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Abstract: We consider a dynamic competitive facility location
problem, where two competing parties (Leader and Follower) aim
to capture customers in each time period of the planning horizon
and get a pro�t from serving them. The Leader's objective function
represents their regret composed of the cost of open facilities and a
total shortage of income computed with respect to some prede�ned
target income values set for each of the time periods. The Follower's
goal is to maximize their pro�t on the whole planning horizon. In
the model, the Leader makes their location decision once at the
beginning of the planning horizon, while the Follower can open
additional facilities at any time period.

In the present work, a procedure computing upper bounds for
the Leader's objective function is proposed. It is based on using a
high-point relaxation of the initial bi-level mathematical program
and strengthening it with additional constraints (cuts). New proce-
dures of generating additional cuts in a form of c-cuts and d-cuts,
which are stronger than the ones proposed in earlier works, are
presented.
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1 Introduction

We consider a problem from the family of competitive facility location
models constructed on the base of the simple facility location problem and
Stackelberg game. In such models, there are two competing parties, called
Leader and Follower, who sequentially open their facilities aiming to capture
customers and maximize a pro�t from servicing them.

Dynamic competitive facility location problems (DCompFLP models) ge-
neralize their static counterparts, CompFLP models, on a case, when subs-
tantial parameters, a�ecting the parties' decisions, are not �xed, but could
change during the planning horizon under consideration. It is assumed, that
the horizon is split into time intervals or periods, and the parties' interaction
happens in each of them.

In [1], a dynamic problem is considered, where Leader opens their facilities
at the very �rst period and does not change their decision later. Follower,
at the opposite, could extend their set of open facilities at any time period.
The parties' aim in the mentioned problem is getting a maximal total pro�t.
To construct an algorithm, computing a pessimistic optimal solution of the
problem, the authors use an approach developed in works [2] for the CompFLP
problem. The base of this approach is a branch, bound and cut scheme, where
upper bound's calculation is done using a so-called high-point relaxation
(HPR) [3, 4, 5] of the initial bi-level model. To provide bounds of a reasonable
quality, such relaxation is to be strengthened by additional constraints.

In the present work, we continue the study of dynamic competitive models.
The work's subject is di�erent from the model considered in [1] in a form of
the objective function of the Leader's problem. The function suggests that,
for each planning horizon's period, a value of target income, which must
be reached, is set. Leader aims to choose locations of their facilities so that
the regret computed as the cost of open facilities plus the highest income
de�cit over all the periods is minimized. This optimization criteria re�ects
the business planning process, where a speci�c rate of service growth must
be achieved over a planning period, during which the demand is expected to
experience noticeable but predictable changes.

As like as in other competitive facility location models CompFLP and
DCompFLP, in the model under study, the pessimistic optimal solution is
considered to be the best one. The major element of the approach developed
to �nd such solutions [6] is a procedure computing upper bounds for the
objective function's values. In [1], to strengthen the HPR of the problem
considered, additional constraints called c-cuts and d-cuts are proposed. In
the present work, we propose modi�ed c-cuts and d-cuts, which take into
account the form of the Leader's objective function and which are stronger
than the initially proposed counterparts.
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2 Problem formulation

To formalize the dynamic problem under consideration, we use the follo-
wing index sets:
I is the set of candidate sites suitable for opening a facility;
T is the �nite set of time periods of the planning horizon;
Jt, t ∈ T is the set of customers at the time period t. For the sake of
convenience, we assume that Jt1 ∩ Jt2 = ∅ for any t1, t2 ∈ T such that
t1 ̸= t2. Notice that it does not a�ects the generality since any customer,
who presents at several time periods, could be replaced with an appropriate
number of its copies having di�erent indices. J would denote the set of all
the customers present during the planning horizon, i.e. J = ∪t∈TJt.

The parameters of the model are the following:
fi, i ∈ I, is a �xed cost of opening the Leader's facility i;
git, i ∈ I, t ∈ T , is a �xed cost of opening the Follower's facility i at the
period t. For each i ∈ I, we assume that git decreases as t grows.
pij and qij , i ∈ I, j ∈ J are income values obtained by, respectively, Leader's
and Follower's facility i from serving the customer j;
Dt, t ∈ T is a target value of the Leader's income for the period t.

In the model, the following binary variables are used:
xi, i ∈ I equals to one, if Leader opens their facility i, and zero otherwise;
zit, i ∈ I, t ∈ T equals to one, if Follower opens their facility i at the period
t, and zero otherwise;
χij and ζij , i ∈ I, j ∈ J are equal to one, if Leader's and, respectively,
Follower's facility i is assigned to service the customer j, and zero otherwise.

