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Dedicated to the memory of Sergey Godunov

Abstract: The contribution of Sergei Konstantinovich Godunov
to the development of numerical methods is di�cult to overestimate.
One of the authors, Abuziarov M.H., participated in the work
of the international symposium "The Godunov Method in Gas
Dynamics"at the University of Michigan (An Arbor USA) in May
1997, organized by NASA USA in honor of Godunov. At this
symposium, Sergei Konstantinovich was presented as the most
outstanding applied mathematician of the 20th century, and a
special tour of NASA laboratories in the USA was organized for
him. The scheme originally proposed by Godunov for solving the
equations of gas dynamics has also found wide application for
solving elastic-plastic problems of continuum mechanics. This �ni-
te-volume �ow scheme of the predictor-corrector type is based on
solving the Riemann problem at the predictor step at the cell
boundaries under the assumption of a piece-wise constant distribu-
tion of parameters in these cells. The main advantages of the
scheme, such as monotonicity, the possibility of identifying impact
and contact discontinuities, the use of Lagrangian and Eulerian
approaches, and the simplicity of implementing boundary conditi-
ons are the consequences of solving this problem. At the same
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time, solving the Riemann problem using a piecewise constant
distribution of parameters in cells is the source of the main disad-
vantage of the scheme - signi�cant scheme viscosity, while the
corrector step of the scheme is su�cient for the second-order of
approximation. In this paper, the authors proceed from the linear
distribution of �ow parameters between the centers of neighboring
cells, and from the analysis of the di�erential approximation of the
scheme, by the appropriate choice of these parameters for solving
the Riemann problem, they increase the order of approximation of
the scheme to the second in the region of smooth solutions while
maintaining monotonicity on discontinuous ones. The appropriate
choice of these parameters increases the order of approximation of
the scheme to the second in space and time on a moving non-
uniform grid for both the Lagrangian and Eulerian cases on a
compact stencil, for both gas-dynamic and elastic-plastic �ows.
Monotonicity near discontinuous solutions is ensured by switching
to the predictor step of the �rst-order accuracy scheme. The coor-
dinates of the interpolation points of the �ow parameters have
an obvious physical meaning - these are the boundaries of the
dependence region of the Riemann problem solution for the moving
coordinate of the face center at half the time integration step. This
scheme modi�cation is practically the same for both gas-dynamic
and elastic-plastic �ows. In contrast to gas-dynamic problems,
for elastic-plastic �ows, the corresponding Riemann invariants are
interpolated at the boundaries of the dependence regions. The
quality of the scheme is illustrated by test problems.

Keywords: Godunov scheme, high accuracy, di�erential approxi-
mation, three-dimensionality, gas dynamics, elastic-plastic �ows,
�nite volume method.

1 INTRODUCTION

A di�erence scheme based on the exact solution of the Riemann problem
(RP) was proposed by S.K. Godunov [1], [2] for the numerical solution of
multidimensional gas-�uid dynamics problems (CFD). It became the basis
for creating of a whole family of schemes called as �nite volume methods
(FVM), including those for modeling nonlinear elastic-plastic processes in
continuum mechanics (computational solid dynamics - CSD). These methods
are based on the use of the RP solution, which determines the main advanta-
ges of this class of schemes: the ability to isolate and track shock waves
and contact discontinuities, the use of Lagrangian and Eulerian variables,
and monotonicity without introducing arti�cial viscosity. The solution of
the same RP, when using piecewise constant parameter values in adjacent
cells, is also the cause of the main drawback of the original Godunov scheme -
signi�cant scheme viscosity. Accordingly, the aim of numerous modi�cations
of the Godunov scheme [3]-[10] and others was to reduce this viscosity. Since
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the corrector step of the Godunov scheme is su�cient for the second-order
of approximation, the predictor step was modi�ed � the initial data for the
RP solution were changed. Several variants were also proposed where the
corrector step was additionally corrected, for example, the work [9]. The
Godunov scheme assumes a piecewise constant distribution of parameters in
the cells, and the calculation of the RP is performed at the boundary between
these discontinuous parameters. Almost all modi�cations of the Godunov
scheme also assume a discontinuity at the boundary between the cells, only
the values of the parameters to the left and right of the discontinuity change,
determined by di�erent laws of parameter distribution inside the cells (linear
[3], [4], parabolic [6]). It is assumed that the discontinuity of the parameters
is at this boundary and a one-dimensional RP solution is used. Accordingly,
as a consequence: 1-the di�erence stencil increases from the original Godunov
scheme 3x3x3 to 5x5x5, which complicates the algorithm, especially in the
case of unstructured grids, and leads to the loss of the hyperbolicity property
of the di�erence equations; 2-the problem of constructing a spatial distribu-
tion in cells in 2D and 3D cases arises; the stability conditions become more
stringent; di�erent algorithms are required for sub- and supersonic �ows, as
well as for Lagrangian and Eulerian variables. In this paper, an approach is
proposed for constructing Godunov-type di�erence schemes (development of
[10]-[12]) based on the analysis of the parametric di�erential approximation
of the scheme for linearized equations, which makes it possible to obtain
parameters for solving RP, providing the possibility of introducing adjustable
scheme viscosity with the possibility of continuous transition from a scheme
with zero viscosity (second-order) to a Godunov scheme of the �rst-order
of accuracy. A linear distribution of �ow parameters between the centers
of neighboring cells is assumed, and the choice of these parameters for
solving RP, provides the second-order of approximation in the region of
smooth solutions and monotonicity on discontinuous ones. To implement
this approach, a parametric expression for the �rst di�erential approximation
for linearized equations for non-uniform di�erence grids is obtained, where
the coordinates of the interpolation points of the �ow parameters vary. The
choice of the appropriate coordinates of these points makes it possible to
regulate the viscosity of the scheme for linearized equations; in fact, the
dependence of the RP solution on time and space is introduced. The RP
solution obtained in this way increases the order of approximation of the
scheme on a compact 3x3x3 template to the second in space and time
on orthogonal non-uniform moving grids for 3D linearized equations. This
approach has an obvious physical meaning - convergence of the in�uence
areas of the di�erence and di�erential problems. In this case, only the predic-
tor step of the scheme is changed.
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2 SYSTEM OF EQUATIONS FOR NUMERICAL

