree n. Then
the tuple (xσ(1), . . . , xσ(n)) is denoted by xσ.

We consider the following generalization of linear and circular orders
based both on axioms for these orders [1, 2, 9, 10], and on the orientation
of simplicial complexes [14, 15], in particular, on directed triangles and
tetrahedrons [16].

De�nition (cf. [11, 12, 13]). An n-ary relation Kn on a set A is called a
n-spherical order relation, for n ≥ 2, if it satis�es the following conditions:

(nso1) If x ∈ An and σ is a transposition on {1, 2, . . . , n}, then x ∈ Kn or
xσ ∈ Kn;

(nso2) If x ∈ An and σ is a transposition on {1, 2, . . . , n}, then x ∈ Kn

and xσ ∈ Kn i� there are distinct indices i and j such that xi = xj ;

(nso3) For any x ∈ Kn and any element t ∈ A, there is an index i such
that (x1, . . . , xi−1, t, xi+1, . . . , xn) ∈ Kn.

A structure M provided with a n-spherical order is called n-spherically
ordered.

Remark 1. In view of the axiom (nso2) any spherical order Kn on a set A
contains all n-tuples in An with some repeated coordinates.

Now we argue to prove the following proposition asserting that the additi-
onal forth axiom used before for the de�nition of n-spherical order is deduced
from (nso1) and (nso2).

Proposition 1. For any n-spherical order Kn the following condition holds:

(nso4) For any even permutation σ on {1, 2, . . . , n}, if x ∈ Kn then xσ ∈
Kn.

Proof. Since each even permutation is represented as a composition of
even many transpositions it su�ces to show that if x ∈ Kn and σ = (i j)(k l)
then xσ ∈ Kn. In view of Remark 1 we can assume that x consists of
pairwise distinct coordinates. Now as x ∈ Kn then x(i j) /∈ Kn by the axiom
(nso2). Applying the axiom (nso1) with the transposition (k l) we obtain
xσ = (x(i j))(k l) ∈ Kn.

Remark 2. By the axioms (nso1) and (nso2) odd permutations for tuples
in Kn with pairwise distinct coordinated are forbidden. So we admit cyclic
permutations in the axiom (nso4) i� n is odd, In view of this circumstance
the axiom (nso4) is modi�ed from cyclic permutations to even ones, where
cyclic permutations were used in the previous version of the de�nition of
n-spherical order in [11, 12, 13].
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Thus for any n-tuple x with pairwise distinct coordinates in a given set
either this tuple belongs to Kn, together with all its even permutations, or
any its odd permutation belongs to Kn, otherwise. These even permutations
are covered by cyclic ones i� n = 3, since there are n cyclic permutations

and
n!

2
even ones, including identical one, and n =

n!

2
i� n = 3, i.e. only

circular orders are exhausted by cyclic permutations of given tuples.

Remark 3. Since each permutation is composed by transpositions we can
replace transpositions in axioms (nso1) and (nso2) by odd permutations
obtaining the same classes of n-spherical orders, n ≥ 2.

Remark 4. The axioms above produce all possible linear orders K2 and
circular orders K3. Here (2so2) gives the re�exivity: ∀xK2(x, x), and the
antisymmetry:

∀x1, x2(K2(x1, x2) ∧K2(x2, x1) → x1 = x2),

(2so2) and (2so3) give the transitivity:

∀x1, x2, x3(K2(x1, x2) ∧K2(x2, x3) → K2(x1, x3)),

and the axiom (2so1) gives the linearity: ∀x1, x2(K2(x1, x2) ∨ K2(x2, x1)).
For the transitivity it su�ces to take pairwise distinct elements a, b, c with
(a, b) ∈ K2 and (b, c) ∈ K2. By (2so3) we have (a, c) ∈ K2 or (c, b) ∈ K2,
and (b, a) ∈ K2 or (a, c) ∈ K2. But the cases (c, b) ∈ K2 and (b, a) ∈ K2 are
impossible in view of (nso2), implying the required (a, c) ∈ K2.