We assume that the choice of serving facility is subordinated to customer's
preferences represented by a linear order on the set I. Given i1, i2 ∈ I and
j ∈ J , the relation i1 ⪰j i2 means that either i1 = i2 or i1 is more preferable
for j than i2. The notation i1 ≻j i2 means that i1 ⪰j i2 and i1 ̸= i2.

Using the introduced notation, the dynamic competitive facility location
problem with pro�t targeting can be written as the following bi-level mathe-
matical model.

∑
i∈I

fixi +max
t∈T

Dt −
∑
j∈Jt

∑
i∈I

pijχij

 → min
(xi),(χij)

(1)

t∑
τ=1

z0iτ +
∑

k∈I|i⪰jk

xkj ≤ 1, i ∈ I, t ∈ T, j ∈ Jt (2)

xi ≥ χij , i ∈ I, j ∈ J (3)

xi, χij ∈ {0, 1}, i ∈ I, j ∈ J (4)

(z0it), (ζ
0
ij) is an optimal solution of the Follower's problem: (5)
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∑
t∈T

∑
i∈I

−gitzit +
∑
j∈Jt

qijζij

 → max
(zit),(ζij)

(6)

xi +
∑
t∈T

zit ≤ 1, i ∈ I (7)

xi +
∑

k∈I|i⪰jk

zkj ≤ 1, i ∈ I, j ∈ J (8)

t∑
τ=1

ziτ ≥ ζij , i ∈ I, t ∈ T, j ∈ Jt (9)

zit, ζij ∈ {0, 1}, i ∈ I, t ∈ T, j ∈ J. (10)

The objective function (1) expresses the Leader's �regret� or losses aggrega-
ting the cost of open facilities and the highest income de�cit over the planning
horizon. The objective function (6) represents the total pro�t obtained by
the Follower during that time. For each customer, the constraints (2) and (8)
ensure that each party assigns only those facilities, which are more preferable
for the customer, than any competitor's one. Inequalities (3) and (9) mean
that only open facility can be assigned to service a customer. Finally, the
constraints (7) states that Follower can open their facilities only in locations
which are not occupied by Leader's ones.

Let D0 = maxt∈T Dt and Rt = D0 − Dt, for each t ∈ T . The objective
function (1) of the problem DCompFLP can be rewritten as follows:

min
(xi),(χij)

∑
i∈I

fixi +max
t∈T

D0 −Rt −
∑
j∈Jt

∑
i∈I

pijχij

 =

D0 + min
(xi),(χij)

∑
i∈I

fixi −min
t∈T

Rt +
∑
j∈Jt

∑
i∈I

pijχij

 =

D0 − max
(xi),(χij)

−
∑
i∈I

fixi +min
t∈T

Rt +
∑
j∈Jt

∑
i∈I

pijχij


Then, the problem DCompFLP can be written as a bi-level problem with

an objective function

max
(xi),(χij)

−
∑
i∈I

fixi +min
t∈T

Rt +
∑
j∈Jt

∑
i∈I

pijχij

 (1')

and constraints (2)�(10).
This problem would be further the central object of our study. Let the

problem (1'), (2)�(5), which is the Leader's one, is denoted by L, and the
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Follower's problem (6)�(10) by F . The whole problem (1'), (2)�(10) would
be denoted by (L,F).

A pair (X,Z), where X = ((xi), (χij)), is called a feasible solution of the
problem (L,F) induced by the binary vector x = (xi), if X is a feasible
solution of the problem L, and Z is an optimal solution of the problem F
for the given x. Let L(X,Z) denotes the value of the Leader's objective
function on the solution (X,Z). A feasible solution (X,Z) induced by a
vector x is called a pessimistic feasible solution if L(X,Z) ≤ L(X ′, Z ′) for
any feasible solution (X ′, Z ′) induced by vector x. The problem to �nd a
pessimistic optimal solution of the problem (L,F), i.e. its the best pessimistic
feasible solution, can be considered as a problem to optimize an implicitly
given function L(x), since, for any binary vector x, the value of the Leader's
objective function on a pessimistic feasible solution induced by x is uniquely
speci�ed. One could also consider an optimistic formulation of the problem
(L,F), where the Leader's objective function is optimized with respect to
lower-level variables as well, provided that these variables deliver optimal
value to the Follower's objective function. For bi-level programming problems,
their pessimistic variants are often more complicated, so we concentrate on
�nding a pessimistic optimal solution of the problem (L,F), but further
constructions can be easily transformed for the optimistic variant.