MODELING OF GAS-DYNAMIC AND

ELASTOPLASTIC FLOWS

For modeling, integral equations are used in the form of the laws of
conservation of mass, momentum, and energy for an arbitrary moving volume,
describing the deformation of a continuous medium in the approximation of
a compressible elastic-plastic solid model [13], [14]. These equations can be
used to describe both smooth and discontinuous solutions. In a Cartesian
coordinate system, the corresponding di�erential equations have the following
form [14]:

ρ,t + (ρui),xi = 0 (1.1)

(ρui),t + (ρuiuj − σij),xj = 0 (1.2)

e,t + (euj − uiσij),xj = 0 (1.3)

DSij/Dt+ λiSij = 2µeij (1.4)

ε = ε(p, ρ), (1.5)

Where t is time, xi, i = 1, 2, 3 are the spatial Eulerian coordinates, ui
are the components of the velocity vector along the axes xi respectively,
ρ is the density, e = ρ(ε + uiui/2) is the total energy per unit volume, ε
is the internal energy of a unit mass given by the equation of state (1.5),
σij is the stress tensor, which is represented as spherical and deviatoric parts
σij = −pδij+Sij , p = −σii/3, eij is the strain rate tensor deviator eij = εij−
1/3εkkδij , where εij = (ui,j +uj,i)/2, and the indices after the decimal point
refer to the corresponding di�erentiation (in the time or the corresponding
direction), δij is the Kronecker symbol. The symbol D/Dt indicates the
Jaumann derivative, taking into account the stress tensor rotation in Eulerian
variables (hypoelastic model).DSij/Dt = Sij,t+uk∂Sij∂xk−Sikωjk−Sjkωik,
where ωij = (ui,j − uj,i)/2, and µ is the material's shear modulus. The von
Mises yield condition is used as a criterion for the transition from an elastic
to a plastic state SijSij = 2/3σ2

S , and σS is the yield stress in the uniaxial
tension. The parameter λ must remain positive during plastic deformation
when the von Mises yield condition is satis�ed λt = 3/2SijSij/σ

2
S . Plastic

�ow is described by maintaining the value of the deviator on the yield surface
[13]. In the absence of shear stresses, system (1.1)-(1.5) obviously transforms
into the Euler equations of motion of an ideal compressible liquid or gas.

