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Abstract: In the paper, we investigate Ehrenfeucht theories, that
is, theories which have �nitely many countable models but which
are not countably categorical. More precisely, we count all possible
numbers of countable models of the theory DMT of dense meet-
trees expanded by several sequences of constants including decreas-
ing ones and by unary predicates with �nite realizations. Also, we
study the realizations of models over a certain set of formulas based
on the Rudin-Keisler preorders on models.

Keywords: Constant expansion, Ehrenfeucht theory, the number
of countable models, the number of limit models, the number of
prime models, small theory, Rudin-Keisler preorder.

1 Introduction

Since Andrzej Ehrenfeucht had constructed his example of a theory with
three non-isomorphic countable models this field of Model Theory, called
Ehrenfeucht theories, is one of most important in Model Theory. One of the
main problems here is to build new Ehrenfeucht theories, which are not based
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on a dense linear ordering. One of the first such examples was constructed
by M. Peretyat’kin in [14]. Alistair Lachlan posed the problem if there
exists a stable Ehrenfeucht theory. Sergey Sudoplatov solved this problem
by having constructed such a theory [17]. Some other papers related to the
topic are [1]–[11], [13], [15], [16], [18]–[20]. However, in this paper, we focus
on the example by M. Peretyat’kin, where he considered a partially densely
ordered set, the so-called Dense Meet Tree [12], DMT for short, expanded
by a countable sequence of constants. While M. Peretyat’kin considered
only one increasing sequence of constants, we consider several sequences,
including decreasing ones, as well as expansions by unary predicates with
finite realizations. We give all possible numbers of countable models of such
expansions of DMT (Theorem 4).

So, we give the axioms of DMT. A dense meet-tree M = ⟨M ;≤,⊓⟩ is a
lower semilattice (that is, for each elements a and b there exists their greatest
lower bound, which we denote by a⊓ b and call the meet of a and b) without
the least and greatest elements such that:

(a) for each pair of incomparable elements, their join does not exist;
(b) for each pair of distinct comparable elements, there is an element

between them;
(c) for each element a there exist infinitely many pairwise incomparable

elements greater than a, whose infimum is equal to a.
Note that x and y are incomparable if x ≰ y and y ≰ x. We denote it by

x ∥ y.
We study the realizations of models over a certain set of formulas based

on the Rudin-Keisler preorders on models. The next set of definitions is
taken from [17].

A model M is prime over a type p if there is a tuple of elements ā in M
such that ā is a realization of p and M is prime over ā. We denote a prime
model over a type p by Mp. A model M is almost prime if it is prime over
a realization of some type. If a model is not almost prime, we call it a limit
model.

Definition 1. Let p and q be types in S(T ). We say that the type p is
dominated by the type q, or p does not exceed q under the Rudin-Keisler
preorder (written p ≤RK q), if Mq |= p, that is, Mp is an elementary
submodel of Mq (written Mp ⪯ Mq).

Besides, we say that a modelMp is dominated by a model Mq, orMp does
not exceed Mq under the Rudin-Keisler preorder, and write Mp ≤RK Mq.

Definition 2. Types p and q are said to be domination-equivalent, realiza-
tion-equivalent, Rudin-Keisler equivalent, or RK-equivalent (written p ∼RK

q) if p ≤RK q and q ≤RK p.
Models Mp and Mq are said to be domination-equivalent, Rudin-Keisler

equivalent, or RK-equivalent (written Mp ∼RK Mq).
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2 Constant expansions of the DMT theory

In this section, we expand Tdmt with the signature Ldmt = {≤,⊓} by
countable sequences of constants and find all possible values I(T, ω) for
these expansions T ⊇ Tdmt.

Let us extend Ldmt to L0 by constants c
(0)
k , k ∈ ω, and extend the theory

Tdmt to T0, so that constants c
(0)
k , k ∈ ω, form a strictly increasing sequence.