The axioms for circular orders [1, 10] are immediately implied by the
axioms (3so1), (3so2), (3so3), and Proposition 1.

Remark 5. Like the case of linear orders any n-spherical order Kn on a set
A has the dual one consisting of all n-tuples in An \Kn and all n-tuples in
An with some repeated coordinates. We denote this dual order by Kn.

The following theorem describes possibilities of independence for the axi-
oms (nso1), (nso2) and (nso3).

Theorem 1. 1. For any n ≥ 3 the axioms (nso1), (nso2), (nso3) are inde-
pendent: for each axiom (nsoi), i = 1, 2, 3, there is a relation Kn that violates
this axiom and satis�es the others.

2. The axioms (2so2) and (2so3) are independent and imply the axiom
(2so1).

Proof. Let n ≥ 2. If Kn = An with |A| ≥ n then it satis�es (nso1)
and (nso3) whereas (nso2) does not hold since in such a case Kn contains
all n-tuples x and xσ with pairwise distinct coordinates. Thus (nso2) is
independent from the others.

Now we argue to show that the axiom (nso3) can be violated for a relation
Kn satisfying (nso1) and (nso2). For this purpose we take the set A =
{1, 2, . . . , n, n+1} and generate the relation Kn ⊂ An as follows. We include
to Kn all n-tuples with some repeated coordinates. Besides we include the
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tuple (1, 2, 3, . . . , n) and, for t = n+1, the tuples (2, t, 3, . . . , n), (1, 3, t, . . . , n),
. . ., (t, 1, 2, . . . , n−1) with all their even permutations and arbitrarily extend
the obtained relation by n-tuples with pairwise distinct coordinates such that
these tuples are included together with their even permutations only. The
obtained relation Kn satis�es (nso1) and (nso2), and does not satisfy (nso3)
which is witnessed by the tuple (1, 2, 3, . . . , n) and the value t = n+ 1.

Thus the axioms (nso2) and (nso3) are independent for each n ≥ 2.
Now we consider the (in)dependence of the axiom (nso1) from the others.
1. If n ≥ 3, A = {1, 2, . . . , n} and Kn consists both of all n-tuples in An

with some repeated coordinates and of the tuple (1 2 . . . n) then Kn satis�es
the axioms (nso2) and (nso3), since it does not contain transpositions for
(1 2 . . . n), and each tuple in Kn either contains all elements of A or has
repeated coordinates such that preserving two repeated coordinates other
coordinates can be replaced by an arbitrary element t and the obtained
tuple again belongs to Kn. At the same time neither (2, 1, 3, 4, . . . , n) nor
(2, 3, 1, 4, . . . , n) belongs to Kn implying that (nso1) does not hold. Thus the
axiom (nso1) does not depend from the others.

2. Let n = 2 and K2 satisfy the axioms (2so2) and (2so3). By the axiom
(2so2) any element x1 of the given set A belongs to the pair (x1, x1) ∈ K2.
Taking an arbitrary element t ∈ A we have (t, x1) ∈ K2 or (x1, t) ∈ K2 by
the axiom (2so3) that con�rms the axiom (2so1) and its dependence from
(2so2) and (2so3).

3 Spherically orderable groups and their spherical spectra

De�nition. A group G is called (agreed) n-spherically ordered, or n-s-
ordered, if G is provided with a n-spherical order Kn such that for any
(x1, . . . , xn) ∈ Kn and any y ∈ G the tuples (x1y, . . . , xny) and (yx1, . . . , yxn)
belong to Kn.

Further we assume the coherency of the given n-spherical order with the
group operation and omit that it is �agreed�. In general case it is more narrow
than simply n-spherical orders but it is uni�ed with the notions of linearly
ordered and circularly ordered groups.