3 MODIFICATION OF THE RIEMANN PROBLEM FOR

LINEARIZED EQUATIONS BASED ON THE

ANALYSIS OF DIFFERENTIAL APPROXIMATION

3.1. The Riemann problem for the Godunov scheme of increased
accuracy for one-dimensional Euler equations.

Let's denote the components of the velocity vector along the axes as in [2] ,
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is the sound speed. After linearization near the vector for the one-dimensional
case, we have [2]:

ut + u0ux + px/ρ0 = 0 (2.1)

pt + u0px + ρ0c
2
0ux = 0 (2.2)

dρ/dt = dp/dt/c20 (2.3)

For subsequent obtaining and analysis of the parametric di�erential ap-
proximation, it is su�cient to consider equations (2.1), (2.2). The goal is
to introduce into the Godunov scheme for equations (2.1) and (2.2) at the
predictor stage an explicit dependence on the choice of �ow parameters used
to solve RP, to construct the �rst di�erential approximation of this scheme
depending on these parameters and to modify it to obtain the required
approximation. Let's assume a linear distribution of �ow parameters between
the cell centers and the absence of a discontinuity at the cell boundary. From
here on, parameters with integer index values will be related to the cell
centers, the integer index at the bottom will mean the parameter value on the
lower time layer, at the top - accordingly on the upper time layer, half-integer
indices will refer to the coordinates of the cell boundaries and the �breakup�
(at the intermediate time layer) values of the parameters at these boundaries.
In Cartesian coordinates for a cell centered at the point (xi, yj , zk) and with
boundaries along the axis x (xi−1/2, yj , zk), (xi+1/2, yj , zk) for the time layer
tn this will be the following distribution of �ow parameters U , where U
denotes parameters (p, ρ, u, v, w).

At xi−1 ≤ x ≤ xi
U(x, yj , zk) = U(xi−1, yj , zk) + (U(xi, yj , zk)− U(xi−1, yj , zk))/(xi − xi−1)(x− xi−1) and

at xi ≤ x ≤ xi+1

U(x, yj , zk) = U(xi, yj , zk) + (U(xi+1, yj , zk)− U(xi, yj , zk))/(xi+1 − xi)(x− xi),(�g.1)
Grid step along the axis x hi = xi+1/2 − xi−1/2. The same applies to the
directions y, z. We will solve the Riemann problem for a cell-centered
at a point (xi, yj , zk) at the border (xi−1/2, yj , zk) between the parameters

U(x+i−1, yj , zk) and U(x−i , yj , zk) , and at the border (xi+1/2, yj , zk) between

the parameters U(x+i , yj , zk) and U(x−i+1, yj , zk). The coordinates of the

points (x+i−1, yj , zk), (x
−
i , yj , zk) and (x+i , yj , zk), (x

−
i+1, yj , zk) will be changed.

Similarly for other faces, the goal is to obtain a di�erential approximation
depending on these coordinates.

For 1D equations (2.1) and (2.2) Godunov's scheme looks like this

(ui − ui)/∆t+ u0(ui+1/2 − ui−1/2)/∆x+ (pi+1/2 − pi−1/2)/ρ0/∆x = 0

(pi − pi)/∆t+ u0(pi+1/2 − pi−1/2)/∆x+ ρ0c
2
0(ui+1/2 − ui−1/2)/∆x = 0

For the �rst-order scheme (de�nition of the values ui−1/2, pi−1/2, ui+1/2,
pi+1/2) RP is solved for the parameters at the cell centers, and its solution
for the subsonic case has the fol-lowing form [2]:

ui−1/2 = (ui−1 + ui)/2 + (pi−1 − pi)/(2ρ0c0);

pi−1/2 = (pi−1 + pi)/2 + ρ0c0(ui−1 − ui)/2;
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Fig 1. linear distribution of �ow parameters between the
centers of adjacent cells.

ui+1/2 = (ui + ui+1)/2 + (pi − pi+1)/(2ρ0c0);

pi+1/2 = (pi + pi+1)/2 + ρ0c0(ui − ui+1)/2;

For the supersonic case, these relations are given in [2].
For the high-precision scheme, the parameters for the RP solution are

determined at the points x+i−1, x
−
i , x

+
i , x

−
i+1 by linear interpolation from the

cell centers (here and below x+i−1, x
−
i coordinates relative to the boundary

xi−1/2, and x+i , x
−
i+1 relative to the boundary xi+1/2, u

+
i−1, u

−
i , p

+
i−1, p

−
i , u

+
i ,

u−i+1, p
+
i , p

−
i+1 (respectively, the values at these points), and the solution to

this problem, regardless of the �ow regime, has the following form (Fig. 1):

ui−1/2 = (u+i−1 + u−i )/2 + (p+i−1 − p−i )/(2ρ0c0);

pi−1/2 = (p+i−1 + p−i )/2 + ρ0c0(u
+
i−1 − u−i )/2;

ui+1/2 = (u+i + u−i+1)/2 + (p+i − p−i+1)/(2ρ0c0);

pi+1/2 = (p+i + p−i+1)/2 + ρ0c0(u
+
i − u−i+1)/2;