In this case, the signature of T0 is L0 = Ldmt ∪ {c(0)k | k ∈ ω} and T0 =

Tdmt ∪ {c(0)k < c
(0)
k+1 | k ∈ ω}. Note that the theory T0 was constructed by

Peretyat’kin in [14], where he proved that it is Ehrenfeucht, namely, T0 has
exactly three countable models: the prime model, the saturated model, and
the prime model over the realization of the powerful type p0(x), isolated by

the set of formulas {c(0)k < x | k ∈ ω}. In Figure 1, we illustrate all possible
realizations of the type p0 (a.) and represent the Hasse diagram of Rudin-
Keisler preorder ≤RK on the set of countable models (up to isomorphisms)
of T0 (b.).
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Figure 1. From left to right: a prime model, where there is no element

greater than all c
(0)
k , a prime model, where among the elements of large c

(0)
k

there is the smallest element, and a limit model where among the elements

of large c
(0)
k there is no the smallest element (a.); RK(T0) is a linear order

of two elements. In Hasse diagrams, we draw the realization of prime models

over a certain set of formulas using the character • based on the Rudin-Keisler

preorder ≤RK on the models. The circled circle ⃝ above the • means the
possibility of realization of limit models over these sets of formulas. It should

be noted here that the total number of characters • is the total number of
prime models, and the numbers next to ⊙ mean the number of limit models (b.).

Now we construct a theory T1. To do this, we expand L0 with a strictly

decreasing sequence of constants c
(1)
k , k ∈ ω. We put L1 = L0∪{c(1)k | k ∈ ω}

and T1 = T0 ∪ {c(1)k > c
(1)
k+1 | k ∈ ω} ∪ {c(0)k < c

(1)
k | k ∈ ω}.

It is straightforward to show that there exist exactly two non-principal
1-types over an empty set in T1:

p(x) = p0(x) ∪ p1(x) = {c(0)k < x | k ∈ ω} ∪ {x < c
(1)
k | k ∈ ω}

and

¯̄p(x) = p0(x) ∪ ¯̄p1(x) = {c(0)k < x | k ∈ ω} ∪ {x ∥ c
(1)
k | k ∈ ω}



758 A. B. DAULETIYAROVA AND V. V. VERBOVSKIY

Here, p1(x) = {x < c
(1)
k | k ∈ ω} and ¯̄p1(x) = {x ∥ c

(1)
k | k ∈ ω}.

We can write three completions of p(x) ∪ p(y). They are defined by the
following sets of formulas:

q1(x, y) = p(x) ∪ p(y) ∪ {x < y};
q2(x, y) = p(x) ∪ p(y) ∪ {y < x};
q3(x, y) = p(x) ∪ p(y) ∪ {x = y}.

The reason for the existence of exactly three types involving two variables
is the following: due to the quantifier elimination result and obvious logical
equivalences of negation of these formulas, there are just four formulas in
two variables: x < y, y < x, x = y, and x ∥ y. Note that here the types
q1(x, y) and q2(x, y) are the same up to a permutation of variables, the
type q3(x, y) is logically equivalent to p(x), and, as it is easy to check that
p(x)∪p(y)∪{x ∥ y} is inconsistent. Indeed, let (a, b) |= p(x)∪p(y)∪{x ∥ y}.
Then both a and b are less than c

(1)
1 . By Axiom 1 of Tdmt the elements a

and b are comparable, for a contradiction.
Similarly, there are two completions of p(x) ∪ ¯̄p(y). They are defined by

the following sets of formulas:

q4(x, y) = p(x) ∪ ¯̄p(y) ∪ {x < y};
q5(x, y) = p(x) ∪ ¯̄p(y) ∪ {x ∥ y}.

Remark. It holds that p(x) ∼RK q4(x, y). Indeed, let a1 |= p(x). By Axiom
3 of Tdmt there exist infinitely many pairwise incomparable elements b1, b2,
. . . , bn, . . . , such that bi⊓bj = a1 for any 1 ≤ i < j < ω. Assume that bi and

bj are less than c
(1)
k for some i, j, and k ∈ ω. Then bi and bj are comparable

by Axiom 1 of Tdmt, for a contradiction. So, there is some bi such that

bi > a1 and bi ∥ c
(1)
k . Then (a1, bi) |= q4(x, y). Hence, q4(x, y) ≤RK p(x).

Since p(x) ⊆ q4(x, y), so p(x) ≤RK q4(x, y). Thus, p(x) ∼RK q4(x, y).

Remark. It holds that q1 ∼RK q5. Indeed, let (a1, a2) |= q1(x, y). As above,
there exists b such that a1 < b and b ∥ a2. Then (a2, b) |= q5 and q5 ≤RK q1.

