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Dedicated to the memory of Sergey Godunov

Abstract:We present counter-intuitive examples of viscous regular-
izations of a two-dimensional strictly hyperbolic systems of conser-
vation laws. The regularizations are obtained using two di�erent
viscosity matrices. While for both of the constructed �viscous�
systems waves propagating in either x- or y-directions are stable,
oblique waves may be linearly unstable. Numerical simulations
fully corroborate these analytical results. To the best of our knowledge,
this is the �rst nontrivial result related to the multidimensional
Gelfand problem with non-symmetric �uxes and di�usion terms.
Our conjectures provide direct answer to Gelfand's problem both
in one- and multi-dimensional cases.
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1 Introduction

Hyperbolic systems of conservation laws and their viscous regularizations
pertaining to the natural sciences are among the most important partial
di�erential equations (PDEs) and invariably stir the interest of mathematicians
of all walks. Stability of solutions and their dependence on parameters are
among the basic and most important questions that need to be investigated.
During the height of the Cold War, Soviet-American mathematician I. M.
Gelfand published a paper with an unassuming title �Some problems in the
theory of quasi-linear equations� [5]. It was the time when high-temperature
physics, nuclear reactions, and powerful explosions became the hotly pursued
and studied areas as tools of political wrestling. Being inspired by the mathe-
matical problems relevant to the new realms of physics, with his (un)usual
insight and tour de force, Gelfand formulated and posted a few fundamental
problems in the theory of PDEs.

Among them, one of the most intriguing questions relates to the role and
structure of dissipative, �viscous� e�ects, which are usually present as higher
(usually second) order partial derivative terms in viscous regularizations of
the hyperbolic conservation laws. Being typically small, those dissipative
e�ects become important near shock waves or areas with sharp spatial gradi-
ents. The question asked by Gelfand, sounds deceptively simple: What struc-
ture of dissipative terms will ensure the convergence of solutions of the
regularized hyperbolic conservation systems to those of the corresponding
inviscid ones?

We consider strictly hyperbolic systems, whose Jacobians have distinct
real eigenvalues. For those systems an (obvious) requirement for the viscosity
matrix is to be positive de�nitive, that is, �viscous�. Of course, the diagonal
viscosity matrices are the simplest, and correspond to the viscous terms
in the Navier-Stokes equations of �uid motion. A diagonal viscous matrix
with positive entries was used by Bianchini and Bressan [1] to prove the
global existence and uniqueness for one-dimensional (1-D) strictly hyperbolic
systems via the vanishing viscosity method.

In [10], Shizuta and Kawashima generalized the 1-D results to multi-
dimensional linear systems with both the �ux and viscosity matrices being
symmetric matrices. Of course, the viscosity matrix was assumed to be
nonnegative de�nite in [10]. The obtained result was applied to the discrete
Boltzmann equation. Nevertheless, in the same year (1985), Majda and Pego
[9] discovered a remarkably simple counter-intuitive phenomenon: viscous
shocks for 1-D systems of convection-di�usion systems with strictly hyperbolic
convective term and small and positive de�nitive, but non-diagonal viscosity
matrix may not converge to the shock waves of the corresponding inviscid
system. Moreover, such system may be linearly unstable. Those instability
examples have direct pertinence to the modeling of natural phenomena in
larger, �macro� scales when both viscous and convective terms are not expected
to be simply diagonal.
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In [9], Majda and Pego considered the simplest 1-D linear system with
constant coe�cients,

ut +Aux = Cuxx, (1.1)

where x is a spatial variable, t is time, u ∈ RN is the vector of unknowns
(N ≥ 2), the matrix A has distinct real eigenvalues, and the matrix C has real
positive eigenvalues. Even though one may expect the solutions of (1.1) to
be smooth and stable, Majda and Pego observed that the simplest solution,
u(x, t) = eikx+ωtû with û = Const and the linear stability operator Ω(k) :=
−ikA−k2C may have nontrivial behavior. It is obvious that for small k (the
so-called long-wavelength solutions), the convective part is dominating and,
in particular, the wave speeds are de�ned by the eigenvalues of A. This
is similar to the case of a scalar convection-di�usion equation. However,
unlike the scalar case, the stability of the system (1.1) is ensured by the
negativity of the real parts of the eigenvalues of the matrix Ω, which is
not guaranteed by the positivity of the eigenvalues of C, which dominates
the eigenvalue problem for large k only. The behavior of the eigenvalues
of Ω(k) for small k may be understood by the perturbative analysis of
the simple �wavy� eigenvalues of the matrix A. Those perturbative terms
include interplay between the matrices A and C. It turns out that Ω may
have eigenvalues with positive real part for small wavenumbers k so that
the corresponding solutions of (1.1) will grow inde�nitely in time, contrary
to the �naive� expectations. This may happen when C is positive de�nitive
but not diagonal. We stress that the non-diagonality of both the advective
matrix A and the viscosity matrix C is critical for the linear instability and
that the results of Shizuta and Kawashima are not applicable in such case
as only with symmetric matrices A and C were considered in [10].