A group G is called n-spherically orderable, or n-s-orderable, if G has a
n-spherically ordered expansion. A group G is called spherically orderable if
it is n-spherically orderable for some n > 1.

For a group G we de�ne its spectrum Spso of spherical orderability, or
spherical spectrum, as follows:

Spso(G) = {n ∈ ω \ {0, 1} | G is n-spherically orderable}.

A group G is called totally spherically orderable, or totally s-orderable, if
G has maximal spectrum of spherical orderability, i.e. Spso(G) = ω \ {0, 1}.

A group G is called almost totally spherically orderable, or almost totally
s-orderable, if Spso(G) is a co�nite subset of ω.
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A group G is (almost) not s-orderable in any way if Spso(G) is empty
(respectively, �nite).

The notions above for the spherical orderability and its spectra can be
naturally spread for an arbitrary structure. Besides, the spherical orderability
admits similar variations of orderability as for linear (bi-)orderability such
as left-orderability and right-orderability [3, 17].

A natural problem arises on description of spherical spectra for groups
and related structures.

By the de�nition a group G is linearly ordered i� G is 2-spherically
ordered, and G is cyclically ordered i� G is 3-spherically ordered. Here
2 ∈ Spso(G) and 3 ∈ Spso(G), respectively.

Again by the de�nition a group G is spherically orderable i� Spso(G) ̸= ∅.

Remark 6. If a group G is n-spherically orderable then each subgroup of
G is n-spherically orderable, too, since any restriction M of a n-spherically
ordered structure N , with a n-spherical order Kn, is again n-spherically
ordered, with the n-spherical order Kn ∩Mn.

In view of Remark 6 we have the following Monotonicity property for the
spectrum of spherical orderability:

Proposition 2. For any groups G1, G2 if G1 ⩽ G2 then Spso(G1) ⊇ Spso(G2).

Proposition 2 immediately implies:

Corollary 1. If G is an (almost) totally s-orderable group then any its
subgroup is also (almost) totally s-orderable.

Corollary 2. If G is (almost) not s-orderable in any way then any its
supergroup is also (almost) not s-orderable in any way.

Proposition 2 and Corollary 1 can be also deduced from the following
criterion of n-spherical orderability:

Proposition 3. A group G is n-spherically ordered by a n-spherical order
Kn i� for any n-tuple (a1, . . . , an) ∈ Kn with pairwise distinct coordinates
and for any b ∈ G the tuples (a1b, . . . , anb) and (ba1, . . . , ban) are even
permutations, i.e. are not odd permutations of some tuples in Kn.

Proof. By the de�nition of n-spherical order Kn it consists of all n-
tuples with some repeated coordinates and of all even permutations of given
n-tuples in Kn such that for any n-tuple, in the universe, with pairwise
distinct coordinate either this tuple or all its odd permutations belong to
Kn. Now if G is n-spherically ordered by Kn it is forbidden to include
into Kn its odd permutations of forms (a1b, . . . , anb) and (ba1, . . . , ban), and
conversely permitted to include its even permutations of forms (a1b, . . . , anb)
and (ba1, . . . , ban).
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Remark 7. Proposition 3 shows that the only obstacle for a n-spherical
order Kn on a group G to make this group to be n-spherical ordered is the
possibility for the multiplications (a1b, . . . , anb) and (ba1, . . . , ban) to produce
an odd permutation for a tuple (a′1, . . . , a

′
n) in Kn with pairwise distinct

coordinates, which may di�er from the tuple (a1, . . . , an). In particular,
elements of stabilizers for n-element sets {a1, . . . , an} ⊆ G can not produce
odd permutations of tuples (a1, . . . , an) ∈ Kn. Here b ̸= e and therefore the
maps ai 7→ aib and ai 7→ bai do not have �xed elements.