For this solution, we obtain the following �rst di�erential approximation (the
derivation is given in [14]):

ut + u0uxA1 + px/ρ0B1 = −uxxA2/2− pxx/(ρ0c0)B2/2 + ō(h2
i ,∆t2,∆thi)
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pt + u0pxA1 + ρ0c
2
0uxB1 = −pxxA2/2− ρ0c0uxxB2/2 + ō(h2

i ,∆t2,∆thi)

A1 = (x+
i + x−

i+1 − x+
i−1 − x−

i−1 + c0/u0(x
+
i − x−

i+1 + x−
i − x+

i−1))/(2hi)

B1 = (x+
i + x−

i+1 − x+
i−1 − x−

i−1 + u0/c0(x
+
i − x−

i+1 + x−
i − x+

i−1))/(2hi)

A2 = ∆t(c20+u2
0)+u0/(2hi)((hi−1+hi)(x

+
i−1+x−

i )+(hi+hi+1)(x
+
i +x−

i+1))/2+

+ c0/(2hi)((hi−1 + hi)(x
+
i−1 − x−

i ) + (hi + hi+1)(x
+
i − x−

i+1))/2 (2.4)

B2 = 2u0c0∆t+ u0/(2hi)((hi−1 + hi)(x
+
i−1 − x−

i ) + (hi + hi+1)(x
+
i − x−

i+1))/2+

+ c0/(2hi)((hi−1 + hi)(x
+
i−1 + x−

i ) + (hi + hi+1)(x
+
i + x−

i+1))/2 (2.5)

where ∆t = tn+1 − tn; hi = xi+1/2 − xi−1/2; hi−1 = xi−1/2 − xi−3/2; hi+1 =
xi+3/2−xi+1/2. For the �rst- order Godunov scheme [2] these coe�cients are

A1 = 1; B1 = 1; A2 = ∆t(c20+u20)−hic0; B2 = 2∆tu0c0−hiu0. It is obvious
that the second-order for this scheme is possible only if u0 = 0, ∆tc0 =
hi (acoustics, the Courant number is 1). The modi�ed scheme at A1 = 1;
B1 = 1 (x+i−1 = x+i ;x

−
i = x−i+1) approximates the linearized equations with

the �rst-order of accuracy. That is, for the �rst-order of approximation, the
left interpolation points x+i−1, x

+
i (x

+
i−1 to the left of the boundary xi−1/2 and

x+i to the left of the boundary xi+1/2) must be at the same distance from
the corresponding boundaries. Similarly, the same distances for the right
x−i , x

−
i+1. Obviously, this condition will not be satis�ed for the �rst-order

Godunov scheme on a non-uniform grid, and it will not even have a �rst-order
approximation on such a grid. In order to develop the modi�ed scheme with
a second-order approximation, it is necessary to add the following conditions:
A2 = 0; B2 = 0. Accordingly, equations (2.4) and (2.5) yield:

x+
i−1 = (∆t(−u0−c0)/2+(hi+1−hi−1)/8)/(1+(hi+1+hi−1−2hi)/(4hi));x

+
i = x+

i−1

x−
i = (∆t(−u0+c0)/2+(hi+1−hi−1)/8)/(1+(hi+1+hi−1−2hi)/(4hi));x

−
i+1 = x−

i

(2.6)

Formulas (2.6) de�ne the coordinates of the interpolation points. The
interpolation of the parameters from the cell centers to these points with
subsequent calculation in the standard RP manner provides the second-order
approximation of the 1D linearized Euler equations. In this case, the densities
at these points are determined from equation (2.3). The RP solution for these
parameters will depend on the integration step over time and the di�erence
grid. For a uniform grid or a grid changing according to the law of arithmetic
progression with a step hi − hi−1 = hi+1 − hi = ∆, we get the following:

x+
i−1 = (∆t(−u0−c0)/2+∆/4);x+

i = x+
i−1;x

−
i = (∆t(−u0+c0)/2+∆/4);x−

i+1 = x−
i

(2.7)
These coordinates have an obvious physical meaning. They limit the domain of
in�uence on the RP solution for the face of the integrated cell at the time instant
∆t/2, i.e. at ∆t/2 when the �ows through the corresponding face are determined
from the RP solution, disturbances can only be from the domain limited by the
extreme characteristics arriving at this face. The size of the domain of in�uence for
all cases is c0∆t/2 and coincides with the domain of in�uence of the di�erential
problem. Figure 2 shows a geometric interpretation of (2.7) for the cell face xi−1/2
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(special cases): 1-acoustic case - the domain of in�uence c0∆t and, accordingly,
the interpolation points are symmetrical with respect to the boundary; 2- subsonic
case, upstream displacement of c0∆t; 3- supersonic case, upstream displacement by
one cell of c0∆t; 4- non-uniform grid, displacement of c0∆t toward a larger cell; 5-
moving edge with velocity W , the interpolation points and the domain of in�uence
c0∆t are determined with respect to the position of the face at the moment c0∆t/2.
In the �rst-order accuracy scheme, this domain of in�uence does not depend on time
and is equal to the cell size hi ≥ c0∆t .