Later, Kliakhandler [8] found the same unusual phenomenon for several
very simple �uid mechanics problems, such as multi-layer laminar parallel
�ows. The outcome was unexpected and counter-intuitive: the e�ects that
usually thought as dissipative, such as stable density strati�cation or surface
tension, may actually have destabilizing e�ect on the shear �ow. In the
industry, the multi-layer laminar parallel �ows have been extensively used in
manufacturing of color photographic �lms. Laminar �ows are usually very
stable, so such a conclusion violated na�ive expectations about �ow behavior.
As the results obtained in [8] were hard to believe, one of the authors of
the present paper contacted Dr. Steven Weinstein, who worked at Kodak at
that time. Dr. Steven Weinstein con�rmed that such instabilities were often
observed in the manufacturing of photographic �lms, and Kodak worked
hard to avoid them to make the photo sensitive layers uniform.

Concerning the multidimensional systems, except for the case of symmetric
�uxes and dissipative e�ects studied in [10], very little has been known about
the in�uence of viscous terms on stability and convergence. It should be
pointed out that in the vast majority of systems of PDEs appearing in
various applied �elds, the �uxes are non-symmetric. Moreover, dissipative
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terms often do not constitute simple diagonal or symmetric matrices as
well. Complex chemical and physical systems provide all sorts of �uxes and
dissipation combinations, so simple Fick's law is not always applicable.

In this paper, we discover the two-dimensional (2-D) phenomenon that
extends, in a certain sense, the 1-D results of Majda and Pego [9]. To this
end, we consider the 2-D extension of (1.1),

ut +Aux +Buy = Cuxx +Duyy, (1.2)

where the advective matrices A and B have distinct real eigenvalues and
the viscosity matrices C and D are positive de�nite, and show that viscous
regularizations of 2-D strictly hyperbolic systems may be stable in the directions
of both x- and y-axes, but yet some oblique waves may be unstable. We
present an explicit example of such system (linearized shallow water equations),
for which we perform linear stability analysis. We also conduct numerical
simulations for this unstable linear system and also for nonlinear regularized
Saint-Venant system. Our numerical results fully corroborate the obtained
linear stability results. Finally, we conjecture on the stability of the eigenvalue
problem and point to the obvious three-dimensional (3-D) extensions of our
results.

2 Two-Dimensional Saint-Venant Systems

The Saint-Venant system introduced in [4] is one of the most commonly
used models of shallow water �ows in rivers or coastal areas.

In the case of �at bottom topography, the 2-D Saint-Venant system reads
as 

ht + qx + py = 0,

qt +

(
q2

h
+

g

2
h2

)
x

+
(pq
h

)
y
= 0,

pt +
(pq
h

)
x
+

(
p2

h
+

g

2
h2

)
y

= 0.

(2.1)

Here, h is the water depth, u and v are the x- and y-velocities, respectively,
q = hu and p = hv are the corresponding discharges, and g is the acceleration
due to gravity.

The 2-D Saint-Venant system (2.1) can be linearized about a �lake-at-rest�
steady state h(x, y, t) ≡ h0 = Const, u(x, y, t) = v(x, y, t) ≡ 0. To this end,
we introduce the perturbation variables h′, q′, and p′ such that h = h0 + h′,
q = q′, and p = p′, and substitute them into (2.1) to obtain

h′t + q′x + p′y = 0,

q′t +

(
(q′)2

h0 + h′
+

g

2
(h0 + h′)2

)
x

+

(
p′q′

h0 + h′

)
y

= 0,

p′t +

(
p′q′

h0 + h′

)
x

+

(
(p′)2

h0 + h′
+

g

2
(h0 + h′)2

)
y

= 0.