Conversely, let (a2, b) |= q5 and let a1 = a2 ∩ b. Then (a1, b) |= q1, so
q1 ≤RK q5. Thus, q1 ∼RK q5.

We have the following pairwise non-isomorphic countable models of T1:
• a prime model;
• a prime model over a realization of p(x), with a unique realization of

this type;
• a prime model over the realization of q1(x, y) forming a closed interval

[a, b] with c
(0)
k < a ≤ b < c

(1)
k ;

• three limit models over the type q1(x, y), in which the sets of realizations
of p(x) are [a, b), (a, b], (a, b), correspondingly.

In Figure 2, we illustrate all possible realizations of the type p(x) and
represent the Hasse diagram of Rudin-Keisler preorders ≤RK on the set of
countable models (up to isomorphisms) of the theory T1, respectively.
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Figure 2. Realizations of p(x) (a.); and Hasse diagram of RK(T1) (b.)

So, the next is clear.

Theorem 1. The theory T1 has exactly 6 countable models up to isomor-
phism.

Starting with the theory T2, the situation looks a little different. First,

we define the signature L2 for T2 as L1 ∪ {c(2)k | k ∈ ω}, where c
(2)
k , k ∈ ω

is also a strictly decreasing sequence of constants on the tree, additionally

c
(0)
k , k ∈ ω is comparable with c

(1)
k , k ∈ ω and c

(2)
k , k ∈ ω, but c

(1)
k , k ∈ ω

and c
(2)
k , k ∈ ω are incomparable. Therefore, the theory T2 has the following

form

T2 = T1 ∪ {c(2)k > c
(2)
k+1 | k ∈ ω} ∪ {c(0)k < c

(2)
k | k ∈ ω} ∪ {c(1)k ∥ c

(2)
k | k ∈ ω}.

Lemma 1. The meet of incomparable elements of the strictly decreasing

sequences of constants (c
(1)
k )k∈ω, (c

(2)
k )k∈ω does not depend on their repre-

sentative constants, that is, c
(1)
l ⊓ c

(2)
m = c

(1)
i ⊓ c

(2)
j for any pairs (l,m) and

(i, j).

Proof. Since c
(k)
i > c

(k)
i+1 for both k, we obtain that

c
(1)
i ⊓ c

(2)
i ≥ c

(1)
i+1 ⊓ c

(2)
i+1

Assume that d12 ≜ c
(1)
i ⊓ c

(2)
i > c

(1)
i+1 ⊓ c

(2)
i+1. So, ¬(d12 ≤ c

(1)
i+1 ∧ d12 ≤ c

(2)
i+1)

holds. Both d12 and c
(k)
i+1 are less than c

(k)
i , so they are comparable, and

¬(d12 ≤ c
(k)
i+1) is equivalent d12 > c

(k)
i+1, for both k. Then

¬(d12 ≤ c
(1)
i+1 ∧ d12 ≤ c

(2)
i+1) ⇔ (d12 > c

(1)
i+1 ∨ d12 > c

(2)
i+1)

If d12 > c
(1)
i+1 then by transitivity we obtain that c

(2)
i > c

(1)
i+1, because c

(2)
i >

d12, for a contradiction. The case d12 > c
(2)
i+1 is similar.
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By mathematical induction, we obtain that c
(1)
i ⊓ c

(2)
i = c

(1)
j ⊓ c

(2)
j for all

i and j < ω. Now, let i < j. Then

c
(1)
i ⊓ c

(2)
i ≥ c

(1)
i ⊓ c

(2)
j ≥ c

(1)
j ⊓ c

(2)
j = c

(1)
i ⊓ c

(2)
i

that proves the lemma. □

Let d1,2 = c
(1)
k ⊓ c

(2)
k , k ∈ ω. The element d1,2 exists in any model of T2.

So, we redefine our types as follows

p0(x0) = {c(0)k < x0 | k ∈ ω} ∪ {x0 < d1,2};

p1(x0) = {x0 < c
(1)
k | k ∈ ω} ∪ {d1,2 < x0};

p2(x0) = {x0 < c
(2)
k | k ∈ ω} ∪ {d1,2 < x0}.