3.2. Modi�cation of the Riemann problem for three-dimensional linea-

rized Euler equations.

In the Godunov scheme [2] for 2D and 3D cases, splitting by spatial variables is
used. For each face in the normal direction, a one-dimensional Riemann problem
is solved for pressures, densities, and velocities normal to the face. The tangential
velocity components are selected from the centers of the corresponding donor cells.
The use of an algorithm that increases the accuracy of the scheme to the second-
order in the one-dimensional case is insu�cient for 2D and 3D. From the analysis of
the parametric equations obtained for the spatial equations, an additional correction
is needed before solving the RP to increase the accuracy in space and time. Before
interpolation, it is necessary to additionally take into account the in�uence of the
tangential (y and z) components of the equations on the interpolated parameters,
including the y and z components of the velocities. In what follows, the RP solution
for CFD will be called the solution with y and z components of the velocities. Let's
denote these re�ned parameters by symbols with asterisks U∗ = (p∗, ρ∗, u∗, v∗, w∗) .
For the Riemann problem at the boundary i−1/2, j, k (the cell i, j, k is integrated),
these re�ned parameters are p∗i−1, u

∗
i−1, v

∗
i−1, w

∗
i−1, p

∗
i , u

∗
i , v

∗
i , w

∗
i where

u∗
i = u1 −∆t/2(v0uy + w0uz);

p∗i = p1 −∆t/2(v0uy + w0pz + ρ0c
2
0(vy + wz));

v∗i = v1 −∆t/2(v0vy + w0vz + py/ρ0);

w∗
i = w1 −∆t/2(v0wy + w0wz + pz/ρ0) (2.8)

Similarly, the re�ned parameters p∗i−1, u
∗
i−1, v

∗
i−1, w

∗
i−1 for the cell i − 1, j, k are

determined. The derivatives with respect to y and z on the right-hand sides of
(2.8) for the cells i − 1, j, k and i, j, k are calculated with the second-order of
accuracy (by three points). For the y-axis, these are cells centered at the points
(i, j−1, k), (i, j, k), (i, j+1, k), and for the z-axis respectively (i, j, k−1), (i, j, k1),
(i, j, k+1). Next, we perform interpolation of values p∗(xi−1, yj , zk), u

∗(xi−1, yj , zk),
p∗(xi, yj , zk), u

∗(xi, yj , zk) at the points x
+
i−1 and x−

i . The densities at these points
are determined from equation (2.3). Next, for these parameters, the one-dimensional
Riemann problem is solved [2], from which we obtain pi−1/2,j,k,ui−1/2,j,k,ρi−1/2,j,k.
The tangential components of the velocities are determined as follows:

vi−1/2,j,k = (v∗i−1,j,k + v∗i,j,k)/2− u0∆t/2(v∗i,j,k − v∗i−1,j,k)/hx

wi−1/2,j,k = (w∗
i−1,j,k + w∗

i,j,k)/2− u0∆t/2(w∗
i,j,k − w∗

i−1,j,k)/hx
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Fig 2. Zone of in�uence on the Riemann solution at the cell
boundary at ∆t/2.2
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In fact, they are determined from a solution of the transport equations in the x
direction for the equations of motion in the y and z directions (interpolation to a
point with coordinates xi−1/2,j,k−u0∆t/2) taking into account the in�uence of the
gradients in the x and y directions. The parameters obtained in this way are used
in further calculation of �ows and integration according to the standard Godunov
scheme and provide an approximation of 3D linearized equations with the second-
order of accuracy in space and time. This approach is valid for both subsonic and
supersonic �ow regimes.

3.3. Modi�cation of the Riemann problem for a deformable solid.

To simulate the dynamics of a compressible elastic-plastic medium, the method
of splitting elastic-plastic equations proposed by V.N. Kukudzhanov [14] is used.
This method allows to signi�cantly simplify the process of calculating elastic-
plastic �ows and reduces the calculation of plastic behavior to the correction of
the elastic solution while maintaining the second- order of approximation. Within
the framework of the Godunov scheme, this means that it is su�cient to integrate
the elastic equations - the elastic Riemann problem is solved, the calculation and
integration of elastic �ows and components of the stress tensor deviator with subse-
quent correction of elastic stresses at the corrector stage depending on the plasticity
model are used [14]. For the case of ideal plasticity, the correction of the elastic
solution coincides with that proposed by Wilkins [16] Sij = Sij/