In general, Kn is uniquely de�ned by its subrelation K0
n consisting of all

n-tuples in Kn with pairwise distinct coordinates, since Kn = K0
n ∪̇K1

n,
where K1

n consists of all tuples in Gn with some repeated coordinates. The

subrelation K0
n produces an algebra K0

n with
n!

2
unary operations of even

permutations forming the alternating group An, and unary operations rb
and lb, for b ∈ G, carrying out the maps ai 7→ aib and ai 7→ bai, respectively.
Since all these operations are invertible, with (rb)

−1 = rb−1 and (lb)
−1 = lb−1 ,

and form a derivative group S = S(G,n) with the identical even permutation
which is equal both to re and le, we obtain an S-act K0

n = ⟨K0
n, s⟩s∈S , for

|G| ≥ n. Here actions rb and lb can be even permutations if, for instance,
|G| = n, which implies S = An, They may not belong to An, if b ̸= e and G
is torsion-free. And they coincide if b belongs to the center of G. The group S
is generated by its two subgroups An and S′ = {rb, lb | b ∈ G}, and further,
elements in f ∈ An and in s ∈ S′ commute: fs = sf . Besides, rb = lb and
αbb′ = αbαb′ for any α ∈ {r, l} and b, b′ ∈ G, if G is abelian. Since An is
abelian i� n ≤ 3, the algebra K0

n has the commutative derivative group S i�
n ≤ 3 and G is abelian.

Clearly, if G is a group, n-spherically ordered by an order Kn then G is
n-spherically ordered by the dual order Kn = (Gn \Kn) ∪K1

n, too.

In view of Proposition 3 and Remark 7 we have the following:

Corollary 3. Let K2 be a binary relation on a group G. Then the pair
(G,K2) is a linearly ordered group, i.e. it is 2-spherically ordered, i� for any
pair (a1, a2) ∈ K2 with a1 ̸= a2 and for any b ∈ G the pairs (a1b, a2b) and
(ba1, ba2) are not transpositions of some pairs in K2.

Since all odd permutations for the group S3 are transpositions we addi-
tionally have:

Corollary 4. Let K3 be a ternary relation on a group G. Then the pair
(G,K3) is a circularly ordered group, i.e. it is 3-spherically ordered, i� for
any triple (a1, a2, a3) ∈ K0

3 and for any b ∈ G the triples (a1b, a2b, a3b) and
(ba1, ba2, ba3) are not transpositions of some triples in K0

3 .

Remark 8. Each orbit O of the group S on K0
n connects all even permuta-

tions of tuples in O and possibly tuples based on distinct n-element sets if
some rb or lb are not permutations of these sets.
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The number r of these orbits O is called the rank of generation of K0
n with

respect to S and denoted by rkS(K
0
n). This rank is said to be the rank of

generation for Kn, denoted by rkS(Kn).
If the group G is abelian then rkS(K

0
n) is �nite i� G is �nite, since for

tuples (x1, . . . , xn) and (y1, . . . , yn) based on distinct n-element sets the
relation rb = lb is de�ned by b = y1 − x1. For an in�nite non-abelian
group one may put de�ning relations connecting n-tuples into �nitely many
orbits via chains of tuples. Indeed, the connection of tuples (x1, . . . , xn) and
(y1, . . . , yn) can be organized via intermediate tuples (z1, . . . , zn) formed by
new de�ning elements and with appropriate rb and lb, where the elements b
are composed with some new de�ning elements. Thus there are in�nite non-
abelian groups with �nite rkS(K

0
n). Moreover, �nite values rkS(K

0
n) can be

realized arbitrarily in ω\{0} using de�ning relations connecting step-by-step
orbits by rb and lb with new de�ning elements b.

In view of Remark 8 for an abelian group G the operators rb = lb on G3

either �x all coordinates of a triple or move all its coordinates, i.e. can not
generate odd permutations (transpositions). Thus Corollary 4 immediately
implies:

Corollary 5. For any abelian group G, 3 ∈ Spso(G).