Note that p0(x0) ∪ p1(x1) ∪ p2(x2) defines a complete type. Then we can
consider each type separately, by analogy with the theory T0. Therefore,
according to the orthogonality of the types p0, p1, and p2, two prime models
and one limit model arise over the realization of each type pi(xi) for any
i ∈ {0, 1, 2}. In total, I(T2, ω) = 33 = 27, where 23 = 8 of them are prime
models (over some set).

In Figure 3, we illustrate all possible realizations of the types p0, p1 and
p2 (a.) and represent the Hasse diagram of Rudin-Keisler preorder ≤RK on
the set of countable models (up to isomorphisms) of T2 (b.).
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Figure 3. Here, d1,2 is the meet of strictly decreasing sequences of con-

stants (c
(1)
k )k∈ω and (c

(2)
k )k∈ω , and the character * means one of the {∅, •, ◦}

(a.); RK(T2) is a Hasse diagram with boolean of {p0, p1, p2}, here the type

q0 = p0 ∪ p1, q1 = p0 ∪ p2, q2 = p1 ∪ p2, r = p0 ∪ p1 ∪ p2 (b.).
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But in the theory

T3 = T2 ∪ {c(3)k > c
(3)
k+1 | k ∈ ω} ∪ {c(1)k ∥ c

(3)
k | k ∈ ω} ∪

∪ {c(0)k < c
(3)
k | k ∈ ω} ∪ {c(2)k ∥ c

(3)
k | k ∈ ω}

with the signature L3 = L2 ∪ {c(3)k | k ∈ ω} there are three meets:

d1,2 = c
(1)
k ⊓ c

(2)
k , d1,3 = c

(1)
k ⊓ c

(3)
k , and d2,3 = c

(2)
k ⊓ c

(3)
k for any k ∈ ω.

Note that any two of d1,2, d1,3, d2,3 are comparable. Since d1,2 < c
(1)
k and

d1,3 < c
(1)
k , then d1,2 and d1,3 are comparable. A similar situation is repeated

for pairs d1,2 and d2,3; d1,3 and d2,3.

Let d1,2 ≤ d2,3. Since d1,2 < c
(1)
k and d1,2 ≤ d2,3 < c

(3)
k for any k ∈ ω,

we have d1,2 ≤ d1,3. If d2,3 ≤ d1,3, then d2,3 ≤ d1,2, which contradicts

d1,2 ≤ d2,3, because d2,3 < c
(2)
k and d2,3 ≤ d1,3 < c

(1)
k . Hence, d1,3 < d2,3. By

the fact d1,3 < c
(1)
k and d1,3 ≤ d2,3 < c

(2)
k , we have d1,3 ≤ d1,2. Thus, there

are two cases:
Case 1. Assume that d1,2 = d1,3 = d2,3. Then T3 ∪ {d1,2 = d1,3 = d2,3} is

complete. Then the types of this theory are defined by the following sets of
formulas for every i ∈ {1, 2, 3}:

p0(x0) = {c(0)k < x0 | k ∈ ω} ∪ {x0 < d1,2};

pi(x0) = {x0 < c
(i)
k | k ∈ ω} ∪ {d1,2 < x0}.

Since the union of types p0(x0)∪p1(x1)∪p2(x2)∪p3(x3) defines a complete
type and these types are orthogonal, we obtain 34 = 81 countably pairwise
non-isomorphic models over the realizations of these types, where 24 = 16
of them are prime models.

Case 2. Assume now that d1,2 = d1,3 < d2,3. As in the previous case,
T3 ∪ {d1,2 = d1,3 < d2,3} is complete and we define the types of this theory:

p0(x0) = {c(0)k < x0 | k ∈ ω} ∪ {x0 < d1,2};

p1(x0) = {x0 < c
(1)
k | k ∈ ω} ∪ {d1,2 < x0}

pi(x0) = {x0 < c
(i)
k | k ∈ ω} ∪ {d2,3 < x0}, for i = 2, 3.

Therefore, we obtain the 34 of countable models over the realizations of
these types as in the first case.

Note that, in the each cases d1,2 = d2,3 < d1,3 and d1,3 = d2,3 < d1,2, we
also obtain 34 countable models.