√
λt, where λt =

3/2SijSij/σ
2
S . The system of equations (1.1)-(1.5) for elastic case ( λt = 0 )

in expanded form is given in the authors' work in [17]. To solve the equations
of the dynamics of an elastic-plastic medium according to the Godunov scheme,
the Riemann problem solution in the elastic approximation is used. Let's denote
c2 = (∂p/∂ρ)s; f = 1/(ρ(∂ε/∂p)ρ). After linearization of the energy equation,
the linearized system of equations can be rewritten in the form of 11 transport
equations [14],[17], using the Riemann invariants Ri, which remain constant on the
corresponding characteristic ci, where

c1 = u+ a; c2 = u− a; c3 = u+ βy; c+ 4 = u− βy; c5 = u+ βz; c6 = u− βz;

c7 = c8 = c9 = c10 = c11 = u;

a2 = c2+(4/3µ−fS11)/ρ, β2 =

√
(µ+ 3/4S11)/ρ− 0.5

√
(0.25(S22 − S33)2 + S2

23)/ρ
2

β3 =

√
(µ+ 3/4S11)/ρ+ 0.5

√
(0.25(S22 − S33)2 + S2

23)/ρ
2

The relationships on these characteristics are given in [14], [17]. For the
�rst-order scheme, in the zone where the solution is sought (where the
corresponding cell face is located), the corresponding invariants are determi-
ned and the parameters ρ, u1.u2, u3, p, S11, S22, S33, S12, S13, S23 needed to
calculate the �ows are determined from them. To obtain a second-order
approximation scheme, it is also necessary to interpolate the parameters, in
this case the invariants. The parameters U(ρ, u1.u2, u3, p, S11, S22, S33, S12,
S13, S23) at the cell centers before calculating the invariants must be additio-
nally corrected for the time layer ∆t/2 , taking into account the in�uence
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Fig 3. Coordinates of the interpolation points of the
Riemann invariants for the second-order approximation
scheme for an elastic system.

of the tangential (y and z) components of the equations, similar to the
case for the Euler equations; the derivatives with respect to y and z in
the right-hand sides for cells i − 1, j, k and i, j, k are calculated with the
second-order of accuracy (over three points). For example, for the equation
of motion of an elastic-plastic �ow for the face i − 1/2, j, k(the cell i, j, k
is integrated), this correction will have the following form (the notations
for the velocities are taken as in the formulas for the Euler equations)
u∗i−1 = ui−1 = ∆t/2(v0uy + w0uz − S12,y/ρ − S13,z/ρ). Let's denote the
invariants determined by these re�ned parameters U also by symbols with
asterisks R∗

n, n = 1, .., 11. The coordinates of the interpolation points are
de�ned as the boundaries of the regions of in�uence of the corresponding
invariants on the position of the face at the moment of time ∆t/2, where W
the velocity of the face (indicated by the dotted line in Fig. 3), as follows:

xn = 0.5(xi−1 + xi) + (W − cn)∆t/2, n = 1, .., 11 (2.9)

Let's denote the points for interpolation as , and the invariants that are
interpolated at these points with index �m�, respectively:

Rm
n = R∗,i−1

n + (R∗,i
n −R∗,i−1

n )/(xi − xi−1)(xn − xi−1), n = 1, .., 11

The �ow parameters obtained from these invariants provide a second-
order approximation of the scheme for the linearized equations. As a
result, the approach providing the second-order of approximation of the
linearized equations (1.1)-(1.5) in space and time consists of the following
three steps (the boundary i− 1/2, j, k separating the cell (i− 1, j, k) and the
cell (i, j, k). The �rst step is the determination of the interpolation points
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x+i−1 and x+i for the Euler equations and the points xn, n = 1, .., 11 for
the elastic-plastic �ow, respectively, according to formulas (2.7) and (2.9).
The second step is the correction of the parameters U(xi−1, yj , zk) and
U(xi, yj , zk) at the cell centers taking into account the tangential (y and z)
gradients at time ∆t/2 (de�nition of U∗(xi−1, yj , zk) and U∗(xi, yj , zk) and

calculation of R∗,i−1
n , R∗,i

n , n = 1, .., 11. The third step is the interpolation for
the Euler equations of values U∗(xi−1, yj , zk) and U∗(xi, yj , zk) at points x

+
i−1

and x+i and RP for U∗(x+i−1, yj , zk) and U∗(x−i , yj , zk) with the appropriate
choice of U(xi−1/2, yj , zk). For elastic-plastic �ows, this is the interpolation of

R∗,i−1
n , R∗,i

n into points xn, n = 1, .., 11 and the de�nition of U(xi−1/2, yj , zk)
from invariants Rm

n , n = 1, .., 11 and from the corresponding material cons-
tants and �ow parameters interpolated to the point x7 = (xi−1+xi)/2+(W−
c7)∆t/2 [17]. The corrector step of the modi�ed scheme (�ow calculation
and integration) coincides with the �rst-order scheme for 3D equations. For
elastic-plastic �ows, the stress tensor correction is performed in accordance
with [14].