The following construction based on Proposition 3 shows how the spectrum
Spso(G) can be reduced to an empty one, i.e. with G which is not s-orderable
in any way.

For a required group G we take a generating set {an | n ∈ ω}∪{b, c}. Now
we consider the following de�ning relations: ba0c = a1, ba1c = a0, banc = an
for n ≥ 2. The group G has an in�nite graph, which is generated both by
the minimal set {an | n ∈ ω \{0}}∪{b}, with c = a−1

n b−1an and a0 = ba1c =
a−1
n b−1an, n > 1, by the minimal set {an | n ∈ ω \ {0}} ∪ {c}, with b =

anc
−1a−1

n and a0 = ba1c = anc
−1a−1

n a1c, as well as by the minimal sets {an |
n ∈ ω \ {1}} ∪ {b} and {an | n ∈ ω \ {1}} ∪ {c}. Thus G is in�nite, too, with
torsion-free subgroups ⟨an⟩, n ∈ ω, ⟨b⟩, ⟨c⟩. The de�ning relations show that
any m-tuple (bai1c, bai2c, . . . , baimc) consisting of pairwise distinct elements
and with some ij = 0 and ik = 1 is a transposition of (ai1 , ai2 , . . . , aim).
Therefore m-spherical orders on G coordinated with left and right group
actions can not be formed for any m. Hence we have the following:

Theorem 2. There exists a group G such that Spso(G) = ∅.

De�nition. Let < be a strict linear order on a group G, C be the
cycli�cation of < consisting of all tuples (x, y, z) with x < y < z ∨ y <
z < x ∨ z < x < y. A n-ary relation K0

n on G, for n ≥ 3, is called <-
coordinated if K0

n consists of all n-tuples (a0, . . . , an−1) with a0 < . . . < an−1,
and for any b ∈ G the tuples (a0b, . . . , an−1b) and (ba0, . . . , ban−1) satisfy
C
(
aib, a(i+1) (modn)b, a(i+2) (modn)b

)
and C

(
bai, ba(i+1)(modn), ba(i+2)(modn)

)
,

i = 0, . . . , n− 1.
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Remark 9. By Remark 7 any <-coordinated relation K0
n is uniquely exten-

sible to its closure Kn under even permutations of tuples and addition of all
tuples inGn with some repeated coordinates. In view of Remark 7 this closure
satis�es the axioms of n-spherical order i� even permutations of tuples
(a1, . . . , an) in Kn do not meet their odd permutations under group actions
(a′1b, . . . , a

′
nb) and (ba′′1, . . . , ba

′′
n) in Kn, where (a′1, . . . , a

′
n), (a

′′
1, . . . , a

′′
n) ∈

Kn, b ∈ G.

Remark 10. If G is a �nite group with |G| = m and m < n then G is
n-spherically orderable. Indeed, in such a case the relation Kn consisting of
all tuples with some repeated coordinates satis�es the axioms of n-spherical
order implying that Kn = K1

n and ⟨G,Kn⟩ is a n-spherically ordered group.

In view of Remark 10 we have the following:

Proposition 4. If G is a group with |G| = m ∈ ω then Spso(G) ⊇ {n ∈ ω |
n > m}, in particular, G is almost totally s-orderable.

The following assertion is a reformulation of well-known folklore fact that
nonunit linearly ordered groups are in�nite and, moreover, torsion-free. Thus
we have the following:

Proposition 5. A �nite group G is 2-spherically orderable i� |G| = 1.

Proposition 6. Any 2-spherically orderable group G is torsion-free, that is,
if G contains an element of �nite positive order then 2 /∈ Spso(G).