3 Additional constraints for the (L,F)'s relaxation

As it is mentioned above, the problem (L,F) can be considered as a
problem of maximizing a function L(x) depending on Leader's location varia-
bles. A subset of solutions, for which the upper bound would be computed,
can be speci�ed by a partial binary vector y = (yi), i ∈ I, where yi ∈ {0, 1, ∗}.
The partial solution y de�nes the �xed components of binary vectors x =
(xi), i ∈ I. If yi = ∗ for some i ∈ I, then the value of xi is not �xed and
can be either zero or one. Let I0(y) = {i ∈ I|yi = 0} and I1(y) = {i ∈
I|yi = 1}. Then the subset of solutions of the problem (L,F) de�ned by a
partial solution y is the set of solutions speci�ed by binary vectors x = (xi),
satisfying

xi = yi, i ∈ I0(y) ∪ I1(y). (11)

The problem (L,F), where the problem L is supplemented with additional
constraints (11), would be denoted by (L(y),F).

The basis of an upper bound's computation procedure for the problem
(L,F), as like as for other bi-level problems, could be formed by its high-
point relaxation (HPR for short) [6]. HPR results from the initial bi-level
model be removing the lower-level objective function and, consequently, the
constraint on the lower-level variables to take optimal values. Regarding the
DCompFLP, it is clear that Follower's assignment variables (ζij), i ∈ I, j ∈ J
and lower-level constraints can be removed from the HPR without a�ecting
the optimal value of the objective function and upper-level variables. The
HPR of the (L(y),F) problem can be written as follows.
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max
(xi),(χij),(zit)

−
∑
i∈I

fixi +min
t∈T

Rt +
∑
j∈Jt

∑
i∈I

pijχij


t∑

τ=1

ziτ +
∑

k|i⪰jk

xkj ≤ 1, i ∈ I, t ∈ T, j ∈ Jt;

xi ≥ χij , i ∈ I, j ∈ J ;

xi +
∑
t∈T

zit ≤ 1, i ∈ I;

xi = yi, i ∈ I0(y) ∪ I1(y);

xi, χij , zit ∈ {0, 1}, i ∈ I, j ∈ J, t ∈ T.

Clearly, the optimal value of the HPR's objective function provides a
loosened upper bound for the problem (L(y),F). The quality of this bound
can be improved by supplementing the HPR with additional constraints
stimulating the lower-level variables (zit), i ∈ I, t ∈ T , to take non-zero
values. The resulting problem would be referred to as strengthened estimating
problem (SEP for short) for the problem (L(y),F).

Let us consider a general scheme of the upper bound's calculation via
generation of additional cuts for the HPR. The value of the upper bound on
a subset of solutions speci�ed by a partial solution y would be denoted by
UB(y).

If a partial solution y is a binary vector and does not have components
equal to *, then the calculation of the upper bound is reduced to �nding a
pessimistic feasible solution of the problem (L,F) induced by the vector y.
In this case, we assume UB(y) = L(y).

In a general case, when the partial solution is not a binary vector, the
upper bound's calculation is an iterative process consisting of an initial
iteration and some number of general ones.

On the initial iteration, we consider an HPR of the problem (L(y),F) and
form an initial SEP by constructing initial strengthening cuts.

On each general iteration, we consider the SEP from the previous iteration
and compute its optimal solution. Then, we try to construct all possible
additional inequalities cutting-o� this solution. If the additional cuts are
constructed, they are introduced into the SEP and the next iteration begins.
Otherwise, the value of the upper bound UB(y) is set to be equal to the
optimal value of the SEP's objective function, and the upper bound's calcula-
tion terminates.

4 Cut generation procedures

In [1], additional constraints of two types are introduced for DCompFLP
problem. The constraints are called c-cuts and d-cuts and are constructed
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to be violated by the current optimal solution of the SEP, what allows to
tighten the upper bound during the general iterations. Below, we consider
new modi�cations of these constraints. The new constraints and procedures
constructing them allow to generate stronger cuts when compared to those
proposed earlier.

To describe the construction of additional constraints, the following nota-
tions would be used. Let x = (xi), i ∈ I is a non-zero binary vector; J ′ ⊆ J ,
J ′ ̸= ∅; j ∈ J and k ∈ I.