3.4. Generalization to the nonlinear case, stability, implementation
of boundary conditions with increased accuracy.

For generalization to the nonlinear case, the following approach is used.
The linearization parameters should be chosen individually for each cell. For
CFD we additionally consider the mass conservation equation with interpola-
tion of densities similar to pressures. When determining the interpolation
points, the in�uence of the gradients of sound and transport velocities, as well
as the in�uence of the tangential gradients of the �ow parameters, are taken
into account, i.e., the coordinates of the interpolation points are determined
after taking these gradients into account at ∆t/2. For the stability of the
modi�ed scheme for 3D equations, the same criteria can be used as for the
�rst-order 3D scheme. Analysis of the second-order 3D scheme for linearized
equations shows that this modi�cation is more stable than the �rst-order
scheme. The stability criteria coincide with the Lax-Wendro� scheme. That
is, for the 2D case on square grids the step will be in

√
2, and for 3D

on cubic grids it will be
√
3 times larger than the step of the �rst-order

scheme. Greater stability is achieved due to a more accurate approximation
of the tangent components. Due to the compactness of the template, this
modi�cation also allows for an e�ective increase in accuracy when implemen-
ting various types of boundary conditions and contact interactions, in parti-
cular, when solving problems of interaction between gas-liquid media and
elastic-plastic structures [18]. In this case, to solve RP at the boundary, the
�ow parameters for the Euler equations or the Riemann invariants for elastic-
plastic bodies are extrapolated from the boundary cells to the corresponding
points (boundaries of the in�uence regions).
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3.5. Monotony, adjustable viscosity of the scheme.

In the area of discontinuous solutions, this modi�cation has the disadvan-
tages inherent in second-order approximation schemes - it is non-monotone.
One of the advantages of this modi�cation is the existence of an algorithm
for eliminating the disadvantages in the area of discontinuous solutions by
switching to the RP solution for the Godunov scheme of the �rst- order
of accuracy. The problem is how to localize these discontinuous areas. One
of the options for gas dynamics is to switch to the �rst-order RP in the
compression region and this region is determined by comparing the pressure
from the acoustic decay with the pressure in the lower time layer [10]. In
this case, a signi�cant viscosity is introduced into the scheme in the area of
monotonic compression. Another method has also been tested - with a lower
viscosity. In [12], a quadratic spline applied to pressure and density was used
to determine a criterion for switching to the �rst-order RP. With a monotonic
discrete solution, the spline constructed on this solution can already be
non-monotonic, and the non-monotonicity of the spline is the criterion for
switching to the RP of the �rst-order accuracy scheme. For example, when
calculating the RP at an edge xi−1/2, a left quadratic spline is constructed
in pressures pi−2, pi−1, pi and a right one in pressures pi−1, pi, pi+1. If the left
spline has an extremum, and this extremum is located between the centers of
cells with the coordinates xi−2 and xi, or the right spline has an extremum
located between the centers of cells with the coordinates xi−1 and xi+1,
then the parameters from the cell centers are taken to solve RP. For elastic-
plastic �ows, in contrast to gas dynamics problems, where it is necessary
to analyze pressure and density �elds, to obtain monotonic solutions, it
is su�cient to analyze the normal stress �eld [13]. From the analysis of
the parametric di�erential approximation, it follows that it is possible to
regulate the scheme viscosity of the resulting 3D scheme due to the modi�ed
3D Riemann problem from a second-order scheme with zero viscosity to the
viscosity of the Godunov scheme. By combining the viscosity terms due to the
interpolation points and the viscosity from the tangential spatial corrections,
one can obtain volume and shear viscosity terms for the linearized equations
that are equal to the physical values.

4 TEST EXAMPLES

4.1. Interaction of two shock waves (Woodward test).

A collision of two strong shock waves is simulated [19]. The calculation
was per-formed using uniform Eulerian grids. The computational domain
is bounded by rigid walls, the initial parameters at x < 0.1p = 1000, at
0.1 < x < 0.9p = 0.01, at x > 0.9p = 100, the density, velocity and
adiabatic index are the same for the entire domain: ρ = 1, u = 0, γ = 1.4.
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Fig 4. Density distributions, t=0.026, grids 200, 48000 and
1200, 48000 on the right.