Remark 11. Since each group Zm is circularly orderable [1],
i.e. 3 ∈ Spso(Zm), then Propositions 4 and 6 imply that Spso(Z2) = Spso(Z3) =

ω \ {0, 1, 2}.
The groups Zm, for even m, are not m-spherically orderable since the

de�nition of m-spherically orderable group implies that Km is closed both
under even and odd permutations of m pairwise distinct elements: odd
permutations are obtained by actions of elements in Zm on m-tuples of
pairwise distinct elements of Zm. It contradicts the axiom (nso2). Thus
m /∈ Spso(Zm) for each even m. In particular, by Propositions 4 and 6,
Spso(Z4) = ω \ {0, 1, 2, 4}.

The arguments above show that any group G containing a subgroup Zm,
for even m, can not be m-spherically ordered by a relation Km since, in
view of (nso4), it should contain a tuple (i1, . . . , im), where {i1, . . . , im} =
{0, . . . ,m− 1}. In particular, if G contains subgroups Zm, for each even m,
then Spso(G) is contained in the set of odd numbers.

At the same time the groups Zm, for odd m ≥ 5, are m-spherically
orderable since the de�nition of m-spherically orderable group implies even
permutations of elements in Km, generated by the tuple (0, 1, . . . ,m − 1)
only. Thus m ∈ Spso(Zm) for each odd m ≥ 5.

In view of Proposition 2 and Remark 11 each element a of even order m
in a given group G implies m /∈ Spso(G). Thus we have the following:
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Proposition 7. For any group G, Spso(G) does not contain even numbers
which are equal to orders of elements in G.

In particular, we have the following:

Corollary 6. If a group G contains elements of each even order then

Spso(G) ∩ 2Z = ∅.

Proposition 8. For any natural m,n with 2 < n < m, and n ̸ |m if n is
even, then the group Zm is n-spherically orderable.

Proof. We form the n-spherical order Kn on the universe Zm adding to
the set of n-tuples with some repeated coordinates all even permutations of
tuples (k1(modm), . . . , kn(modm)) with k1 < . . . < kn and even permuta-
tions of tuples (k1 + q(modm), . . . , kn + q(modm)) with q ∈ Zm, i.e. Kn is
generated by its <-coordinated subrelation K0

n, where < is the natural strict
order on Zm.

Since n̸ |m for even n, Zm does not contain a subgroup Zn violating the
n-spherical orderability as in Remark 11. Thus even permutations of tuples
(k1+q(modm), . . . , kn+q(modm)) are coordinated with even permutations
of tuples (k1, . . . , kn), i.e. they do not produce odd permutations. Since these
permutations cover all possibilities for tuples with even permutations only,
Proposition 3 guarantees that Zm is n-spherically orderable by Kn.

Propositions 4, 5, 8 and Remark 11 immediately imply the following de-
scription of spherical spectra for the groups Zm:

Theorem 3. Let m ∈ ω \ {0, 1}. Then

Spso(Zm) = ω \ ({0, 1, 2} ∪ {n | n|m and n is even}).

Proposition 9. The group Z is totally s-orderable.

Proof. Let n ∈ ω\{0, 1}. We form the n-spherical orderKn on the universe
Z adding to the set of n-tuples with some repeated coordinates all even
permutations of tuples (k1, . . . , kn) with k1 < . . . < kn, i.e. generate Kn by
the <-coordinated relation K0

n with the natural order <. Clearly, for any
m ∈ Z, (k1 +m, . . . , kn +m) preserves the set of these tuples and satis�es
the axioms of n-spherical orders in view of Proposition 3, as required. Thus,
Spso(Z) = ω \ {0, 1}, i.e. Z is totally s-orderable.

It is known that any torsion-free abelian group can be lexicographically
ordered with respect to its generators. Therefore the arguments for Propo-
sition 9 imply the following:

Theorem 4. Any torsion-free abelian group is totally s-orderable.

Remark 12. The group con�rming Theorem 2 is torsion-free and it is not
s-orderable at all. It illustrates that the commutativity of a group is essential
in Theorem 4.
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In conclusion, the author thanks the anonymous referee for a number of
valuable comments and suggestions that contributed to improve the exposi-
tion of this work.
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