Let
I1(x) = {i ∈ I|xi = 1}, I0(x) = {i ∈ I|xi = 0};
αj(x) is such an element i′ ∈ I1(x) that i′ ⪰j i for all i ∈ I1(x);
αJ ′(x) = {αj(x)|j ∈ J ′}
N̄j(k) = {i ∈ I|i ⪰j k};
N̄J ′(k) = ∪j∈J ′N̄j(k);
Nj(x) = {i ∈ I|i ≻j αj(x)};
NJ ′(x) = ∪j∈J ′Nj(x).

4.1. Additional cuts on general iterations. Let (X ′, z′), X ′ =
((x′i), (χ

′
ij)), z

′ = (z′it) be an optimal solution of the current SEP. Also, let

u′it =
∑t

τ=1 z
′
iτ . Denote the vectors x

′ = (x′i) and u′t = (u′it). For each t ∈ T ,
let J0t = Jt, if u

′
t = 0, and J0t = {j ∈ Jt|αj(x

′) ≻j αj(u
′
t)} otherwise.

A c-cut of the solution (X ′, z′) is constructed based on a number k ∈ I
satisfying x′k = 0 and

∑
t∈T z′kt = 0. Given k, consider subsets

J0t(k) = {j ∈ J0t|k ∈ Nj(x
′)}, t ∈ T.

Let t2 ∈ T be the smallest index such that, for some t1 ∈ T , 1 ≤ t1 ≤ t2, for
a subset J0 = ∪t2

t=t1
J0t(k) it holds∑
j∈J0

qkj ≥ gkt1 ,
∑
j∈J0

pαj(x′),j > 0. (12)

Let J ′ ⊆ J0 is a subset, for which a similar condition holds:
∑

j∈J ′ qkj ≥
gkt1 and

∑
j∈J ′ pαj(x′),j > 0. Then, the inequality∑

i∈NJ′ (x′)

uit1 ≥ 1 +
∑

i∈αJ′ (x′)

(xi − 1)−
∑

i∈N̄J′ (k)

xi (13)

would be called a c-cut of the solution (X ′, z′) generated by an index k and
subset J ′. The constraint (13) is stronger than those one used in our previous
works, since the last sum is made over a set of indices N̄J ′(k) instead of
NJ ′(x′). Both variants are valid, but the �rst one would lead to more general
cuts due to the inclusion N̄J ′(k) ⊆ NJ ′(x′), which is often strict in practice.

Notice that the inequality (13) possesses the key property of the additional
constraint.

Proposition 1. Let (X,Z) be a pessimistic feasible solution of the problem
(L(y),F). Then, it satis�es the inequality (13).
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To convince ourselves that the Proposition holds, let us consider a vector
x = (xi), generating the solution (X,Z), such that xi = 0 for some i ∈
αJ ′(x′). Then, the right-hand side of the inequality (13) is not positive and,
consequently, the inequality holds.

Let xi = 1 for i ∈ αJ ′(x′) and xi = 0 for i ∈ N̄J ′(k). Then, the right-
hand side of the inequality (13) equals to one. Assume that the inequality
(13) is violated and its left-hand side equals to zero. In this case, since k ≻j

αj(x) ⪰j αj(x
′) for each j ∈ J ′, we have xi = 0 for i ⪰j k and

∑t2
t=1 zit = 0

for i ≻j αj(x).
Given vector x, let us consider a feasible solution Z ′ = ((z′it), (ζ

′
ij)) of the

problem F , which di�ers from the solution Z = ((zit), (ζij)) only in that
zkt1 = 1. Notice that, in this case, we can set ζkj = 1 for j ∈ J ′ due to the

fact that xi = 0 for i ≻j k and
∑t2

t=1 zit = 0 for i ≻j αj(x). For feasible
solutions Z and Z ′ of the problem F , the condition (12) implies that, for the
Follower's objective function F , it holds

F (Z ′)− F (Z) ≥
∑
j∈J ′

qkj − gkt1 ≥ 0.

It means that the solution Z either is not an optimal solution of the problem
F or it is not the least pro�table Follower's optimal response from the
Leader's point of view. The later comes from the second part of the condition
(12) demanding that

∑
j∈J0 pαj(x′),j > 0, i.e. the Leader's income is smaller

in a case of Follower's response Z ′. Consequently, the solution (X,Z) is not
a pessimistic feasible solution of the problem (L,F).