(2.2)
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We then neglect the nonlinear terms in (2.2) and end up with the 2-D
linearized Saint-Venant system:

h′t + q′x + p′y = 0,

q′t + gh0h
′
x = 0,

p′t + gh0h
′
y = 0,

which can be rewritten in the vector form

ut +Aux +Buy = 0, (2.3)

with

u =

h′

q′

p′

 , A =

 0 1 0

gh0 0 0

0 0 0

 , B =

 0 0 1

0 0 0

gh0 0 0

 . (2.4)

3 Viscous Approximations of the Saint-Venant Systems

We now add the viscosity terms to the right-hand sides (RHS) of (2.3)�
(2.4) and study the stability of the resulting viscous linearized shallow water
equations, which read as (1.2), (2.4). We consider the following speci�c
viscosity matrices C and D:

C =

ε 0 0

0 ε 0

0 0 ε

 , D =

 ε 0 0

0 ε 0

∆ ∆ ε

 , (3.1)

where ε > 0 and ∆ are constants.
We now analyze the stability of the linearized viscous shallow water equations

(1.2), (2.4), (3.1). To this end, we take the following ansatz:h′

q′

p′

 =

ĥ′1

q̂ ′
1

p̂ ′
1

 e
ωt+ik

(
γx+

√
1−γ2y

)
, (3.2)

where ω is a wave magnitude, k is its frequency, γ stands for a spatial
direction of the wave, and (ĥ′1, q̂

′
1, p̂

′
1)

⊤ is a constant nonzero vector. Substituting
(3.2) into (1.2), (2.4), (3.1) results in

Eu = 0,

where

E =

 ω + εk2γ2 + εk2(1− γ2) ikγ ik
√

1− γ2

ikγgh0 ω + εk2γ2 + εk2(1− γ2) 0

ik
√

1− γ2gh0 +∆k2(1− γ2) ∆k2(1− γ2) ω + εk2γ2 + εk2(1− γ2)

 .
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Therefore, u is an eigenvector that corresponds to the zero eigenvalue if and
only if the following characteristic equation is satis�ed:

ε3k6 −∆k3(1− γ2)
3
2 (gh0kγ + iω) + εk2(gh0k

2 − i∆k3(1− γ2)
3
2 + 3ω2)+

+3ε2k4ω + (gh0k
2+ω2)ω = 0.

Its solution ω depends on the wave number k and the parameters ε, g, h0,
and ∆. Clearly, if ω is positive for some k, then the system (1.2), (2.4), (3.1)
is unstable.

Next, we take following parameter values: h0 = 1, g = 10, ∆ = 5, and
γ = 1/2, and then plot the function ω(k) for ε = 1 and ε = 5 in Figure 3.1.
As one can see, when ε = 5, ω(k) ≤ 0 for all k and thus the system is stable.
However, when ε = 1, ω(k) > 0 for 0 < k ≲ 2.3 with the maximum value
about 0.4 achieved at about k = 1.5. This means that ε = 1 corresponds to
the unstable regime.

Fig. 3.1. w as a function of k for ε = 1 (left) and ε = 5 (right).

4 Numerical Examples

In this section, we conduct several numerical experiments using a semi-
discrete �fth-order �nite-di�erence alternative weighted essentially non-oscil-
latory (A-WENO) scheme described in [3, �3] (see also [2, Appendix C]).
The di�usion terms have been discretized using a standard six-order �nite-
di�erence approximations of uxx and uyy. We have used the three-stage
third-order strong stability preserving (SSP) Runge-Kutta method (see, e.g.,
[6, 7]) for the temporal discetization.

In all of the numerical examples, periodic boundary conditions are imposed
on the four sides of the computational domain [−30, 30] × [−30, 30], which
corresponds to 15 wavelengths in both the x- and y-directions. We compute
the numerical solutions until a very large �nal time t = 250 on a uniform
mesh with ∆x = ∆y = 0.2.

4.1. Linear Case. We �rst conduct numerical experiments for the viscous
linearized shallow water equations (1.2), (2.4), (3.1) subject to the following
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initial conditions:

h′(x, y, 0) =

10−2
(
1 +

1

40
e2(1−x2−y2)

)
if x2 + y2 < 1,

10−2, otherwise,

q′(x, y, 0) = p′(x, y, 0) ≡ 0,

which are a perturbation of the steady state (h′, q′, p′) ≡ (10−2, 0, 0).
In Figures 4.1 and 4.2, we present the computed solutions for ε = 5 and

1, respectively. One can clearly see that the obtained numerical solutions
support the analytical results in �3. Namely, when ε = 5, the solution is
stable and the small initial perturbation decays in time as expected; see
Figure 4.1, where we plot the computed solution at times t = 0, 50, 100,
and 150. When ε = 1, the solution is unstable: It creates large magnitude
wave structures in the oblique direction that corresponds to γ = 1/2, and the
magnitude of these waves grows inde�nitely in time; see Figure 4.2, where
we plot the computed solution at times t = 0, 50, 100, 150, 200, and 250.