Below we illustrate the above-described cases for elements d1,2, d1,3 and
d2,3 in Figure 4.
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Let us proceed to consider the case of arbitrary n ≥ 2. The signature

Ln = Ln−1 ∪ {c(n)k | k ∈ ω} and the theory Tn is given as

Tn = Tn−1 ∪ {c(n)k > c
(n)
k+1 | k ∈ ω} ∪ {c(0)k < c

(n)
k | k ∈ ω}∪

∪ {c(n)i ∥ c
(m)
j | m < n,∀i, j ∈ ω}.

In this theory, we have C(n, 2) meets: d1,2, d1,3, . . . , dn−1,n.
Here it is enough to consider the case when d1,2 = d1,3 = · · · = dn−1,n,

since other cases give the same number of models. The list of complete types
is defined as follows (here, i ∈ {1, 2, . . . , n}):

p0(x) = {c(0)k < x | k ∈ ω} ∪ {x < d1,2};

pi(x) = {x < c
(i)
k | k ∈ ω} ∪ {d1,2 < x}.

Thus, we have the following:

Theorem 2. Let Tn, where n ≥ 2, be a countable constant expansion of
the dense meet-tree theory Tdmt with an increasing sequence of constants

(c
(0)
k )k∈ω and n decreasing sequences of constants (c

(1)
k )k∈ω, . . . , (c

(n)
k )k∈ω, so

that c
(0)
k < c

(1)
k , . . . , c

(0)
k < c

(n)
k , k ∈ ω and c

(j)
k ∥ c

(t)
k for each 1 ≤ j ̸= t ≤ n.

Then T has exactly 3n+1 countable models, where 2n+1 of them are prime
models.

Note that the number of limit models is equal to subtraction of the number
of prime models from the total number of countable models, i.e. 3n+1−2n+1.

Since the complete type p0(x0) ∪ p1(x1), . . . pn(xn) is powerful, then the
Rudin-Keisler preorder ≤RK is a Boolean of the (n+ 1)-element set.

If there are several sequences that are increasing, but pairwise incompara-
ble, and each one has several sequences that are decreasing from above, then
this can be considered as a disjunctive union. Then the following theorem
will be true.
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Theorem 3. Let T be a countable constant expansion of the dense meet-tree

theory Tdmt with n increasing sequences of constants (c
(i,0)
k )k∈ω such that

sup
k∈ω

c
(i,0)
k ̸= sup

k∈ω
c
(j,0)
k for all i ̸= j.

Let for each i there are τ(i) decreasing sequences (c
(1,i)
k )k∈ω, . . . , (c

(τ(i),i)
k )k∈ω,

such that c
(i,0)
k < c

(1,i)
k , . . . , c

(i,0)
k < c

(τ(i),i)
k for all k ∈ ω, and c

(j,i)
k ∥ c

(t,i)
k for

each 1 ≤ j ̸= t ≤ τ(i). We define d(m) as |{i | τ(i) = m}| and we put
I = {i : 1 ≤ i ≤ n ∧ d(i) ̸= 1}. Then T has exactly

6d(1) ·
∏
i∈I

3τ(i)+1

countable models, where

3d(1) ·
∏
i∈I

2τ(i)+1

of them are prime models.

Note that T from Theorem 3 has as many countable models as some finite
disjoint union of theories of the form T0, T1, and Tn, for n ≥ 2.

3 On unary predicates expansions of DMT

Let Tn be the complete constant expansion of Tdmt as we have considered
above. We replace Ln with a new language LP

n = L0 ∪ {Pk | k ∈ ω}, where
we interpret the predicates Pk as the set of constants {c(1)k , c

(2)
k , . . . c

(n)
k }, for

each k ∈ ω. Let TP
n = Th{(M,LP

n ) | (M, Ln) |= Tn}. We aim to count the
number of countable models of TP

n . As Tn is not complete, so is TP
n , that is

why we consider various completions of Tn.
The difference between models of Tn and TP

n is that in countable models
of TP

n there are automorphisms which make some permutation of Pk(M).
So, we have the following schemes of axioms:

1)k (∃!nx)Pk(x);
2)k ∀x(Pk(x) → ∃!y(Pk+1(y) ∧ y < x));
3)k ∀x∀y(Pk(x) ∧ Pk(y) ∧ x ̸= y → x ∥ y);
We work simultaneously in models of Tn and TP

n . Since each model of
Tn after replacing the constants with the predicates becomes a model of
TP
n , and vice versa, each model of TP

n after a suitable replacement of the
predicates with the constants becomes a model of Tn.