In addition, notice that, for the solution (X ′, z′), the left-hand side of
the constraint (13) equals to zero, while the right-hand side equals to one.
Consequently, the inequality cuts-o� the optimal solution (X ′, z′) of the
SEP. For any binary vector x = (xi), i ∈ I, such that xi = 1 for i ∈
αJ ′(x′) and xi = 0 for i ∈ NJ ′(x′), the constraint (13) stimulates the values
uit, i ∈ NJ ′(x′) to take non-zero values. The number of binary vectors x
satisfying these conditions depends on the size of subsets αJ ′(x′)\I1(y) and
NJ ′(k)\I0(y), which depend on the choice of J ′.

Depending on the number of elements in subsets αJ ′(x′) and N̄J ′(k), the c-
cut (13) can be restricting for di�erent subsets of Boolean vectors x = (xi),
i ∈ I, and, generally speaking, the larger the subsets αJ ′(x′) and N̄J ′(k),
the less restrictive the c-cut (13) is. Consequently, one could aim at �nding
the strongest c-cuts by minimizing the size of these subsets. Consider an
auxiliary optimization problem whose solution de�nes a subset J ′ generating
the strongest c-cut.

Introduce the following notation:
aij , i ∈ I, j ∈ J0 is a parameter equal to one, if i ∈ Nj(k), and zero otherwise;
bij , i ∈ I, j ∈ J0 is a parameter equal to one, if i = αj(x

′), and zero otherwise;
cj , j ∈ J0 is a parameter equal to one, if pαj(x′),j > 0, and zero otherwise;

uj , j ∈ J0 is a variable de�ning the subset J ′ and equal to one, if j ∈ J ′, and
zero otherwise;
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vi, i ∈ I is a variable de�ning the subset N̄J ′(k) and equal to one if i ∈ N̄J ′(k),
and zero otherwise;
wi, i ∈ I is a variable de�ning the subset αJ ′(x′) and equal to one, if i ∈
αJ ′(x′) and zero otherwise.

Using the notations above, an auxiliary problem to choose the subset J ′

can be written as follows:

min
(uj),(vi),(wi)

 ∑
i∈I\I0(y)

vi +
∑

i∈I\I1(y)

wi

 (14)

∑
j∈J0

qkjuj ≥ gkt1 ; (15)

∑
j∈J0

cjuj ≥ 1; (16)

vi ≥ aijuj , i ∈ I, j ∈ J0; (17)

wi ≥ bijuj , i ∈ I, j ∈ J0; (18)

uj , vi, wi ∈ {0, 1}, i ∈ I, j ∈ J0. (19)

The inequality (13), for which the subset J ′ is computed using the auxiliary
problem (14)�(19) would be called a c-cut of the solution (X ′, z′) generated
by the index k.

As it follows from the structure a constraint (13), it stimulates the variables
uit to take non-zero values. Nevertheless, since the objective function of the
SEP is maximized over variables (zit), the value one would be taken by
the variable zit1 . That makes the upper bound more �optimistic� and less
accurate, which is unwanted. When an optimal solution of the SEP has
zkl = 1 for some l > 1, an additional constraint from the family of d-cuts
can be generated to force a variable zkt with t < l to take a value equal to
one.

Let (X ′, z′) be an optimal solution of the SEP satisfying that zkl = 1 for
some l > 1 and k ∈ I. For this k, let us consider subsets J0t(k) = {j ∈
J0t|k ∈ Nj(x

′)}, t ∈ T . Let t2 ∈ T , t2 < l be the smallest index such that

there exists some t1, 1 ≤ t1 < t2 such that, for a subset J0 = ∪t2
t=t1

J0t(k), it
holds ∑

j∈J0

qkj ≥ gkt1 − gkt2 ,

t2∑
t=t1

∑
j∈J0∩Jt

pαj(x′),j > 0. (20)

Let J ′ ⊆ J0 be a subset satisfying a similar condition:
∑

j∈J ′ qkj ≥ gkt1 −
gkt2 ,

∑t2
t=t1

∑
j∈J0∩Jt pαj(x′),j > 0. Then, the inequality∑

i∈NJ′ (x′)

uit2 ≥ 1 + (ukl − 1) +
∑

i∈αJ′ (x′)

(xi − 1)−
∑

i∈N̄J′ (k)

xi (21)

would be called a d-cut of the solution (X ′, z′) generated by the index k and
subset J ′.
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This inequality, as like as the inequality (13), satis�es the key property of
additional constraints

Proposition 2. Let (X,Z) be a pessimistic feasible solution of the problem
(L(y),F). Then, it satis�es the inequality (21).