Fig. 4.1. Linear case: h computed with ε = 5 (stable regime)
at di�erent times.
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Fig. 4.2. Same as in Figure 4.1, but for ε = 1 (unstable
regime).

4.2. Nonlinear Case. In this section, we conduct numerical experiments
for the nonlinear viscous Saint-Venant system

ut + f(U)x + g(u)y = Cuxx +Duyy.
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where

u =

h

q

p

 , f(u) =


q

q2

h
+

g

2
h2

pq

h

 , g(u) =


p
pq

h
p2

h
+

g

2
h2

 ,

and the matrices C and D are given by (3.1). We take the following initial
conditions:

h(x, y, 0) =

1 +
1

4000
e2(1−x2−y2) if x2 + y2 < 1,

1, otherwise,
, q(x, y, 0) = p(x, y, 0) ≡ 0,

which are a small perturbation of the steady state (h, q, p) ≡ (1, 0, 0).
We present the computed solutions in Figures 4.3 and 4.4 for ε = 5 and 1,

respectively. As one can see, when ε = 5 the solution of the nonlinear system
is stable and, like in the linear case, the initial perturbation decays in time;
see Figure 4.3, where we plot the computed solution at times t = 0, 50, 100,
and 150. The solution behavior in the unstable (ε = 1) regime is, however,
di�erent from the linear case. While the solution develops large magnitude
waves in the same oblique direction corresponding to γ = 1/2, the magnitude
of these waves does not increase beyond 2 and the solution structure evolves
in a rather complicated nonlinear manner; see Figure 4.4, where we plot the
computed solution at times t = 0, 50, 100, 150, 200, and 250.

5 Stability Conjectures

In this section, we discuss a general question on conditions on the matrices
A,B, C, andD for the stability of the system (1.2). Those ideas are prompted
by simple �combinatorial� observations of 1-D systems in the x- and y-
directions, as well as by the examples of unstable oblique waves above. We
surmize that linear operators, stemming from all combinations of convective
terms in all directions with viscous terms in all directions, should be stable
for all wavenumbers.

Conjecture 5.1. If the eigenvalues of the stability operators Ω1(k) = −ikA−
k2C, Ω2(k) = −ikA−k2D, Ω3(k) = −ikB−k2C, and Ω4(k) = −ikB−k2D
are negative for all k, then the system (1.2) is stable.

Remark 5.2. In fact, Conjecture 5.1 suggests to check the eigenvalues of
four possible combinations −ik(·)−k2(·) of all convective and viscous matrices.

Before presenting the second conjecture, we will make a few simple observations.
We �rst consider a general eigenvalue problem prompted by the stability
considerations. The eigenvalues ofA are the roots of the characteristic polynomial
of degree N , PN (λ) =

∑N
i=0(−1)iriλ

N−i with r0 = 1, r1 = tr(A), and
rN = det(A). In fact, the coe�cients ri for i = 1, . . . , N are the sum of the
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Fig. 4.3. Nonlinear case: h computed with ε = 5 (stable
regime) at di�erent times.

i-rowed principal minors of A. In particular, for N = 2 and N = 3, we have

P2(λ) = λ2 − tr(A)λ+ det(A) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21),

P ′
2(λ) = 2λ− tr(A),

P3(λ) = λ3 − tr(A)λ2 +
( 3∑

i=1

Mii

)
λ− det(A),

P ′
3(λ) = 3λ2 − 2 tr(A)λ+

3∑
i=1

Mii.

Here, Mij denotes the (i, j) minor of A, and
∑3

i=1Mii = (a11a22−a12a21)+
(a11a33 − a13a31) + (a22a33 − a23a32).