The calculation was performed up to time t=0.038. At this time instant,
a rather complex picture of the distribution of gas-dynamic parameters is
formed, which is widely used to check the quality of schemes. Figures 4,
5, 6 show the density distributions along the x axis at times 0.026, 0.030
and 0.038, respectively, for grids 200 and 1200 (left) and 1200 and 48000
(right) ac-cording to the modi�ed scheme. The results for 48000 cells are
close to the solution [19]. The results for 1200 cells are marked with crosses
and are close to the calculations for 48000 cells (squares). In this �gure,
each symbol (cross, square, circle) corresponds to one calculation cell. At
the time 0.028, when the waves collide, the maximum pressure of 1020.9 and
the maximum density of 28.5 are observed at the coordinate x=0.6941. The
solution obtained by the modi�ed scheme demonstrates good resolution in
the region of contact discontinuities on the Eulerian grids. The region of
smearing of contact discontinuities for the used grids is no more than three
cells.

4.2. Forced elastic vibrations of a clamped plate.

A two-dimensional problem of deformation of an elastic plate OABC with
a thickness of 5 cm and a length of 50 cm under the action of a suddenly
applied load is considered (Fig. 7). The density of the material is 7.88 g/cm3,
the bulk modulus is 166 GPa, the shear modulus is 81.4 GPa. At t> 0,
a constant pressure P = 1 MPa acts at the boundary AB, P = 0.1 MPa
at the boundary BSO. The velocities at the boundary OA are u = 0 and
w = 0, respectively, along the x and z axes (rigid �xation conditions).
Figure 8 shows the results of calculations carried out using the Godunov
scheme of the �rst and second-orders of accuracy with a safety factor for the
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Fig 5. Density distributions, t=0.030, grids 200, 1200 and
1200, 48000 on the right.

Fig 6. Density distributions, t=0.038, grids 200, 1200 and
1200, 48000 on the right.

integration step of K = 0.5. Numbers 1, 2, 3 mark the beam velocity time
histories along the z axis at point B using the �rst-order scheme versus time
for the 50x5, 100x10, and 200x20 computational grids, respectively, which
required 50, 100, and 200 thousand computational steps. Numbers 4 and
5 mark the solution for 50x5 discretization using the second-order scheme.
Number 4 marks the solution without re�nement of parameters in the RP
solution (invariants for RP are taken from the center of the boundary cell)
at the boundary, Number 5 is the solution with re�nement (the invariants
are extrapolated from the boundary and preboundary cells). The �rst-order
scheme yields a strongly damped solution. In the modi�ed scheme, the re�ned
implementation of the boundary conditions signi�cantly improves the quality
of the numerical solution; these results are virtually independent of the
Courant number. Solution 5 virtually coincides with the solution using LS
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Fig 7. The problem statement.

Fig 8. Vertical velocities time histories at point B.

DYNA in the ANSYS soft-ware suite. Based on the proposed methodology
and multigrid algorithms, an e�ective software package has been developed
for solving three-dimensional dynamic problems of interaction of gas-liquid
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media with elastic-plastic solids. Di�erent problems of explosive and impact
interaction of structural elements with compressible media were solved [14],
[15], [17], [18], [20].

5 CONCLUSIONS

A parametric di�erential approximation for the linearized spatial Euler
equations and the equations of dynamics of elastoplastic media is constructed
as applied to the Godunov scheme. Based on the analysis of this di�erential
approximation, a 3D di�erence scheme is proposed that has the second-order
of accuracy in space and time on smooth solutions and monotonic behavior
on discontinuities on a compact template for gas-dynamic and elasto-plastic
�ows in Eulerian variables. The accuracy is increased by modifying only the
predictor step of the �rst-order scheme. The resulting modi�cation of the
scheme has an obvious phys-ical meaning - it brings together the areas of
in�uence of the di�erential and di�erence problems. The main advantage of
the modi�ed scheme for CSD, which has the second-order of approximation
in time and space for elastoplastic �ows in Eulerian variables, is the use of
only an elastic solution to the Riemann problem at the predictor stage, which
signi�cantly simpli�es the solution of elastoplastic problems. The compact
template of this modi�cation simpli�es the implementation of boundary
conditions and allows increasing the accuracy at the boundary to the second-
order of approximation, which is especially important for CSD. The imple-
mentation of this modi�cation, uni�ed for gas-liquid and elastic-plastic media,
into existing software packages based on Godunov-type schemes, does not
require signi�cant software changes and allows solving di�erent three-dimen-
sional dynamic problems of interaction of gas-liquid media with elastic-
plastic solids within the framework of one method.
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