If M = (M,Ln) is a model of Tn, we denote the corresponding model of
TP
n by MP = (M,LP

n ). Since the universes of M and MP are the same,
pk(M) being a type of Tn, defines a subset of M , which is also a subset of
MP .

The first case is c
(i)
1 ⊓ c

(j)
1 = c

(s)
1 ⊓ c

(t)
1 for all i ̸= j and s ̸= t. We denote

this theory by TP
n,=.
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In Tn we have 3 possible realizations of each type pk, where k ∈ {1, . . . n}.
Because of automorphisms we can permute realizations of pk(M) and pm(M).
Then the number of non-isomorphic countable models of TP

n,= is equal to the
number of combinations of a three-element set with repetitions. Hence we

have 3 · C(3 + n − 1, n) = 3 · (n+2)(n+1)
2 countable models. Note that the

number of non-isomorphic prime countable models of TP
n,= is equal to the

number of combinations of a two-element set with repetitions, so the number
is 2 · C(2 + n− 1, n) = 2 · (n+ 1).

Now we consider T3 and its possible completions different from the con-
sidered above. We consider the case that d1,2 = d1,3 < d2,3, where di,j =

c
(i)
0 ⊓c(j)0 (see Figure 4). Then there is an automorphism of MP which moves
p2(M) to p3(M) and p3(M) to p2(M). So, we have 3 kinds of realizations
for each of p0 and p1, and by the above formula C(3 + n− 1, n) realizations
for p2 and p3, where n = 2. Thus, the number of countable models is 32 · 6
and the number of countable prime models is 22 · 3, where the number 3 is
the result of the formula C(2 + n − 1, n) = n + 1 for n = 2. Since other
completions of T3 give the same TP

3 , we are done.
We describe Hasse diagrams for the completions TP

3,= and TP
3,< of TP

3 by
d1,2 = d1,3 = d2,3 and by d1,2 = d1,3 < d2,3, respectively.

Let’s describe the realizations of types in this theory. For this, we set d1,2
as a unique element which satisfies the following formula

∃x1∃x2(Pk(x1) ∧ Pk(x2) ∧ x1 ∥ x2 ∧ y = x1 ⊓ x2).

As we showed this above, d1,2 does not depend on the choice of k.
First we consider TP

3,=. We desrcibe all types up to Rudin-Keisler pre-
order:

p1,0(x0) = {c(0)k < x0 | k ∈ ω} ∪ {x0 < d1,2}
p0,1(x1) = {d1,2 < x1} ∪ {∃t(Pk(t) ∧ x1 < t) | k ∈ ω}

p0,2(x1, x2) = p0,1(x1) ∪ p0,1(x2) ∪ {x1 ∥ x2}
p0,3(x1, x2, x3) = p0,2(x1, x2) ∪ p0,2(x1, x3) ∪ p0,2(x2, x3)

p1,1(x0, x1) = p1,0(x0) ∪ p0,1(x1)

p1,2(x0, x1, x2) = p1,1(x0, x1) ∪ p0,2(x1, x2)

p1,3(x0, x1, x2, x3) = p1,1(x0, x1) ∪ p0,3(x1, x2, x3)

Hasse diagram of Rudin-Keisler preorder for the types of TP
3,= is given in the

Figure 5.
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Now we consider TP
3,<. As in the previous case, TP

3,<∪{d1,2 = d1,3 < d2,3}
is complete and we desrcibe all types up to Rudin-Keisler preorder:

p1,0,0(x0) = {c(0)k < x0 | k ∈ ω} ∪ {x0 < d1,2}
p0,1,0(x1) = {d1,2 < x1} ∪ {∃t(Pk(t) ∧ x1 < t) | k ∈ ω}
p0,0,1(x