Let us denote by λℓ, ℓ = 1, . . . , N the eigenvalues of A and consider a
slightly perturbedmatrix A+δC, where δ is a small parameter. Its eigenvalues
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Fig. 4.4. Same as in Figure 4.3, but for ε = 1 (unstable
regime).

are λℓ+ δλℓ,1+ δ2λℓ,2+ . . . and the characteristic equation can be written as

P̃N (λℓ; δ) :=
N∑
i=0

(−1)i(ri+δri,1+δ2ri,2+ . . .)(λℓ+δλℓ,1+δ2λℓ,2+ . . .)N−i = 0

(5.1)
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with the coe�cients on the left-hand side being slightly perturbed sums of
all principal minors of A + δC. Di�erentiating (5.1) with respect to δ and
substituting δ = 0 results in

∂P̃N

∂δ
(δ = 0) = λℓ,1P

′
N (λℓ) +

N∑
i=1

(−1)iri,1λ
N−i
ℓ = 0,

which implies that the linear correction of the eigenvalue λℓ, which may
in�uence the sign of the ℓ-th eigenvalue of the perturbed matrix for small δ,
is

λℓ,1 = − 1

P ′
N (λℓ)

N∑
i=1

(−1)iri,1λ
N−i
ℓ , ℓ = 1, . . . , N. (5.2)

Here, ri,1 are the sum of the i-rowed principal minors with all combinations
of elements where precisely one element of matrix A is replaced by elements
of matrix C (�rst-order correction) so that λℓ,1 is a linear function relative to
the elements of matrix C. Notice that P ′

N (λℓ) ̸= 0 as long as the eigenvalues
of A are distinct.

In particular, for N = 2, the �rst correction (5.2) assumes a simple elegant
form:

λℓ,1 =
(c11 + c22)λℓ + a12c21 − a22c11 + a21c12 − a11c22

2λℓ − (a11 + a22)
, ℓ = 1, 2.

For N = 3, (5.2) takes the following (a bit cumbersome) form:

λℓ,1 =

tr(C)λ2
ℓ − r2,1λℓ +

3∑
i=1

3∑
j=1

(−1)i+jcijMij

3λ2
ℓ − 2 tr(A)λℓ +

3∑
i=1

Mii

, ℓ = 1, 2, 3,

where

r2,1 = a22c33 + a33c22 − a23c32 − a32c23 + a11c33 + a33c11−
−a13c31 − a31c13 + a11c22 + a22c11 − a12c21 − a21c12

We now use (5.2) and introduce the second conjecture, which relates to a
more algebraic reduction of Conjecture 5.1.

Conjecture 5.3. Let the matrix A has distinct real eigenvalues λℓ, ℓ =
1, . . . , N , and the matrix C has real positive eigenvalues. Then, the linear
operator Ω(k) = −ikA − k2C will have negative eigenvalues if and only if
the quantities λℓ,1 de�ned in (5.2) are negative for all ℓ = 1, . . . , N .

We stress that values λℓ,1 control the �rst correction of long-wavelength
expansion for small k: −iλℓk + λℓ,1k

2. The importance of Conjecture 5.3 is
that it gives a simple algebraic stability criterion based on the elements of
matrices A and C for all k. Both Conjectures 5.1 and 5.3 may be viewed as
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a direct and simple solution of the multidimensional Gelfand problem, and
they are inspired by the remarkable paper by Majda and Pego [9].

6 Conclusion

We have demonstrated the counter-intuitive extension of Majda-Pego insta-
bility for 2-D systems, both analytically and through direct numerical simu-
lations. To the best of our knowledge, this is the �rst nontrivial result for
the Gelfand problem in the multidimensional case.

While we have presented examples of unstable 2-D system with viscous
terms, it is rather easy to construct similar examples in the 3-D case: as in
the 2-D case, both advective and viscous matrices should be non-diagonal,
all of the waves propagating in either x-, y-, or z-direction will be stable, yet
some oblique waves will be unstable.

We hope that our examples will stimulate the elucidation of peculiar role of
viscous e�ects in the broad spectrum of natural phenomena, including �uid
mechanics. We have proposed the conjectures that give direct assessment
of stability of multidimensional convection-di�usion systems and resolve the
Gelfand problem. One can also generalize Conjectures 5.1 and 5.3 for the 3-D
systems: In order to establish the stability criteria, one has to study to the
eigenvalues of nine linear operators −ik(·) − k2(·) for possible combination
of all convective and viscous matrices.

Acknowledgment: The work of A. Kurganov was supported in part by
NSFC grant 12171226 and the fund of the Guangdong Provincial Key Laboratory
of Computational Science and Material Design (No. 2019B030301001).
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