Clearly, the solution (X ′, z′) violates the constraint (21), so it would be
cut-o� after supplementing the SEP with this constraint.

To generate the strongest d-cut, analogously to the generation of c-cuts,
an auxiliary optimization problem can be utilized. This problem di�ers from
the problem (14)�(19) only at the constraint (15), which must be replaced
by the following one: ∑

j∈J ′

qkj ≥ gkt1 − gkl. (22)

The constraint (21), where the subset J ′ is found from the solution of the
auxiliary optimization problem, would be referred to as a d-cut of the solution
(X ′, z′), generated by the index k.

4.2. Additional constraints on the initial iteration. On the initial
iteration, an optimal solution of the SEP for the (L(y),F) problem is not
computed yet. Thus, in a case, when I1(y) ̸= ∅, initial c-cuts of the feasible
solution (X ′, z′) such that x′i = 1 for i ∈ I1(y), x′i = 0 otherwise, and zit = 0
for i ∈ I, t ∈ T , are constructed.

To construct a c-cut, let us consider an index k ∈ I, k ̸∈ I1(y), and
corresponding subsets J0t(k) = {j ∈ Jt|k ∈ Nj(x

′)}, t ∈ T . Let t2 be the
smallest index such that there exists an index t1 ∈ T , 1 ≤ t1 ≤ t2 such that,
for a subset J0 = ∪t2

t=t1
J0t(k) the conditions (12) hold. Let J ′ ⊆ J0 be a

subset, for which similar conditions holds as well. Then the constraint∑
i∈NJ′ (x′)

uit2 ≥ 1−
∑

i∈NJ′ (x′)

xi (23)

would be called an initial c-cut generated by index k and subset J ′.
An auxiliary problem to choose a subset J ′ for the initial c-cut has a form

min
(uj),(vi)

∑
i∈I\I0(y)

vi

∑
j∈J0

qkjuj ≥ gkt1∑
j∈J0

cjuj ≥ 1

vi ≥ aijuj , i ∈ I, j ∈ J

vi, uj ∈ {0, 1}, i ∈ I, j ∈ J.

The constraint (23), where the subset J ′ computed within the auxiliary
problem, would be called an initial c-cut generated by the index k.
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To conclude, the overall scheme of the upper bound UB(y) calculation
consists of the following steps. On the initial iteration, we sequentially consi-
der indices k ∈ I, k ̸∈ I1(y) aiming to construct an initial c-cut generated
by the index k. Given k, this procedure includes a proper choice of elements
t2 and t1 ∈ T , constructing a respective subset J0, and checking of the
conditions (12). Successful result of the checking is necessary and su�cient
condition of existence of a c-cut generated by the index k. If the condition is
satis�ed, then we compute an optimal solution of the corresponding auxiliary
problem and supplement the current SEP with additional cuts generated.
When all the indices k ∈ I, k ̸∈ I1(y), are considered, regardless whether the
initial c-cuts are generated or not, the �rst general iteration begins.

On a general iteration, we consider the current SEP and its optimal
solution (X ′, z′). Further, we sequentially consider indices k ∈ I, k ̸∈ I1(y)
aiming to construct a c-cut of the solution (X ′, z′), generated by the index k.
Given k, the procedure of construction of such a c-cut consists of the same
steps as the procedure of initial c-cuts construction. Initially, the elements t1
and t2 ∈ T are chosen, and a subset J0 is built, for which the condition (12)
is checked. If it holds, then the optimal solution of the auxiliary problem
provides a c-cut of the solution (X ′, z′). This inequality is supplemented to
the current SEP, and the next general iteration begins. If none of the indices
k ∈ I, k ̸∈ I1(y) generates a c-cut, then d-cuts are tried to be constructed.
In this purpose, we consider elements k ∈ I, for which zkl = 1, l > 1. Given
k, the procedure of a d-cut construction is organized similarly to the c-cuts'
one. Firstly, the elements t1 and t2 are chosen, and then, for subset J0,
a necessary and su�cient condition of d-cut's existence is checked for this
k. In a case of success, an optimal solution of the corresponding auxiliary
problem is computed, and the d-cut generated by k is being introduced into
the current SEP. After the extension of the SEP, the next general iteration
begins.

If there are no indices k ∈ I, k ∈ I1(y) generating additional constraints,
the procedure of upper bound's calculation is terminated along with setting
the value UB(y) equal to the SEP's optimal value of the objective function.
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