′
1) = {d1,2 < x′1} ∪ {∃t(Pk(t) ∧ x′1 < t) | k ∈ ω}

p0,2,0(x1, x2) = p0,1,0(x1) ∪ p0,1,0(x2) ∪ {x1 ∥ x2}
p0,1,1(x1, x

′
1) = p0,1,0(x1) ∪ p0,0,1(x

′
1) ∪ {x1 ∥ x′1}

p0,2,1(x1, x2, x
′
1) = p0,2,0(x1, x2) ∪ p0,1,1(x1, x

′
1)

p1,1,0(x0, x1) = p1,0,0(x0) ∪ p0,1,0(x1)

p1,2,0(x0, x1, x2) = p1,1,0(x0, x1) ∪ p0,2,0(x1, x2)

p1,0,1(x0, x
′
1) = p1,0,0(x0) ∪ p0,0,1(x

′
1)

p1,1,1(x0, x1, x
′
1) = p1,1,0(x0, x1) ∪ p1,0,1(x0, x

′
1) ∪ p0,1,1(x1, x

′
1)

p1,2,1(x0, x1, x2, x
′
1) = p1,2,0(x0, x1, x2) ∪ p1,1,1(x0, x1, x

′
1) ∪ p0,2,1(x1, x2, x

′
1)

Hasse diagram of Rudin-Keisler preorder for the types of TP
3,< is given in

the Figure 5.
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Figure 5. Hasse diagrams for TP
3,= and TP

3,<

It is turn to consider possible completions on TP
4 via completions of T4,

where some of di,j are not the same. There are 5 such completions of TP
4

(see Figure 6, in this figure we omit the case when all di,j are equal).
Case 1. d1,2 = d1,3 = d2,3 > d1,4 = d2,4 = d3,4. There are 3 realizations

for each of p0 and p4. The number of realization of p1, p2, and p3 is expressed
by C(3 + n− 1, n), where n = 3. So we have 32 · 10 countable models. The
number of countable prime models is 22 · C(2 + n− 1, n) = 22 · 4.

Case 2. d1,2 > d1,3 = d2,3 = d1,4 = d2,4 = d3,4. The number of realizations
of p1 and p2 is expressed by C(3 + n − 1, n), where n = 2, as well as the
number of realizations of p3 and p4. So we have 3 ·62 countable models. The
number of prime countable models is 2 · (C(2 + n− 1, n))2 = 2 · 42.
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Figure 6.

Case 3. d1,2 > d1,3 = d2,3 > d1,4 = d2,4 = d3,4. There are 3 realizations
for each of p0, p3, and p4. The number of realization of p1 and p2 is expressed
by C(3 + n − 1, n), where n = 2. So we have 33 · 6 countable models. The
number of countable prime models is 23 · C(2 + n− 1, n) = 23 · 3.

Case 4. d1,2 > d1,3 = d2,3 = d1,4 = d2,4, d3,4 > d1,4, and d1,2 ∥ d3,4.
This is the most interesting case here. There are automorphisms of MP

which swap p1(M) and p2(M), p3(M) and p4(M), and p1(M)∪p2(M) and
p3(M) ∪ p4(M).

First, we calculate the number of countable prime models. It is 2 ·6 = 12.
The number 6 is obtained by the following calculation. For each of pi, we
have 2 possibilities: either the realization is empty, or not. We denote it
by 0 and 1, correspondingly. In order to code all possible variants, we use
multisets. Since we have 2 elements: 0 and 1, there are exactly 3 multisets
of cardinality 2: {0, 0}, {0, 1}, and {1, 1}. Now we calculate the number of
combinations of three-element set with repetitions, when we take 2 elements.
It is equal to C(4, 2) = 6. Below, we list all possible choices for realization
of p1, p2, p3, and p4:

{{0, 0}, {0, 0}}, {{0, 0}, {0, 1}}, {{0, 0}, {1, 1}}

{{0, 1}, {0, 1}}, {{0, 1}, {1, 1}}, {{1, 1}, {1, 1}}
Now we calculate the number of all countable models. We denote by 2

the limit realization of a type. Since we have 3 elements: 0, 1, and 2, there
are exactly 6 multisets of cardinality 2: {0, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2},
and {2, 2}. Now we calculate the number of combinations of six-element
set with repetitions, when we take 2 elements. It is equal to C(7, 2) = 21.
Recall, that p0 has 3 kinds of realizations. Thus, the number of countable
models is 3 · 21 = 63.

We express the general way for calculating the number of countable mod-
els. Let T be a finite rooted tree. Let G be the group of all automorphisms
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of T as a rooted tree. Now we color each leaf of T into k colors, where
k ∈ {2, 3}. Two colorings of T are said to be equivalent if there is a g ∈ G,
which takes the first coloring to the second one. Each completion of Tn cor-
respond to some tree with n leaves, where each vertex has at least two sons
or it is a leaf. Then the number of countable models of a completion of Tn is
equal to the number of non-equivalent colorings of the corresponding tree,
where the number of colors is equal to 3 modulo the number of realizations
of the type p0. So, the total number of countable models is 3 times the
number of non-equivalent colorings of the corresponding tree. For counting
the number of prime models of Tn we take the number of colors to be 2.

We consider some example of T . Assume that the root of T has m3 sons,
each son has m2 sons, and each grandson of the root has m1 sons. Then
there are γ1 = C(3 +m1 − 1,m1) ways to color the sons of some grandson.
Now there are γ2 = C(γ1 + m2 − 1,m2) ways to color the grandsons with
their children. So, there are γ3 = C(γ2 +m3 − 1,m3) ways to color the sons
with their sons and grandson. Also, we have 3 coloring of the root. Totally,
there are

3 · C(C(C(3 +m1 − 1,m1) +m2 − 1,m2) +m3 − 1,m3)

countable models of the corresponding theory.
Recall that the height of a vertex in a rooted tree is the length of the

longest downward path to a leaf from that vertex. Let a and b be two parents
of two leaves, that is, of height 1. Then there exists an automorphism that
swaps a and b, swaps sons of a and sons of b and fixes the rest of the tree if
and only if they have the same number of sons. So, we say that a vertex of
the height 1 which has exactly m sons is of the type m.

Let c be a vertex of height 2. We say that c is of the type

((m0, 0), (m1, k1), . . . , (ms, ks))

if it has exactly m0 +m1 + · · ·+ms sons, moreover, it has exactly m0 sons
which are leaves, and exactly mi sons of the type ki, for each i.

Let d be a vertex of height p+ 1, and let Ki be a type of vertex ci of the
height p. We say that d is of the type

((m1,Ki), . . . , (ms,Ks))

if it has exactly m1 + · · ·+ms sons, moreover, it has exactly mi sons of the
type Ki for each i.

It is straightforward to prove that for any two vertices, there is an auto-
morphism which swaps them and their descendants and fixes the other part
of the tree if and only if the types of these elements are the same.

Let a be a vertex which is fixed by each automorphism of T and which
has at least two sons of the same type. Let b0 be a leaf that is a descendant
of a. Let b1 be the parent of b0 of type m0

1, that is, b1 has exactly m0
1 sons.

Let b2 be the parent of b1 and have exactly m0
2 sons of the same type with

b1. And so on, let bk = a be the parent of bk−1 and let it have exactly m0
k
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sons of the same type as bk−1 has. Let

γ01 = C(3 +m0
1 − 1,m0

1) and γ0i+1 = C(γ0i +m0
i − 1,m0

i ),

δ01 = C(2 +m0
1 − 1,m0

1) and δ0i+1 = C(δ0i +m0
i − 1,m0

i ).

Let B0 = G(b0), where G is the group of all automorphisms of the rooted
tree T . Then similarly to the example above we can prove that there exist
γ0k colorings of B0 into 3 colors and δ0k colorings of B0 into 2 colors. Given
a set B0, we denote γ0k by Γ0 and δ0k by ∆0.

From the above considerations, Theorem 4 follows.

Theorem 4. Let T be a completion of TP
n and let T be the correspond-

ing rooted tree. Let B0, . . . , Bw be a partition of the set of leaves of T ,
where each Bi is the orbit of some leaf under the action of the group of
automorphisms of T . Then the number of countable models of T is equal to

3 ·
∏
i≤w

Γi

and the number of countable prime models is equal to

2 ·
∏
i≤w

∆i.

Now we give the diagram for TP
n,= in Figure 7, where TP

n,= is a such

completion of TP
n where all meets of the descending sequences are the same.

We omit the Hasse diagram of the Rudin-Keisler preorders ≤RK for the other
theories since the drawing these diagrams seems cumbersome.

rf0���������rf1 p1,0rf1p0,1 ���������rf3 p1,1rf2p0,2 ���������rf5 p1,2rf3p0,3

ppp rf2n − 3
p1,n−2rf

n − 1
p0,n−1 ���������rf2n − 1

p1,n−1rfnp0,n ���������rf2n + 1
p1,n

Figure 7. Hasse diagram for TP
n,=
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